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1. Introduction

LetC be a nonempty closed convex subset of a Hilbert spaceH. Amapping T : C → C is said
to be nonexpansive if for all x, y ∈ Cwe have ‖Tx−Ty‖ ≤ ‖x−y‖. It is said to be asymptotically
nonexpansive [1] if there exists a sequence {kn} with kn ≥ 1 and limn→∞ kn = 1 such that
‖Tnx − Tny‖ ≤ kn‖x − y‖ for all integers n ≥ 1 and for all x, y ∈ C. The set of fixed points of T
is denoted by F(T).

Let φ : C × C → R be a bifunction, where R is the set of real number. The equilibrium
problem for the function φ is to find a point x ∈ C such that

φ
(
x, y

) ≥ 0 ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP(φ). In 2005, Combettes and Hirstoaga [2]
introduced an iterative scheme of finding the best approximation to the initial data when
EP(φ) is nonempty, and they also proved a strong convergence theorem.
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For a bifunction φ : C×C → R and a nonlinear mappingA : C → H, we consider the
following equilibrium problem:

Find z ∈ C such that φ
(
z, y

)
+
〈
Az, y − z

〉 ≥ 0, ∀y ∈ C. (1.2)

The set of such that z ∈ C is denoted by EP , that is,

EP =
{
z ∈ C : φ

(
z, y

)
+
〈
Az, y − z

〉 ≥ 0, ∀y ∈ C
}
. (1.3)

In the case ofA = 0, EP = EP(φ). In the case of φ ≡ 0, EP is denoted by V I(C,A). The problem
(1.2) is very general in the sense that it includes, as special cases, some optimization problems,
variational inequalities, minimax problems, the Nash equilibrium problem in noncooperative
games, and others (see, e.g., [3, 4]).

Recall that a mapping A : C → H is called monotone if

〈Au −Av, u − v〉 ≥ 0, ∀u, v ∈ C. (1.4)

A mapping A of C into H is called α-inverse strongly monotone, see [5–7], if there
exists a positive real number α such that

〈
x − y,Ax −Ay

〉 ≥ α
∥∥Ax −Ay

∥∥2 (1.5)

for all x, y ∈ C. It is obvious that any α−inverse strongly monotone mapping A is monotone
and Lipschitz continuous.

Construction of fixed points of nonexpansivemappings and asymptotically nonexpan-
sive mappings is an important subject in nonlinear operator theory and its applications, in
particular, in image recovery and signal processing (see, e.g., [1, 8–10]). Fixed point iteration
processes for nonexpansive mappings and asymptotically nonexpansive mappings in Hilbert
spaces and Banach spaces including Mann [11] and Ishikawa [12] iteration processes have
been studied extensively by many authors to solve nonlinear operator equations as well as
variational inequalities; see, for example, [11–13]. However, Mann and Ishikawa iteration
processes have only weak convergence even in Hilbert spaces (see, e.g., [11, 12]).

Some attempts to modify the Mann iteration method so that strong convergence is
guaranteed have recently been made. In 2003, Nakajo and Takahashi [14] proposed the
following modification of the Mann iteration method for a nonexpansive mapping T in a
Hilbert space H:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn =
{
v ∈ C :

∥∥yn − v
∥∥ ≤ ‖xn − v‖},

Qn = {v ∈ C : 〈xn − v, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(1.6)
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where PC denotes the metric projection from H onto a closed convex subset C of H. They
proved that if the sequence {αn} bounded above from one, then {xn} defined by (1.6)
converges strongly to PF(T)x0.

Recently, Kim and Xu [15] adapted the iteration (1.6) to an asymptotically nonexpan-
sive mapping in a Hilbert space H:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Tnxn,

Cn =
{
v ∈ C :

∥
∥yn − v

∥
∥2 ≤ ‖xn − v‖2 + θn

}
,

Qn = {v ∈ C : 〈xn − v, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(1.7)

where θn = (1 − αn)(k2
n − 1)(diamC)2 → 0, as n → ∞. They proved that if αn ≤ a for all

n and for some 0 < a < 1, then the sequence {xn} generated by (1.7) converges strongly to
P Fix(T)(x0).

Very recently, Inchan and Plubtieng [16] introduced the modified Ishikawa iteration
process by the shrinking hybrid method [17] for two asymptotically nonexpansive mappings
S and T , with C a closed convex bounded subset of a Hilbert space H. For C1 = C and
x1 = PC1x0, define {xn} as follows:

yn = αnxn + (1 − αn)Tnzn,

zn = βnxn +
(
1 − βn

)
Snxn,

Cn+1 =
{
v ∈ Cn :

∥∥yn − v
∥∥2 ≤ ‖xn − v‖2 + θn

}
,

xn+1 = PCn+1x0, n ∈ N,

(1.8)

where θn = (1 − αn)[(t2n − 1) + (1 − βn)t2n(s
2
n − 1)](diamC)2 → 0, as n → ∞ and 0 ≤ αn ≤ a < 1

and 0 < b ≤ βn ≤ c < 1 for all n ∈ N. They proved that the sequence {xn} generated by (1.8)
converges strongly to a common fixed point of two asymptotically nonexpansive mappings
S and T .

Zegeye and Shahzad [18] established the following hybrid iteration process for a finite
family of asymptotically nonexpansive mappings in a Hilbert spaceH:

x0 ∈ C chosen arbitrarily,

yn = αn0xn + αn1T
n
1 xn + αn2T

n
2 xn + αn3T

n
3 xn + · · · + αnrT

n
r xn,

Cn =
{
v ∈ C :

∥∥yn − v
∥∥2 ≤ ‖xn − v‖2 + θn

}
,

Qn = {v ∈ C : 〈xn − v, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(1.9)
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where θn = [(k2
n1 − 1)αn1 + (k2

n2 − 1)αn2 + · · · + (k2
nr − 1)αnr](diamC)2 → 0, as n → ∞. Under

suitable conditions strong convergence theorem is proved which extends and improves the
corresponding results of Nakajo and Takahashi [14] and Kim and Xu [15].

On the other hand, for finding a common element of EP(φ)∩F(S), Tada and Takahashi
[19] introduced the following iterative scheme by the hybrid method in a Hilbert space: x0 =
x ∈ H and let

un ∈ C such that φ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

wn = (1 − αn)xn + αnSun,

Cn = {z ∈ H : ‖wn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0

(1.10)

for every n ∈ N ∪ {0}, where {αn} ⊂ [a, b] for some a, b ∈ (0, 1) and {rn} ⊂ (0,∞) satisfies
lim infn→∞rn > 0. Further, they proved that {xn} and {un} converge strongly to z ∈ EP(φ) ∩
F(S), where z = PEP(φ)∩F(S)x0.

Inspired and motivated by the above facts, it is the purpose of this paper to introduce
the Mann iteration process for finding a common element of the set of common fixed points
of an infinite family of asymptotically nonexpansive mappings and the set of solutions of an
equilibrium problem. Then we prove some strong convergence theorems which extend and
improve the corresponding results of Tada and Takahashi [19], Inchan and Plubtieng [16],
Zegeye and Shahazad [18], and many others.

2. Preliminaries

We will use the following notations:

(1) “⇀” for weak convergence and “→ ” for strong convergence;

(2) wω(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.

Let H be a real Hilbert space. It is well known that

∥∥x − y
∥∥2 = ‖x‖2 − ∥∥y

∥∥2 − 2
〈
x − y, y

〉
(2.1)

for all x, y ∈ H.
It is well known that H satisfies Opial’s condition [20], that is, for any sequence {xn}

with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥∥xn − y
∥∥ (2.2)

holds for every y ∈ H with y /=x. Hilbert space H satisfies the Kadec-Klee property [21, 22],
that is, for any sequence {xn}with xn ⇀ x and ‖xn‖ → ‖x‖ together imply ‖xn − x‖ → 0.
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We need some facts and tools in a real Hilbert space H which are listed as follows.

Lemma 2.1 ([23]). Let T be an asymptotically nonexpansive mapping defined on a nonempty
bounded closed convex subset C of a Hilbert spaceH. If {xn} is a sequence in C such that xn ⇀ z and
Txn − xn → 0, then z ∈ F(T).

Lemma 2.2 ([24]). LetC be a nonempty closed convex subset ofH and also give a real number a ∈ R.
The set D := {v ∈ C : ‖y − v‖2 ≤ ‖x − v‖2 + 〈z, v〉 + a} is convex and closed.

Lemma 2.3 ([22]). Let C be a nonempty closed convex subset of H, and let PC be the (metric or
nearest) projection fromH ontoC (i.e., PCx is the only point inC such that ‖x−PCx‖ = inf{‖x−z‖ :
∀z ∈ C}). Given x ∈ H and z ∈ C. Then z = PCx if and only if it holds the relation:

〈
x − z, y − z

〉 ≤ 0, ∀y ∈ C. (2.3)

For solving the equilibrium problem, let us assume that the bifunction φ satisfies the
following conditions (see [3]):

(A1) φ(x, x) = 0 for all x ∈ C;

(A2) φ is monotone, that is, φ(x, y) + φ(y, x) ≤ 0 for any x, y ∈ C;

(A3) φ is upper-hemicontinuous, that is, for each x, y, z ∈ C

lim sup
t→ 0+

φ
(
tz + (1 − t)x, y

) ≤ φ
(
x, y

)
; (2.4)

(A4) φ(x, ·) is convex and weakly lower semicontinuous for each x ∈ C.

The following lemma appears implicity in [3].

Lemma 2.4 ([3]). Let C be a nonempty closed convex subset ofH, and let φ be a bifunction of C ×C
into R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

φ
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0 ∀y ∈ C. (2.5)

The following lemma was also given in [2].

Lemma 2.5 ([2]). Assume that φ : C × C → R satisfies (A1)–(A4). For r > 0 and x ∈ H, define a
mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : φ

(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0 ∀y ∈ C

}
(2.6)
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for all x ∈ H. Then, the following holds

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H, ‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉.
This implies that ‖Trx − Try‖ ≤ ‖x − y‖, ∀x, y ∈ H, that is, Tr is a nonexpansive mapping:

(3) F(Tr) = EP(φ), ∀r > 0;

(4) EP(φ) is a closed and convex set.

Definition 2.6 (see [25]). LetC be a nonempty closed convex subset ofH. Let {Sm} be a family
of asymptotically nonexpansive mappings of C into itself, and let {βn,k : n, k ∈ N, 1 ≤ k ≤ n}
be a sequence of real numbers such that 0 ≤ βi,j ≤ 1 for every i, j ∈ N with i ≥ j. For any n ≥ 1
define a mapping Wn : C → C as follows:

Un,n = βn,nS
n
n +

(
1 − βn,n

)
I,

Un,n−1 = βn,n−1Sn
n−1Un,n +

(
1 − βn,n−1

)
I,

...

Un,k = βn,kS
n
kUn,k+1 +

(
1 − βn,k

)
I,

...

Un,2 = βn,2S
n
2Un,3 +

(
1 − βn,2

)
I,

Wn = Un,1 = βn,1S
n
1Un,2 +

(
1 − βn,1

)
I.

(2.7)

Such a mapping Wn is called the modified W-mapping generated by Sn, Sn−1, . . . , S1 and
βn,n, βn,n−1, . . . , βn,2, βn,1.

Lemma 2.7 ([10, Lemma 4.1]). Let C be a nonempty closed convex subset of H. Let {Sm} be a
family of asymptotically nonexpansive mappings of C into itself with Lipschitz constants {tm,n}, that
is, ‖Sn

mx − Sn
my‖ ≤ tm,n‖x − y‖ (for allm,n ∈ N, for allx, y ∈ C) such that F := ∩∞

i=1F(Si)/= ∅,
and let {βn,k : n, k ∈ N, 1 ≤ k ≤ n} be a sequence of real numbers with 0 < a ≤ βn,1 ≤ 1 for
all n ∈ N and 0 < b ≤ βn,i ≤ c < 1 for every n ∈ N and i = 2, . . . , n for some a, b, c ∈ (0, 1).
Let Wn be the modified W-mapping generated by Sn, Sn−1, . . . , S1 and βn,n, βn,n−1, . . . , βn,2, βn,1. Let
rn,k = {βn,k(t2k,n − 1) + βn,kβn,k+1t

2
k,n

(t2
k+1,n − 1) + · · · + βn,kβn,k+1 · · · βn,n−1t2k,nt2k+1,n · · · t2n−2,n(t2n−1,n −

1) + βn,kβn,k+1 · · · βn,nt2k,nt2k+1,n · · · t2n−1,n(t2n,n − 1)} for every n ∈ N and k = 1, 2, . . . , n. Then, the
followings hold:

(i) ‖Wnx − z‖2 ≤ (1 + rn,1)‖x − z‖2 for all n ∈ N, x ∈ C and z ∈ ∩n
i=1F(Si);

(ii) if C is bounded and limn→∞rn,1 = 0, for every sequence {zn} in C,

lim
n→∞

‖zn+1 − zn‖ = 0, lim
n→∞

zn −Wnzn = 0 imply wω(zn) ⊂ F; (2.8)

(iii) if limn→∞rn,1 = 0, F = ∩∞
i=1F(Wn) and F is closed convex.
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Lemma 2.8 ([10, Lemma 4.4]). Let C be a nonempty closed convex subset of H. Let {Sm} be a
family of asymptotically nonexpansive mappings of C into itself with Lipschitz constants {tm,n}, that
is, ‖Sn

mx − Sn
my‖ ≤ tm,n‖x − y‖ (for allm,n ∈ N, for allx, y ∈ C) such that F := ∩∞

i=1F(Si)/= ∅.
Let Tn =

∑n
k=1 βn,kS

n
k for every n ∈ N, where 0 ≤ βn,k ≤ 1 for every n = 1, 2, 3, . . . and k =

1, 2, . . . , n with
∑n

k=1 βn,k = 1 for every n ∈ N and limn→∞βn,k > 0 for every k ∈ N, and let
rn =

∑n
k=1 βn,k(t

2
k,n

− 1) for every n ∈ N. Then, the following holds:

(i) ‖Tnx − z‖2 ≤ (1 + rn)‖x − z‖2 for all n ∈ N, x ∈ C and z ∈ ∩n
i=1F(Si);

(ii) if C is bounded and limn→∞rn = 0, for every sequence {zn} in C,

lim
n→∞

‖zn+1 − zn‖ = 0, lim
n→∞

‖zn − Tnzn‖ = 0 imply wω(zn) ⊂ F; (2.9)

(iii) if limn→∞rn = 0, F = ∩∞
i=1F(Tn) and F is closed convex.

3. Main Results

In this section, we will introduce two iterative schemes by using hybrid approximation
method for finding a common element of the set of common fixed points for a family of
infinitely asymptotically nonexpansive mappings and the set of solutions of an equilibrium
problem in Hilbert space. Then we show that the sequences converge strongly to a common
element of the two sets.

Theorem 3.1. LetC be a nonempty bounded closed convex subset of a real Hilbert spaceH, let φ : C×
C → R be a bifunction satisfying the conditions (A1)–(A4), let A be an α-inverse strongly monotone
mapping of C into H, let {Sm} be a family of asymptotically nonexpansive mappings of C into itself
with Lipschitz constants {tm,n}, that is, ‖Sn

mx−Sn
my‖ ≤ tm,n‖x−y‖ (for allm,n ∈ N, for allx, y ∈ C)

such that F ∩ EP /= ∅ , where F := ∩∞
i=1F(Si), and let {βn,k : n, k ∈ N, 1 ≤ k ≤ n} be a sequence of

real numbers with 0 < a ≤ βn,1 ≤ 1 for all n ∈ N and 0 < b ≤ βn,i ≤ c < 1 for every n ∈ N and
i = 2, . . . , n for some a, b, c ∈ (0, 1). LetWn be the modifiedW-mapping generated by Sn, Sn−1, . . . , S1

and βn,n, βn,n−1, . . . , βn,2, βn,1. Assume that rn,k = {βn,k(t2k,n − 1) + βn,kβn,k+1t
2
k,n(t

2
k+1,n − 1) + · · · +

βn,kβn,k+1 · · · βn,n−1t2k,nt2k+1,n · · · t2n−2,n(t2n−1,n − 1) + βn,kβn,k+1 · · · βn,nt2k,nt2k+1,n · · · t2n−1,n(t2n,n − 1)} for
every n ∈ N and k = 1, 2, . . . , n such that limn→∞rn,1 = 0. Let {xn} and {un} be sequences generated
by the following algorithm:

x0 ∈ C chosen arbitrarily,

un ∈ C such that φ
(
un, y

)
+
〈
Axn, y − un

〉
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = αnun + (1 − αn)Wnun,

Cn+1 =
{
v ∈ Cn :

∥∥yn − v
∥∥2 ≤ ‖xn − v‖2 + θn

}
,

xn+1 = PCn+1x0, n ∈ N ∪ {0},

(3.1)

where C0 = C and θn = (1 − αn)rn,1(diamC)2 and 0 ≤ αn ≤ d < 1 and 0 < e ≤ rn ≤ f < 2α. Then
{xn} and {un} converge strongly to PF∩EP (x0).
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Proof. We show first that the sequences {xn} and {un} are well defined.
We observe thatCn is closed and convex by Lemma 2.2. Next we show that F∩EP ⊂ Cn

for all n. we prove first that (I − rnA) is nonexpansive. Let x, y ∈ C. Since A is α-inverse
strongly monotone and rn < 2α ∀n ∈ N, we have

∥
∥(I − rnA)x − (I − rnA)y

∥
∥2 =

∥
∥x − y − rn(Ax −Ay)

∥
∥2

=
∥
∥x − y

∥
∥2 − 2rn

〈
x − y,Ax −Ay

〉
+ r2n

∥
∥Ax −Ay

∥
∥2

≤ ∥∥x − y
∥∥2 − 2αrn

∥∥Ax −Ay
∥∥2 + r2n

∥∥Ax −Ay
∥∥2

=
∥
∥x − y

∥
∥2 + rn(rn − 2α)

∥
∥Ax −Ay

∥
∥2

≤ ∥
∥x − y

∥
∥2

.

(3.2)

Thus (I − rn)A is nonexpansive.
Since

φ
(
un, y

)
+
〈
Axn, y − un

〉
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C, (3.3)

we obtain

φ
(
un, y

)
+

1
rn

〈
y − un, un − (I − rnA)xn

〉 ≥ 0, ∀y ∈ C. (3.4)

By Lemma 2.5, we have un = Trn(xn − rnAxn), for alln ∈ N.
Let p ∈ F ∩ EP , it follows the definition of EP that

φ
(
p, y

)
+
〈
y − p,Ap

〉 ≥ 0, ∀ y ∈ C. (3.5)

So,

φ
(
p, y

)
+

1
rn

〈
y − p, p − (

p − rnAp
)〉 ≥ 0, ∀ y ∈ C. (3.6)

Again by Lemma 2.5, we have p = Trn(p − rnAp), for alln ∈ N.
Since I − rnA and Trn are nonexpansive, one has

∥∥un − p
∥∥ ≤ ∥∥Trn(xn − rnAxn) − Trn

(
p − rnAp

)∥∥ ≤ ∥∥xn − p
∥∥, ∀n ≥ 1. (3.7)



Fixed Point Theory and Applications 9

Then using the convexity of ‖ · ‖2 and Lemma 2.7 we obtain that

∥
∥yn − p

∥
∥2 =

∥
∥αn

(
un − p

)
+ (1 − αn)

(
Wnun − p

)∥∥2

≤ αn

∥∥un − p
∥∥2 + (1 − αn)

∥∥Wnun − p
∥∥2

≤ αn

∥
∥un − p

∥
∥2 + (1 − αn)(1 + rn,1)

∥
∥un − p

∥
∥2

=
∥
∥un − p

∥
∥2 + (1 − αn)rn,1

∥
∥un − p

∥
∥2

≤ ∥
∥un − p

∥
∥2 + θn

≤ ∥
∥xn − p

∥
∥2 + θn.

(3.8)

So p ∈ Cn for all n and hence F ∩ EP ⊂ Cn for all n. This implies that {xn} is well defined.
From Lemma 2.4, we know that {un} is also well defined.

Next, we prove that ‖xn+1−xn‖ → 0, ‖xn−un‖ → 0, ‖un+1−un‖ → 0, ‖un−Wnun‖ → 0,
as n → ∞.

It follows from xn = PCnx0 that

〈x0 − xn, xn − v〉 ≥ 0, for each v ∈ F ∩ EP ⊂ Cn, n ∈ N. (3.9)

So, for p ∈ F ∩ EP , we have

0 ≤ 〈
x0 − xn, xn − p

〉
= −〈xn − x0, xn − x0〉 +

〈
x0 − xn, x0 − p

〉

≤ −‖xn − x0‖2 + ‖xn − x0‖
∥∥x0 − p

∥∥.
(3.10)

This implies that

‖xn − x0‖2 ≤ ‖xn − x0‖
∥∥x0 − p

∥∥, (3.11)

and hence

‖xn − x0‖ ≤ ∥∥x0 − p
∥∥. (3.12)

Since C is bounded, then {xn} and {un} are bounded.
From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we have

〈x0 − xn, xn − xn+1〉 ≥ 0 ∀n ∈ N. (3.13)

So,

0 ≤ 〈x0 − xn, xn − xn+1〉 = −〈xn − x0, xn − x0〉 + 〈x0 − xn, x0 − xn+1〉

≤ −‖xn − x0‖2 + ‖xn − x0‖‖x0 − xn+1‖.
(3.14)



10 Fixed Point Theory and Applications

This implies that

‖xn − x0‖ ≤ ‖xn+1 − x0‖ · ∀n ∈ N. (3.15)

Hence, {‖xn − x0‖} is nodecreasing, and so limn→∞‖xn − x0‖ exists.
Next, we can show that limn→∞‖xn − xn+1‖ = 0. Indeed, From (2.1) and (3.13), we

obtain

‖xn+1 − xn‖2 = ‖(xn+1 − x0) − (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2.

(3.16)

Since limn→∞‖xn − x0‖ exists, we have

lim
n→∞

‖xn − xn+1‖ = 0. (3.17)

On the other hand, it follows from xn+1 ∈ Cn+1 that

∥∥yn − xn+1
∥∥2 ≤ ‖xn − xn+1‖2 + θn −→ 0, as n −→ ∞. (3.18)

It follows that

∥∥yn − xn

∥∥ ≤ ∥∥yn − xn+1
∥∥ + ‖xn+1 − xn‖ −→ 0, as n −→ ∞. (3.19)

Next, we claim that limn→∞‖xn − un‖ = 0. Let p ∈ F ∩ EP , it follows from (3.8) that

∥∥yn − p
∥∥2 ≤ ∥∥un − p

∥∥2 + θn

=
∥∥Trn(I − rnA)xn − Trn(I − rnA)p

∥∥2 + θn

≤ ∥∥xn − p
∥∥2 + rn(rn − 2α)

∥∥Axn −Ap
∥∥2 + θn.

(3.20)

This implies that

e
(
2α − f

)∥∥Axn −Ap
∥∥2 ≤ ∥∥xn − p

∥∥2 − ∥∥yn − p
∥∥2 + θn

≤ ∥∥xn − yn

∥∥(∥∥xn − p
∥∥ +

∥∥yn − p
∥∥) + θn.

(3.21)

It follows from (3.19) that

lim
n→∞

∥∥Axn −Ap
∥∥ = 0. (3.22)
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From Lemma 2.5, one has

∥
∥un − p

∥
∥2 =

∥
∥Trn(I − rnA)xn − Trn(I − rnA)p

∥
∥2

≤ 〈
(xn − rnAxn) −

(
p − rnAp

)
, un − p

〉

=
1
2

{∥
∥xn − rnAxn − (p − rnAp)

∥
∥2 +

∥
∥un − p

∥
∥2

−∥∥xn − rnAxn − (p − rnAp) − (un − p)
∥
∥2
}

≤ 1
2

{∥
∥xn − p

∥
∥2 +

∥
∥un − p

∥
∥2 − ∥

∥xn − un − rn(Axn −Ap)
∥
∥2
}

=
1
2

{∥
∥xn − p

∥
∥2 +

∥
∥un − p

∥
∥2 − ‖xn − un‖2

+2rn
〈
xn − un,Axn −Ap

〉 − r2n
∥∥Axn −Ap

∥∥2
}
.

(3.23)

This implies that

∥∥un − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖xn − un‖2 + 2rn
〈
xn − un,Axn −Ap

〉 − r2n
∥∥Axn −Ap

∥∥2

≤ ∥∥xn − p
∥∥2 − ‖xn − un‖2 + 2rn

〈
xn − un,Axn −Ap

〉

≤ ∥∥xn − p
∥∥2 − ‖xn − un‖2 + 2rn‖xn − un‖

∥∥Axn −Ap
∥∥.

(3.24)

By (3.8), we have

∥∥yn − p
∥∥2 ≤ ∥∥un − p

∥∥2 + θn. (3.25)

Substituting (3.24) into (3.25), we obtain

∥∥yn − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖xn − un‖2 + 2rn‖xn − un‖
∥∥Axn −Ap

∥∥ + θn, (3.26)

which implies that

‖xn − un‖2 ≤
∥∥xn − p

∥∥2 − ∥∥yn − p
∥∥2 + 2rn‖xn − un‖

∥∥Axn −Ap
∥∥ + θn

≤ ∥∥xn − yn

∥∥(∥∥xn − p
∥∥ +

∥∥yn − p
∥∥) + 2rn‖xn − un‖

∥∥Axn −Ap
∥∥ + θn.

(3.27)

Noticing that limn→∞‖Axn −Ap‖ = 0 and (3.19), it follows from (3.27) that

lim
n→∞

‖un − xn‖ = 0. (3.28)
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From (3.17) and (3.28), we have

‖un − un+1‖ ≤ ‖un − xn‖ + ‖xn − xn+1‖ + ‖xn+1 − un+1‖ −→ 0, as n −→ ∞. (3.29)

Similarly, from (3.19) and (3.28), one has

∥
∥yn − un

∥
∥ ≤ ∥

∥yn − xn

∥
∥ + ‖xn − un‖ −→ 0, as n −→ ∞. (3.30)

Noticing that the condition 0 ≤ αn ≤ d < 1, it follows that

(1 − αn)‖Wnun − un‖ =
∥
∥yn − un

∥
∥, (3.31)

which implies that

‖Wnun − un‖ =

∥∥yn − un

∥∥

1 − αn
<

∥∥yn − un

∥∥

1 − d
−→ 0, as n −→ ∞. (3.32)

Next, we prove that there exists a subsequence {xni} of {xn} which converges weakly to z,
where z ∈ F ∩ EP .

Since {xn} is bounded and C is closed, there exists a subsequence {xni} of {xn} which
converges weakly to z, where z ∈ C. From (3.28), we have uni ⇀ z. Noticing (3.29) and (3.32),
it follows from Lemma 2.7 that z ∈ F. Next we prove that z ∈ EP . Since un = Trn(xn − rnAxn),
for any y ∈ C, we have

φ
(
un, y

)
+
〈
Axn, y − un

〉
+

1
rn

〈
y − un, un − xn

〉 ≥ 0. (3.33)

From (A2), one has

〈
Axn, y − un

〉
+

1
rn

〈
y − un, un − xn

〉 ≥ φ
(
y, un

)
. (3.34)

Replacing n by ni, we obtain

〈
Axni , y − uni

〉
+
〈
y − uni ,

uni − xni

rni

〉
≥ φ

(
y, uni

)
. (3.35)

Put zt = ty + (1 − t)z for all t ∈ (0, 1] and y ∈ C. Then, we have zt ∈ C. So we have

〈zt − uni , Azt〉 ≥ 〈zt − uni , Azt〉 − 〈Axni , zt − uni〉 −
〈
zt − uni ,

uni − xni

rni

〉
+ φ(zt, uni)

= 〈zt − uni , Azt −Auni〉 + 〈zt − uni , Auni −Axni〉

−
〈
zt − uni ,

uni − xni

rni

〉
+ φ(zt, uni).

(3.36)



Fixed Point Theory and Applications 13

Since ‖uni −xni‖ → 0, we have ‖Auni −Axni‖ → 0. Further, frommonotonicity ofA, we have
〈zt − uni , Azt −Auni〉 ≥ 0. So, from (A4) we have

〈zt − z,Azt〉 ≥ φ(zt, z), (3.37)

as i → ∞. From (A1) and (A4), we also have

0 = φ(zt, zt) ≤ tφ
(
zt, y

)
+ (1 − t)φ(zt, z)

≤ tφ
(
zt, y

)
+ (1 − t)〈zt − z,Azt〉

= tφ
(
zt, y

)
+ (1 − t)t

〈
y − z,Azt

〉
,

(3.38)

and hence

0 ≤ φ
(
zt, y

)
+ (1 − t)

〈
y − z,Azt

〉
. (3.39)

Letting t → 0, we have, for each y ∈ C,

0 ≤ φ
(
z, y

)
+
〈
y − z,Az

〉
. (3.40)

This implies that z ∈ EP . Therefore z ∈ F ∩ EP .
Finally we show that xn → z, un → z, where z = PF∩EP(φ)(x0).
Putting z′ = PF∩EP (x0) and consider the sequence {x0 − xni}. Then we have x0 − xni ⇀

x0 − z and by the weak lower semicontinuity of the norm and by the fact that ‖x0 − xn+1‖ ≤
‖x0 − z′‖ for all n ≥ 0 which is implied by the fact that xn+1 = PCn+1(x0) , we obtain

∥∥x0 − z′
∥∥ ≤ ‖x0 − z‖
≤ lim inf

i→∞
‖x0 − xni‖

≤ lim sup
i→∞

‖x0 − xni‖

≤ ∥∥x0 − z′
∥∥.

(3.41)

This implies that ‖x0 − z′‖ = ‖x0 − z‖ (hence z′ = z by the uniqueness of the nearest point
projection of x0 onto F ∩ EP) and that

‖x0 − xni‖ −→ ∥∥x0 − z′
∥∥. (3.42)

It follows that x0 − xni → x0 − z′, and hence xni → z′. Since {xni} is an arbitrary (weakly
convergent) subsequence of {xn}, we conclude that xn → z′. From (3.28), we know that
un → z′ also. This completes the proof of Theorem 3.1.

Theorem 3.2. Let C be a nonempty bounded closed convex subset of a real Hilbert space H, let
φ : C × C → R be a bifunction satisfying the conditions (A1)–(A4), let A be an α-inverse strongly
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monotone mapping of C into H, and let {Sm} be a family of asymptotically nonexpansive mappings
of C into itself with Lipschitz constants {tm,n}, that is, ‖Sn

mx − Sn
my‖ ≤ tm,n‖x − y‖ (for allm,n ∈

N, for allx, y ∈ C) such that F ∩ EP /= ∅ , where F := ∩∞
i=1F(Si). Let Tn =

∑n
k=1 βn,kS

n
k
for every

n ∈ N, where 0 ≤ βn,k ≤ 1 for every n = 1, 2, 3, . . . and k = 1, 2, . . . , n with
∑n

k=1 βn,k = 1 for each
n ∈ N and limn→∞βn,k > 0 for every k ∈ N, and assume that γn =

∑n
k=1 βn,k(t

2
k,n

− 1) for every
n ∈ N such that limn→∞γn = 0. Let {xn} and {un} be sequences generated by

x0 ∈ C chosen arbitrarily,

un ∈ C such that φ
(
un, y

)
+
〈
Axn, y − un

〉
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = αnun + (1 − αn)Tnun,

Cn =
{
v ∈ C :

∥
∥yn − v

∥
∥2 ≤ ‖xn − v‖2 + θn

}
,

Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},
xn+1 = PCn∩Qnx0, n ∈ N ∪ {0},

(3.43)

where θn = (1 − αn)γn(diamC)2 and 0 ≤ αn ≤ d < 1 and 0 < e ≤ rn ≤ f < 2α. Then {xn} and {un}
converge strongly to PF∩EP (x0).

Proof. We divide the proof of Theorem 3.2 into four steps.

(i) We show first that the sequences {xn} and {un} are well defined.

From the definition of Cn and Qn, it is obvious that Cn is closed and Qn is closed and convex
for each n ∈ N ∪ 0. We prove that Cn is convex. Since

∥∥yn − v
∥∥2 ≤ ‖xn − v‖2 + θn (3.44)

is equivalent to

2
〈
xn − yn, v

〉 ≤ ‖xn‖2 −
∥∥yn

∥∥2 + θn, (3.45)

it follows that Cn is convex. So, Cn ∩Qn is a closed convex subset of H for any n.
Next, we show that F ∩ EP ⊆ Cn. Indeed, let p ∈ F ∩ EP, and let {Trn} be a sequence of

mappings defined as in Lemma 2.5. Similar to the proof of Theorem 3.1, we have

∥∥un − p
∥∥ ≤ ∥∥xn − p

∥∥. (3.46)
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By virtue of the convexity of norm ‖ · ‖2, (3.46), and Lemma 2.8, we have

∥
∥yn − p

∥
∥2 =

∥
∥αn(un − p) + (1 − αn)(Tnun − p)

∥
∥2

≤ αn

∥
∥un − p

∥
∥2 + (1 − αn)

∥
∥Tnun − p

∥
∥2

≤ αn

∥
∥un − p

∥
∥2 + (1 − αn)

(
1 + γn

)∥∥un − p
∥
∥2

=
∥
∥un − p

∥
∥2 + (1 − αn)γn

∥
∥un − p

∥
∥2

≤ ∥
∥un − p

∥
∥2 + θn

≤ ∥
∥xn − p

∥
∥2 + θn.

(3.47)

Therefore, p ∈ Cn for all n.
Next, we prove that F ∩ EP ⊆ Qn, for alln ≥ 0. For n = 0, we have F ∩ EP ⊆ C = Q0.

Assume that F ∩ EP ⊆ Qn−1. Since xn is the projection of x0 onto Cn−1 ∩Qn−1, by Lemma 2.3,
we have

〈x0 − xn, xn − v〉 ≥ 0, ∀v ∈ Cn−1 ∩Qn−1. (3.48)

In particular, we have

〈
x0 − xn, xn − p

〉 ≥ 0 (3.49)

for each p ∈ F ∩ EP and hence p ∈ Qn. Hence F ∩ EP ⊂ Qn, for alln ≥ 0. Therefore, we obtain
that

F ∩ EP ⊆ Cn ∩Qn, ∀n ≥ 0. (3.50)

This implies that {xn} is well defined. From Lemma 2.4, we know that {un} is also well
defined.

(ii) We prove that ‖xn+1 − xn‖ → 0, ‖xn − un‖ → 0, ‖un+1 − un‖ → 0, ‖un − Tnun‖ → 0,
as n → ∞.

Since F ∩EP is a nonempty closed convex subset ofH, there exists a unique z′ ∈ F ∩EP such
that z′ = PF∩EPx0.

From xn+1 = PCn∩Qnx0, we have

‖xn+1 − x0‖ ≤ ‖v − x0‖ ∀v ∈ Cn ∩Qn, ∀n ∈ N ∪ {0}. (3.51)

Since z′ ∈ F ∩ EP ⊂ Cn ∩Qn, we have

‖xn+1 − x0‖ ≤ ∥∥z′ − x0
∥∥ ∀n ∈ N ∪ {0}. (3.52)
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Since C is bounded, we have {xn}, {un}, and {yn} are bounded. From the definition of Qn,
we have xn = PQnx0, which together with the fact that xn+1 ∈ Cn ∩Qn ⊂ Qn implies that

‖x0 − xn‖ ≤ ‖x0 − xn+1‖, 〈x0 − xn, xn+1 − xn〉 ≤ 0. (3.53)

This shows that the sequence {‖xn − x0‖} is nondecreasing. So, limn→∞‖xn − x0‖ exists.
It follows from (2.1) and (3.53) that

‖xn+1 − xn‖2 = ‖(xn+1 − x0) − (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2.

(3.54)

Noticing that limn→∞‖xn − x0‖ exists, this implies that

lim
n→∞

‖xn − xn+1‖ = 0. (3.55)

Since xn+1 ∈ Cn, we have

∥∥yn − xn+1
∥∥2 ≤ ‖xn − xn+1‖2 + θn. (3.56)

So, we have limn→∞‖yn − xn+1‖ = 0. It follows that

∥∥yn − xn

∥∥ ≤ ∥∥yn − xn+1
∥∥ + ‖xn+1 − xn‖ −→ 0, as n −→ ∞. (3.57)

Similar to the proof of Theorem 3.1, we have

lim
n→∞

‖xn − un‖ = 0. (3.58)

From (3.55) and (3.58), we have

‖un − un+1‖ ≤ ‖un − xn‖ + ‖xn − xn+1‖ + ‖xn+1 − un+1‖ −→ 0, as n −→ ∞. (3.59)

Similarly, from (3.57) and (3.58), one has

∥∥yn − un

∥∥ ≤ ∥∥yn − xn

∥∥ + ‖xn − un‖ −→ 0, as n −→ ∞. (3.60)

Noticing the condition 0 ≤ αn ≤ d < 1, it follows that

(1 − αn)‖Tnun − un‖ =
∥∥yn − un

∥∥, (3.61)
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which implies that

‖Tnun − un‖ =

∥
∥yn − un

∥
∥

1 − αn
<

∥
∥yn − un

∥
∥

1 − d
−→ 0, as n −→ ∞. (3.62)

(iii) We prove that there exists a subsequence {xni} of {xn} which converges weakly to
z, where z ∈ F ∩ EP .

Since {xn} is bounded and C is closed, there exists a subsequence {xni} of {xn} which
converges weakly to z, where z ∈ C. From (3.58), we have uni ⇀ z. Noticing (3.59) and
(3.62), it follows from Lemma 2.8 that z ∈ F. By using the same method as in the proof of
Theorem 3.1, we easily obtain that z ∈ EP .

(iv) Finally we show that xn → z, un → z, where z = PF∩EP (x0).

Since xn = PQnx0 and z ∈ F ∩ EP ⊂ Qn, we have

‖xn − x0‖ ≤ ‖z − x0‖. (3.63)

It follows from z′ = PF∩EPx0 and the weak lower-semicontinuity of the norm that

∥∥z′ − x0
∥∥ ≤ ‖z − x0‖ ≤ lim inf

i→∞
‖xni − x0‖ ≤ lim sup

i→∞
‖xni − x0‖ ≤ ∥∥z′ − x0

∥∥. (3.64)

Thus, we obtain that limi→∞‖xni − x0‖ = ‖z − x0‖ = ‖z′ − x0‖. Using the Kadec-Klee property
ofH, we obtain that

lim
i→∞

xni = z = z′. (3.65)

Since {xni} is an arbitrary subsequence of {xn}, we conclude that {xn} converges strongly
to z = PF∩EPx0. By (3.58), we have un → z = PF∩EPx0 also. This completes the proof of
Theorem 3.2.

Corollary 3.3. Let C be a nonempty bounded closed convex subset of a real Hilbert space H, let φ :
C×C → R be a bifunction satisfying the conditions (A1)–(A4), let {Sm} be a family of asymptotically
nonexpansive mappings of C into itself with Lipschitz constants {tm,n}, that is, ‖Sn

mx − Sn
my‖ ≤

tm,n‖x − y‖ (for allm,n ∈ N, for allx, y ∈ C) such that F ∩ EP(φ)/= ∅ , where F := ∩∞
i=1F(Si),

and let {βn,k : n, k ∈ N, 1 ≤ k ≤ n} be a sequence of real numbers with 0 < a ≤ βn,1 ≤ 1 for all
n ∈ N and 0 < b ≤ βn,i ≤ c < 1 for every n ∈ N and i = 2, . . . , n for some a, b, c ∈ (0, 1). Let Wn

be the modified W-mapping generated by Sn, Sn−1, . . . , S1 and βn,n, βn,n−1, . . . , βn,2, βn,1. Assume that
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rn,k = {βn,k(t2k,n − 1) + βn,kβn,k+1t
2
k,n(t

2
k+1,n − 1) + · · · + βn,kβn,k+1 · · · βn,n−1t2k,nt2k+1,n · · · t2n−2,n(t2n−1,n −

1) + βn,kβn,k+1 · · · βn,nt2k,nt2k+1,n · · · t2n−1,n(t2n,n − 1)} for every n ∈ N and k = 1, 2, . . . , n such that
limn→∞ rn,1 = 0. Let {xn} and {un} be sequences generated by the following algorithm:

x0 ∈ C chosen arbitrarily,

un ∈ C such that φ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = αnun + (1 − αn)Wnun,

Cn+1 =
{
v ∈ Cn :

∥
∥yn − v

∥
∥2 ≤ ‖xn − v‖2 + θn

}
,

xn+1 = PCn+1x0, n ∈ N ∪ {0},

(3.66)

where C0 = C and θn = (1 − αn)rn,1(diamC)2and 0 ≤ αn ≤ d < 1 and {rn} ⊂ (0,∞) such that
lim infn→∞rn > 0. Then {xn} and {un} converge strongly to PF∩EP(φ)(x0).

Proof. Putting A = 0, the conclusion of Corollary 3.3 can be obtained as in the proof of
Theorem 3.1.

Remark 3.4. Corollary 3.3 extends the Theorem of Tada and Takahashi [19] in the following
senses:

(1) from one nonexpansive mapping to a family of infinitely asymptotically nonexpan-
sive mappings;

(2) from computation point of view, the algorithm in Corollary 3.3 is also simpler and,
more convenient to compute than the one given in [19].

Corollary 3.5. Let C be a nonempty bounded closed convex subset of a real Hilbert spaceH, let {Sm}
be a family of asymptotically nonexpansive mappings of C into itself with Lipschitz constants {tm,n},
that is, ‖Sn

mx − Sn
my‖ ≤ tm,n‖x − y‖ (for allm,n ∈ N, for allx, y ∈ C) such that F := ∩∞

i=1F(Si)/= ∅,
and let {βn,k : n, k ∈ N, 1 ≤ k ≤ n} be a sequence of real numbers with 0 < a ≤ βn,1 ≤ 1 for all
n ∈ N and 0 < b ≤ βn,i ≤ c < 1 for every n ∈ N and i = 2, . . . , n for some a, b, c ∈ (0, 1). Let Wn

be the modified W-mapping generated by Sn, Sn−1, . . . , S1 and βn,n, βn,n−1, . . . , βn,2, βn,1. Assume that
rn,k = {βn,k(t2k,n − 1) + βn,kβn,k+1t

2
k,n

(t2
k+1,n − 1) + · · · + βn,kβn,k+1 · · · βn,n−1t2k,nt2k+1,n · · · t2n−2,n(t2n−1,n −

1) + βn,kβn,k+1 · · · βn,nt2k,nt2k+1,n · · · t2n−1,n(t2n,n − 1)} for every n ∈ N and k = 1, 2, . . . , n such that
limn→∞ rn,1 = 0. Let {xn} be a sequence generated by the following algorithm:

x0 ∈ C chosen arbitrarily,

yn = Wnxn,

Cn+1 =
{
v ∈ Cn :

∥∥yn − v
∥∥2 ≤ ‖xn − v‖2 + θn

}
,

xn+1 = PCn+1x0, n ∈ N ∪ {0},

(3.67)

where C0 = C and θn = rn,1(diamC)2. Then {xn} converges strongly to PF(x0).
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Proof. Putting φ(x, y) ≡ 0, for allx, y ∈ C, rn = 1, A = 0 and αn = 0, for all n ∈ N in
Theorem 3.1, we have un = PCxn = xn, therefore yn = Wnun = Wnxn. The conclusion of
Corollary 3.5 can be obtained from Theorem 3.1 immediately.

Remark 3.6. Corollary 3.5 extends Theorem 3.1 of Inchan and Plubtieng [16] from two
asymptotically nonexpansive mappings to an infinite family of asymptotically nonexpansive
mappings.

Corollary 3.7. Let C be a nonempty bounded closed convex subset of a real Hilbert space H, and let
{Sm} be a family of asymptotically nonexpansive mappings of C into itself with Lipschitz constants
{tm,n}, that is, ‖Sn

mx − Sn
my‖ ≤ tm,n‖x − y‖ (for allm,n ∈ N, for allx, y ∈ C) such that F :=

∩∞
i=1F(Si)/= ∅. Let Tn =

∑n
k=1 βn,kS

n
k for every n ∈ N, where 0 ≤ βn,k ≤ 1 for every n = 1, 2, 3, . . .

and k = 1, 2, . . . , n with
∑n

k=1 βn,k = 1 for each n ∈ N and limn→∞ βn,k > 0 for every k ∈ N, and
assume that γn =

∑n
k=1 βn,k(t

2
k,n

−1) for every n ∈ N such that limn→∞ γn = 0. Let {xn} be a sequence
generated by

x0 ∈ C chosen arbitrarily,

yn = Tnxn,

Cn =
{
v ∈ C :

∥∥yn − v
∥∥2 ≤ ‖xn − v‖2 + θn

}
,

Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},
xn+1 = PCn∩Qnx0, n ∈ N ∪ {0},

(3.68)

where C0 = C and θn = γn(diamC)2. Then {xn} converges strongly to PF(x0).

Proof. Putting φ(x, y) ≡ 0, for allx, y ∈ C, rn = 1 , A = 0 and αn = 0, for all n ∈ N in
Theorem 3.2, we have un = PCxn = xn, therefore yn = Tnun = Tnxn. The conclusion of
Corollary 3.7 can be obtained from Theorem 3.2.

Remark 3.8. Corollary 3.7 extends Theorem 3.1 of Zegeye and Shahzad [18] from a finite
family of asymptotically nonexpansive mappings to an infinite family of asymptotically
nonexpansive mappings.

Acknowledgments

This research is supported by the National Science Foundation of China under Grant
(10771175) and by the key project of chinese ministry of education (209078) and the Natural
Science Foundational Committee of Hubei Province (D200722002).

References

[1] K. Goebel and W. A. Kirk, “A fixed point theorem for asymptotically nonexpansive mappings,”
Proceedings of the American Mathematical Society, vol. 35, pp. 171–174, 1972.

[2] P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal of
Nonlinear and Convex Analysis, vol. 6, no. 1, pp. 117–136, 2005.



20 Fixed Point Theory and Applications

[3] E. Blum andW. Oettli, “From optimization and variational inequalities to equilibrium problems,” The
Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994.
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