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1. Introduction

Let us consider the nonlinear Fredholm integral equation of the second kind

f(x) = λu(x) −
∫b

a

k
(
x, y, u

(
y
))
dy, (1.1)

where λ ∈ R \ {0} and f : [a, b] → R and k : [a, b] × [a, b] × R → R are continuous
functions. By defining in the Banach space C([a, b]) of those continuous and real-valued
functions defined on [a, b] (usual sup norm) the integral operator T : C([a, b]) → C([a, b])
as

T(v)(x) =
1
λ
f(x) +

1
λ

∫b

a

k
(
x, y, v

(
y
))
dy, (x ∈ [a, b], v ∈ C([a, b])), (1.2)

then the Banach fixed point, theorem guarantees that, under certain assumptions, T has a
unique fixed point; that is, the Fredholm integral equation has exactly one solution. Indeed,
assume in addition that k is a Lipschitz function at its third variable with Lipschitz constant



2 Fixed Point Theory and Applications

M > 0 and that |λ| > M(b − a), then the operator T is contractive with contraction number
α := M(b−a)/|λ|, and thus T has a unique fixed point ϕ. Moreover, ϕ = limn→∞ Tn(ϕ0),where
ϕ0 is any continuous function on [a, b]. Since in general it is not possible to calculate explicitly
from a ϕ0 the sequence of functions {Tn(ϕ0)}n∈N,we define in this work a new sequence of
functions, denoted by {ϕh}h∈N, obtained recursively making use of certain Schauder basis in
C([a, b] × [a, b]) (Banach space of those continuous real-valued functions on [a, b] × [a, b]
endowed with its usual sup norm). More concretely, we get ϕh+1 from ϕh, approximating
T(ϕh) by means of the sequence of projections of such Schauder basis.

2. Numerical Approximation of the Solution

We start by recalling certain aspects about some well-known Schauder bases in the Banach
spaces C([a, b]) and C([a, b] × [a, b]).

Let us consider the usual Schauder basis {sn}n≥0 in C([a, b]), that is, for a dense
sequence of distinct points {t′n}n≥0 in [a, b]with t′0 = a and t′1 = b, we define

s0
(
t′
)
:= 1,

(
t′ ∈ [a, b]

)
, (2.1)

and for n > 0; sn is the piecewise linear and continuous function with nodes {t′0, t′1, . . . , t′n}
satisfying for all i < n, sn(t′i) = 0 and sn(t′n) = 1. From this Schauder basis we define the usual
Schauder basis {Sn}n≥0 forC([a, b]×[a, b]).We consider the bijective mapping τ : N → N×N,
([ ] denotes integer part) given by

τ(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(√
n,

√
n
)
, if

√
n =

[√
n
]
,(

n − [√
n
]2
,
[√

n
]
+ 1

)
, if 0 < n − [√

n
]2 ≤ [√

n
]
,([√

n
]
+ 1, n − [√

n
]2 − [√

n
])

, if
[√

n
]
< n − [√

n
]2
,

(2.2)

and take, for each n ∈ N with τ(n) = (i, j),

Sn

(
x, y

)
:= si(x)sj

(
y
)
,

(
x, y ∈ [a, b]

)
. (2.3)

The sequence {Sn}n≥0 is the usual Schauder basis in C([a, b] × [a, b]) (see [1]). We will
denote by {S∗

n}n≥0 and {Qn}n≥0, respectively, the sequences of biorthogonal functionals and
projections associated with such basis, that is, given ψ ∈ C([a, b] × [a, b]), the (continuous)
functionals S∗

n : C([a, b] × [a, b]) → R verify

ψ =
∞∑
n=0

S∗
n

(
ψ
)
Sn, (2.4)

and the (continuous) projections are defined by

Qn =
n∑
i=0

S∗
i

(
ψ
)
Si. (2.5)
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Let us now introduce some notational conventions. For each n the definition of projectionQn2

just needs the first n+1 points of the sequence {t′n}n≥0,ordered in an increasingway that will be
denoted byΔn := {t0 = a, t1, . . . , tn = b}, and in addition we will write p := max0≤i≤n−1(ti+1− ti).

We now describe idea of the numerical method proposed. The beginning point is
the operator formulation of the integral Fredholm equation; from an initial function ϕ0 ∈
C([a, b]), and since in general we cannot calculate explicitly T(ϕ0), we approximate this
function in the following way: let

ψ0
(
x, y

)
:= k

(
x, y, ϕ0

(
y
))
,

(
x, y ∈ [a, b]

)
, (2.6)

so

T
(
ϕ0

)
(x) =

1
λ
f(x) +

1
λ

∫b

a

ψ0
(
x, y

)
dy ≈ 1

λ
f(x) +

1
λ

∫b

a

Qm0

(
ψ0

)(
x, y

)
dy, (2.7)

where m0 is an adequate integer. We denote the last function by ϕ1 and repeat the same
construction. Then we define recursively for each x, y ∈ [a, b], h ≥ 1 and mh−1 ∈ N,

ψh−1
(
x, y

)
:= k

(
x, y, ϕh−1

(
y
))
,

ϕh(x) :=
1
λ
f(x) +

1
λ

∫b

a

Qmh−1
(
ψh−1

)(
x, y

)
dy.

(2.8)

Now we state some technical results in order to study the error ‖ϕ − ϕh‖∞. In the first
of them we give a bound for the distance between a continuous function and its projections.
It is not difficult to prove it as a consequence of the Mean Value Theorem and the following
interpolation property satisfied by the sequence of projections {Qn}n≥0 (see [1]): whenever
n, i, j ∈ N ∪ {0} and τ−1(i, j) < n2, then

∀ti, tj ∈ Δn, Qn2
(
ψ
)(
ti, tj

)
= ψ

(
ti, tj

)
. (2.9)

Lemma 2.1. Let ψ ∈ C1([a, b] × [a, b]), let L = max{‖∂ψ/∂x‖∞, ‖∂ψ/∂y‖∞}, and let {Qn}n≥0 be
the sequence of projections associated with the basis {Sn}n≥1, then it holds that

∥∥ψ −Qn2
(
ψ
)∥∥

∞ ≤ 4Lp. (2.10)

Let us introduce some notation, useful in what follows: given h ≥ 1, we write

Lh−1 := max
{∥∥∥∥∂ψh−1

∂x

∥∥∥∥
∞
,

∥∥∥∥∂ψh−1
∂y

∥∥∥∥
∞

}
,

ph := max
0≤i≤nh−1

(ti+1 − ti), nh ≥ 2, ti ∈ Δnh .

(2.11)
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Lemma 2.2. Suppose that ϕ0 ∈ C1([a, b]), k ∈ C1([a, b] × [a, b] × R), λ/= 0, and T : C([a, b]) →
C([a, b]) is the operator given by

T(v)(x) =
1
λ
f(x) +

1
λ

∫b

a

k
(
x, y, v

(
y
))
dy, (x ∈ [a, b], v ∈ C([a, b])). (2.12)

Then, maintaining the preceding notation, we have that for all h ≥ 1,

∥∥T(ϕh−1
) − ϕh

∥∥
∞ ≤ b − a

|λ| 4Lh−1ph. (2.13)

Proof. Since ψh−1 ∈ C([a, b] × [a, b]) and {Sn}n≥0 is a Schauder basis for the Banach space
C([a, b] × [a, b]), then

ψh−1 =
∞∑
n=0

S∗
n

(
ψh−1

)
Sn. (2.14)

On the other hand, taking into account the definition of ϕh, we have that

∣∣T(ϕh−1
)
(x) − ϕh(x)

∣∣ =
∣∣∣∣∣
1
λ

∫b

a

( ∞∑
n=0

S∗
n

(
ψh−1

)
Sn

(
x, y

) −
mh−1∑
n=0

S∗
n

(
ψh−1

)
Sn

(
x, y

))
dy

∣∣∣∣∣

=

∣∣∣∣∣
1
λ

∫b

a

(
ψh−1

(
x, y

) −Qm2
h−1

(
ψh−1

)(
x, y

))
dy

∣∣∣∣∣.
(2.15)

Finally, in view of Lemma 2.1 we arrive at

∥∥T(ϕh−1
) − ϕh

∥∥
∞ ≤ (b − a)

|λ| 4Lh−1ph. (2.16)

Finally we arrive at the following estimation of the error.

Theorem 2.3. Assume that λ/= 0, ϕ0 ∈ C1([a, b]), k ∈ C1([a, b] × [a, b] × R) is a lipschitzian
function at its third variable with Lipschitz constantM with |λ| > M(b − a) and that ϕ is the unique
fixed point of the integral operator T : C([a, b]) → C([a, b]) defined by

T(v)(x) =
1
λ
f(x) +

1
λ

∫b

a

k
(
x, y, v

(
y
))
dy, (x ∈ [a, b], v ∈ C([a, b])). (2.17)

Suppose in addition that h ≥ 1 and that ε1, . . . , εh > 0 satisfy

1 ≤ j ≤ h =⇒ (b − a)
|λ| 4Lj−1 pj < εj . (2.18)
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Then, with the previous notation, it is satisfied that

∥∥ϕ − ϕh

∥∥
∞ ≤ ∥∥T(ϕ0

) − ϕ0
∥∥
∞

αh

1 − α
+

h∑
j=1

αh−jεj , (2.19)

where α = M(b − a)/|λ|.

Proof. We begin with the triangular inequality

∥∥ϕ − ϕh

∥∥
∞ ≤

∥∥∥ϕ − Th(ϕ0
)∥∥∥

∞
+
∥∥∥Th(ϕ0

) − ϕh

∥∥∥
∞
. (2.20)

In order to obtain a bound for the first right-hand side term we observe that operator T is
contractive, with contraction constant α ∈ (0, 1). Hence the Banach fixed point Theorem gives
that

ϕ = lim
m→∞

Tm(ϕ0
)
, (2.21)

∥∥∥ϕ − Th(ϕ0
)∥∥∥

∞
≤ ∥∥T(ϕ0

) − ϕ0
∥∥
∞

αh

1 − α
. (2.22)

For deducing a bound for the second right-hand side term of (2.20), we use Lemma 2.2 and
the assumption j = 1, . . . , h ⇒ ((b − a)/|λ|) 4Lj−1pj < εj in the following chain of inequalities:

∥∥∥Th(ϕ0) − ϕh

∥∥∥
∞
≤
∥∥∥Th(ϕ0) − T(ϕh−1)

∥∥∥
∞
+
∥∥T(ϕh−1) − ϕh

∥∥
∞

≤
∥∥∥Th(ϕ0) − T(ϕh−1)

∥∥∥
∞
+
(b − a)
|λ| 4Lh−1ph

≤ α
∥∥∥Th−1(ϕ0) − ϕh−1

∥∥∥
∞
+ εh

≤ α
(∥∥∥Th−1(ϕ0) − T(ϕh−2)

∥∥∥
∞
+
∥∥T(ϕh−2) − ϕh−1

∥∥
∞
)
+ εh

≤ α
∥∥∥T(Th−2(ϕ0)) − T(ϕh−2)

∥∥∥
∞
+ αεh−1 + εh

≤ α2
∥∥∥Th−2(ϕ0) − ϕh−2

∥∥∥
∞
+ αεh−1 + εh

≤ α2
(∥∥∥Th−2(ϕ0) − T(ϕh−3)

∥∥∥
∞
+
∥∥T(ϕh−3) − ϕh−2

∥∥
∞
)
+ αεh−1 + εh

≤ · · ·

≤ αh−1∥∥T(ϕ0) − ϕ1
∥∥
∞ + αh−2ε2 + · · · + α2εh−2 + αεh−1 + εh.

(2.23)
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Once again, in view of Lemma 2.2 it follows that

∥∥∥Thϕ0 − ϕh

∥∥∥
∞
≤

h∑
j=1

αh−jεj . (2.24)

Therefore, inequalities (2.20), (2.22), and (2.24) allow us to conclude that

‖ϕ − ϕh‖∞ < ‖T(ϕ0
) − ϕ0‖∞ αh

1 − α
+

h∑
j=1

αh−jεj , (2.25)

as announced.

Remarks 2.4. (1) The linear case was previously stated in [2]. For a general overview of the
classical methods, see [3, 4].

(2) The use of Schauder bases in the numerical study of integral and differential
equations has been previously considered in [5–7] or [8].

(3) For other approximating methods in Hilbert or Banach spaces, we refer to [9, 10].

3. Numerical Examples

We finally illustrate the numerical method proposed above by means of the two following
examples. In both of them we choose the dense subset of [0, 1]

{
0, 1,

1
2
,
1
4
,
3
4
, . . . ,

1
2k

,
3
2k

, . . . ,
2k − 1
2k

, . . .

}
(3.1)

to construct the Schauder bases in C([0, 1]) and C([0, 1] × [0, 1]). To define the sequence of
approximating functions {ϕh}h∈N we have taken an initial function ϕ0 ∈ C1([0, 1]) and for all
h ≥ 1, mh = n2 with different values of n of the form n = 2k + 1,with k ∈ N. For such a choice,
the value ph appearing in Lemma 2.2 is ph = 1/2k, for all h ∈ N.

Example 3.1. Let us consider the nonlinear Fredholm integral equation of the second kind in
[0, 1]:

2x +
(2 − π)x2

8
= 2u(x) −

∫1

0

(
x2y

2
arctan

(
u
(
y
)))

dy, (3.2)

whose analytical solution is the function ϕ(x) = x. In Table 1 we exhibit the absolute errors
committed in nine points xi in [0, 1] when we approximate the exact solution ϕ by the
iteration ϕm, by considering different values of n (n = 9, 17, 33).
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Table 1: Example 3.1.

xi n = 9, m = 3 n = 17, m = 3 n = 33, m = 3
0. 0. 0. 0.
0.125 6.41821 × 10−6 1.31795 × 10−6 4.35379 × 10−8

0.25 2.56728 × 10−5 5.27181 × 10−6 1.74152 × 10−7

0.375 5.77639 × 10−5 1.18616 × 10−5 3.91841 × 10−7

0.5 1.02691 × 10−4 2.10873 × 10−5 6.96607 × 10−7

0.625 1.60455 × 10−4 3.29488 × 10−5 1.08845 × 10−6

0.75 2.31055 × 10−4 4.74463 × 10−5 1.56737 × 10−6

0.875 3.14492 × 10−4 6.45797 × 10−5 2.13336 × 10−6

1. 4.10765 × 10−4 8.4349 × 10−5 2.78643 × 10−6

Table 2: Example 3.2.

p Ep Fp

8 3.27 × 10−4 1.86 × 10−4

16 8.18 × 10−5 4.61 × 10−5

32 2.04 × 10−5 1.12 × 10−5

64 5.11 × 10−6 2.72 × 10−6

Example 3.2. Now we consider the following Fredholm integral equation appearing in [5,
Example (11.2.1)]:

f(x) = 5u(x) −
∫1

0
exyu

(
y
)
dy, (3.3)

where f is defined in such a way that u(x) = e−x cosx is the exact solution. We denote by up

the approximation of the exact solution given by the collocation method and by Ep the error:

Ep := max
1≤j≤p+1

∣∣u(xj

) − un

(
xj

)∣∣, (3.4)

where {xj}n+1j=1 are the nodes of the collocation method. Now write Fp for the error

Fp := max
1≤j≤p+1

∣∣u(xj

) − ϕm

(
xj

)∣∣, (3.5)

with ϕm being the approximation obtained with our method, with mh = (p + 1)2 for h =
1, . . . , m and choosing m in such a way that

Fm

Fm+1
< 1 + 10−2. (3.6)

In Table 2 we show the errors for both methods.
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Remark 3.3. Although the errors obtained in the preceding example by our algorithm are
similar to those derived from the collocation method, the computational cost is quite
different: in order to apply the collocation method we need to solve high-order linear systems
of algebraical equations, but for our method we just calculate linear combinations of scalar
obtained by evaluating adequate functions. Indeed, the sequence of biorthogonal functionals
{S∗

n}n∈N satisfies the following easy property (see [1]): for all v ∈ C([0, 1]2),

S∗
1(v) = v(t0, t0) (3.7)

while for all n ≥ 1, if τ(n) = (i, j),

S∗
n(v) = v

(
ti, tj

) − n−1∑
k=0

S∗
k(v)Bk

(
ti, tj

)
. (3.8)

Obviously, this easy way of determining the biorthogonal functionals and consequently the
approximating functions ϕh (integrals of a piecewise linear function) is equally valid in the
general nonlinear case.
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