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1. Introduction

The recently discovered applications of ordered topological vector spaces, normal cones and
topical functions in optimization theory have generated a lot of interest and research in
ordered topological vector spaces (e.g., see [1, 2]). Recently, Huang and Zhang [3] introduced
cone metric spaces, which is a generalization of metric spaces, by replacing the real numbers
with ordered Banach spaces. They later proved some fixed point theorems for different
contractive mappings. Their results have been generalized by different authors (e.g. see [4–
7]). This paper generalizes, extends and improves the results of all those authors.

The following definitions are given in [3].
Let E be a real Banach space and P a subset of E. P is called a cone if and only if

(i) P is closed, nonempty, and P /= {0};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P ;

(iii) P
⋂
(−P) = {0}.

For a given cone P ⊆ E, we can define a partial ordering ≤ with respect to P by x ≤ y
if and only if y − x ∈ P . x < y will stand for x ≤ y and x /=y, while x � y will stand for
y − x ∈ intP , where intP denotes the interior of P .
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The cone P is called normal if there is M > 0 such that for all x, y ∈ E, 0 ≤ x ≤ y
implies ‖x‖ ≤ M‖y‖.

The least positive number M satisfying the above is called the normal constant of P .
The cone P is called regular if every increasing sequence which is bounded from

above is convergent. That is, if {xn}n≥1 is a sequence such that x1 ≤ x2 ≤ · · · ≤ y for some
y ∈ E, then there is x ∈ E such that limn→∞‖xn − x‖ = 0. Equivalently, the cone P is regular if
and only if every decreasing sequence which is bounded from below is convergent. In [5] it
was shown that every regular cone is normal.

In the sequel we will suppose that E is a metrizable linear topological space whose
topology is defined by a real-valued function F : X → R called F-norm (see [8]). We will
assume that P is a cone in E with intP /= 0 and ≤ is partial ordering with respect to P .

Metrizable linear topological spaces contain metrizable locally convex spaces and
normed linear spaces [9]. Therefore our E generalizes the E as a normed linear space used in
all the previous results on cone metric spaces.

A cone P ⊆ E is therefore called normal if there is M > 0 such that for all x, y ∈ E, 0 ≤
x ≤ y implies F(x) ≤ MF(y).

Definition 1.1. Let X be a nonempty set. Suppose that d : X ×X → E satisfies

(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Example 1.2 (see [3]). Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = R, and d : X × X → E
defined by d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a constant. Then (X, d) is a cone metric
space.

Clearly, this example shows that cone metric spaces generalize metric spaces.
We now give another example where E is a metrizable linear topological vector space

that is not a normed linear space.

Example 1.3. Let E = �p, (0 < p < 1), P = {{xn}n≥1 ∈ E : xn ≥ 0, for all n}, (X, ρ) a metric space
and d : X ×X → E defined by d(x, y) = {ρ(x, y)/2n}n≥1. Then (X, d) is a cone metric space.

Definition 1.4. Let (X, d) be a cone metric space. Let {xn} be a sequence inX. If for every c ∈ E
with 0 � c there isN such that for all n > N, d(xn, x) � c, then {xn} is said to be convergent
to x ∈ X, that is, limn→∞xn = x.

Definition 1.5. Let (X, d) be a cone metric space. Let {xn} be a sequence inX. If for every c ∈ E
with 0 � c there is N such that for all n,m > N, d(xn, xm) � c, then {xn} is called a Cauchy
sequence in X.

It is shown in [3] that a convergent sequence in a cone metric space (X, d) is a Cauchy
sequence.

Definition 1.6. Let (X, d) be a cone metric space. If for any sequence {xn} in X, there is a
subsequence {xni} of {xn} such that {xni} is convergent in X, then X is called a sequentially
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compact metric space. Furthermore, X is compact if and only if X is sequentially compact.
(see also [10]).

Proposition 1.7 (see [3]). Let (X, d) be a cone metric space, P a normal cone. Let {xn} and {yn} be
two sequences in X and xn → x, yn → y as n → ∞. Then

(i) {xn} converges to x if and only if d(xn, x) → 0 as n → ∞
(ii) The limit of {xn} is unique
(iii) {xn} is a Cauchy sequence if and only if d(xn, xm) → 0 as n,m → ∞
(iv) d(xn, yn) → d(x, y) as n → ∞

Huang and Zhang [3] proved the following theorems for E a Banach space.

Theorem 1.8. Let (X, d) be a complete metric space, P a normal cone with normal constant M.
Suppose that the mapping T : X → X satisfies the contractive condition

d
(
Tx, Ty

) ≤ kd
(
x, y

)
, ∀x, y ∈ X, (1.1)

where k ∈ [0, 1) is a constant. Then T has a unique fixed point in X. And for any x ∈ X, iterative
sequence {Tnx} converges to the fixed point.

Theorem 1.9. Let (X, d) be a complete metric space, P a normal cone with normal constant M.
Suppose that the mapping T : X → X satisfies the contractive condition

d
(
Tx, Ty

) ≤ k
(
d(Tx, x) + d

(
Ty, y

))
, ∀x, y ∈ X, (1.2)

where k ∈ [0, 1/2) is a constant. Then T has a unique fixed point in X. And for any x ∈ X, iterative
sequence {Tnx} converges to the fixed point.

Theorem 1.10. Let (X, d) be a complete metric space, P a normal cone with normal constant M.
Suppose that the mapping T : X → X satisfies the contractive condition

d
(
Tx, Ty

) ≤ k
(
d
(
Tx, y

)
+ d

(
Ty, x

))
, ∀x, y ∈ X, (1.3)

where k ∈ [0, 1/2) is a constant. Then T has a unique fixed point in X. And for any x ∈ X, iterative
sequence {Tnx} converges to the fixed point.

Rezapour and Hamlbarani [5] improved on Theorems (1.8–1.10) by proving the same
results without the assumption that P is a normal cone. They gave examples of non-normal
cones and showed that there are no normal cones with normal constant M < 1. Observe that
the normal constant M for Example 1.3 is 1.

Vetro [7] recently combined the results of Theorems 1.8 and 1.9 and generalized them
to two maps satisfying certain conditions, to obtain the following theorem.

Theorem 1.11. Let (X, d) be a cone metric space, P a normal cone with normal constant M. Let
f, g : X → X be mappings such that

d
(
f(x), f

(
y
)) ≤ ad

(
f(x), g(x)

)
+ bd

(
f
(
y
)
, y

)
+ cd

(
g(x), y

)
(1.4)
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for all x, y ∈ X where a, b, c ∈ [0, 1) and a + b + c < 1. Suppose

f
(
g(x)

)
= g

(
g(x)

)
if f(x) = g(x) (1.5)

and f(X) ⊂ g(X) and f(X) or g(X) is a complete subspace of X, then the mappings f and g have a
unique common fixed point. Moreover, for any xo ∈ X, the sequence {f(xn)} of the initial point xo,
where {xn} ∈ X is defined by g(xn) = f(xn−1) for all n, converges to the fixed point.

Remark 1.12. The two maps f and g are said to beweaklycompatible if they satisfy condition
(1.5). This concept was introduced by Huang and Zhang [3] and it is known to be the most
general among all commutativity concepts in fixed point theory. For example every pair of
weakly commuting self-maps and each pair of compatible self-maps are weakly compatible,
but the converse is not always true. In fact, the notion of weakly compatible maps is more
general than compatibility of type (A), compatibility of type (B), compatibility of type (C),
and compatibility of type (P). For a review of those notions of commutativity, see ([11, 12]).

In Theorem 2.1, we unify Theorems 1.8–1.10 into a single theorem and generalize. In
Theorem 2.3, we examine the situation where the sum of the coefficients, rather than less than
1, is actually 1. Theorem 3.1 generalizes Theorem 2.1 to two weakly compatible maps thus
extending Theorem 1.11. Furthermore, we remove the assumption of normality of cone P in
all our results and extend E to a metrizable linear topological space. Some other consequences
follow.

2. Theorems on Single Maps

Theorem 2.1. Let (X, d) be a complete cone metric space and f : X → X be mappings such that

d
(
f(x), f

(
y
)) ≤ a1d

(
f(x), x

)
+ a2d

(
f
(
y
)
, y

)
+ a3d

(
f
(
y
)
, x

)
+ a4d

(
f(x), y

)
+ a5d

(
y, x

)

(2.1)

for all x, y ∈ X where a1, a2, a3, a4, a5 ∈ [0, 1) and a1 + a2 + a3 + a4 + a5 < 1. Then the mappings f
have a unique fixed point. Moreover, for any x ∈ X, the sequence {fn(x)} converges to the fixed point.

Proof. We adapt the technique in [13]. Without loss of generality we may assume that a1 = a2

and a3 = a4 so that from (2.1), we have

d
(
f(x), f

(
y
)) ≤ a1 + a2

2
[
d
(
f(x), x

)
+ d

(
f
(
y
)
, y

)]
+
a3 + a4

2
[
d
(
f
(
y
)
, x

)

+d
(
f(x), y

)]
+ a5d

(
y, x

)
.

(2.2)

Set y = f(x) in (2.1) and simplify to obtain

d
(
f(x), f2(x)

)
≤ a1 + a5

1 − a2
d
(
x, f(x)

)
+

a3

1 − a2
d
(
x, f2(x)

)
. (2.3)
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By the triangle inequality, d(f(x), f2(x)) ≥ d(f2(x), x) − d(f(x), x) and so from (2.3) we get

d
(
f2(x), x

)
− d

(
f(x), x

) ≤ a1 + a5

1 − a2
d
(
x, f(x)

)
+

a3

1 − a2
d
(
x, f2(x)

)
, (2.4)

which on simplifying gives

d
(
f2(x), x

)
≤ 1 + a1 + a5 − a2

1 − a2 − a3
d
(
x, f(x)

)
. (2.5)

Substituting (2.5) into (2.3)we obtain

d
(
f(x), f2(x)

)
≤ a1 + a3 + a5

1 − a2 − a3
d
(
x, f(x)

)
, (2.6)

and by symmetry, we may exchange a1 with a2 and a3 with a4 in (2.6) to obtain

d
(
f(x), f2(x)

)
≤ a2 + a4 + a5

1 − a1 − a4
d
(
x, f(x)

)
. (2.7)

If α = min{(a1 + a3 + a5)/(1 − a2 − a3), (a2 + a4 + a5)/(1 − a1 − a4)}, then

d
(
f(x), f2(x)

)
≤ αd

(
x, f(x)

)
, (2.8)

where α ∈ [0, 1). Let m > n, then in view of (2.8), we obtain

d
(
fm(x), fn(x)

) ≤ d
(
fm(x), fm−1(x)

)
+ · · · + d

(
fn+1(x), fn(x)

)

≤ αn(1 + α + · · · + αm−n)d
(
x, f(x)

)

≤ αn

1 − α
d
(
x, f(x)

)
.

(2.9)

Let 0 � c be given and choose a natural numberN1 such that (αn/(1 − α))d(x, f(x)) � c for
all n ≥ N1. Thus,

d
(
fm(x), fn(x)

) � c (2.10)

for n > m. Therefore, {fn(x)}n≥1 is a Cauchy sequence in (X, d). Since (X, d) is complete, there
exists x∗ ∈ X such that fn(x) → x∗. Choose a natural number N2 such that for all n ≥ N2,

d
(
fn(x), x∗) � c(1 − (a2 + a3))

2(a1 + a4 + 1)
,

d
(
fn−1(x), x∗) � c(1 − (a2 + a3))

2(a1 + a3 + a5)
.

(2.11)
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Then

d
(
f(x∗), x∗) ≤ d

(
fn(x), f(x∗)

)
+ d

(
fn(x), x∗)

≤ a1d
(
fn(x), fn−1(x)

)
+ a2d

(
f(x∗), x∗) + a3d

(
f(x∗), fn−1(x)

)

+ a4d
(
fn(x), x∗) + a5d

(
fn−1(x), x∗

)
+ d

(
fn(x), x∗)

≤ a1d
(
fn(x), x∗) + a1d

(
fn−1(x), x∗

)
+ a2d

(
f(x∗), x∗)

+ a3d
(
f(x∗), x∗) + a3d

(
fn−1(x), x∗

)
+ a4d

(
fn(x), x∗)

+ a5d
(
fn−1(x), x∗

)
+ d

(
fn(x), x∗)

≤ a1 + a3 + a5

1 − (a2 + a3)
d
(
fn−1(x), x∗

)
+

a1 + a4 + 1
1 − (a2 + a3)

d
(
fn(x), x∗)

� c

2
+
c

2
= c.

(2.12)

Thus, d(f(x∗), x∗) � c/m, for all m ≥ 1. So c/m − d(f(x∗), x∗) ∈ P , for all m ≥ 1. Since
c/m → 0 as m → ∞, and P is closed, −d(f(x∗), x∗) ∈ P . But d(f(x∗), x∗) ∈ P and so
d(f(x∗), x∗) = 0. Hence f(x∗) = x∗. The uniqueness follows from the contractive definition of
f in (2.1).

Remark 2.2. The theorem is valid if we replace the completeness of X with the condition that
f(X) is complete. If E is restricted to a normed linear space and a1 = a2 = a3 = a4 = 0 in
Theorem 2.1 we have [5, Theorem 2.3]; if a3 = a4 = a5 = 0 in Theorem 2.1, we obtain [5,
Theorem 2.6]; if a1 = a2 = a5 = 0, we obtain [5, Theorem 2.7] and if a1 = a2 = a3 = 0, we
obtain [5, Theorem 2.8]. Furthermore, if we add the normality assumption to Theorem 2.1,
then [3, Theorems 1, 2, and 4] there are special cases of Theorem 2.1.

Thus Theorem 2.1 is both an extension generalization and an improvement of the
results of [3, 5].

We now consider the situation where a1 + a2 + a3 + a4 + a5 = 1 in Theorem 2.1.

Theorem 2.3. Let (X, d) be a sequentially compact cone metric space and f : X → X be a continuous
mapping such that

d
(
f(x), f

(
y
))

< a1d
(
f(x), x

)
+ a2d

(
f
(
y
)
, y

)
+ a3d

(
f
(
y
)
, x

)
+ a4d

(
f(x), y

)

+ a5d
(
y, x

)
,

(2.13)

for all x, y ∈ X, x /=y where a1, a2, a3, a4, a5 ∈ [0, 1) and a1 + a2 + a3 + a4 + a5 = 1. Then the
mappings f have a unique fixed point.

Proof. We follow the same argument as Theorem 2.1. Without loss of generality, we may
assume that a1 + a4 and a2 + a3 are less than 1. Hence (2.8) becomes

d
(
f(x), f2(x)

)
< d

(
x, f(x)

)
. (2.14)
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Since X is sequentially compact, then it is compact [10]. The fact that f is continuous and
X is compact implies that f(X) is compact and hence inf{d(x, f(x)) : x ∈ X} exists and
inf{d(x, f(x)) : x ∈ X} = d(y, f(y) for some y ∈ X. From (2.14), it can be infered that y is
fixed under f and uniqueness follows from (2.13).

Remark 2.4. If a1 = a2 = a3 = a4 = 0, with the additional assumption that P is a regular
cone in Theorem 2.3, we obtain [3, Theorem 2]. Thus Theorem 2.3 is both an extension and
improvement of [3, Theorem 2].

3. Common Fixed Points

Theorem 3.1. Let (X, d) be a cone metric space and let f, g : X → X be mappings such that

d
(
f(x), f

(
y
)) ≤ a1d

(
f(x), g(x)

)
+ a2d

(
f
(
y
)
, g

(
y
))

+ a3d
(
f
(
y
)
, g(x)

)

+ a4d
(
f(x), g

(
y
))

+ a5d
(
g
(
y
)
, g(x)

) (3.1)

for all x, y ∈ X where a1, a2, a3, a4, a5 ∈ [0, 1) and a1 + a2 + a3 + a4 + a5 < 1. Suppose f and g
are weakly compatible and f(X) ⊂ g(X) such that f(X) or g(X) is a complete subspace of X, then
the mappings f and g have a unique common fixed point. Moreover, for any xo ∈ X, the sequence
{xn} ⊂ X defined by g(xn) = f(xn−1) for all n, converges to the fixed point.

Proof. Observe that if f satisfies (3.1), it also satisfies

d
(
f(x), f

(
y
)) ≤ kd

(
f(x), g(x)

)
+ kd

(
f
(
y
)
, g

(
y
))

+ ld
(
f
(
y
)
, g(x)

)

+ ld
(
f(x), g

(
y
))

+md
(
g
(
y
)
, g(x)

) (3.2)

for all x, y ∈ X where k, l,m ∈ [0, 1) and 2k + 2l +m < 1, (2k = a1 + a2, 2l = a3 + a4, a5 = m).
If f(xn) = f(xn−1) for all n ∈ N, then {f(xn)} is a Cauchy sequence. Suppose

f(xn)/= f(xn−1) for all n ∈ N. Using (3.2) and the fact that g(xn) = f(xn−1) for all n, we
have

d
(
f(xn+1), f(xn)

) ≤ kd
(
f(xn+1), f(xn)

)
+ kd

(
f(xn), f(xn−1)

)

+ ld
(
f(xn), f(xn)

)
+ ld

(
f(xn+1), f(xn)

)

+ ld
(
f(xn), f(xn−1)

)
+md

(
f(xn−1), f(xn)

)

≤ k + l +m

1 − (k + l)
d
(
f(xn−1), f(xn)

)
.

(3.3)

Consequently

d
(
f(xn+1), f(xn)

) ≤
(

k + l +m

1 − (k + l)

)n

d
(
f(xo), f(x1)

)
. (3.4)
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Now, for all m,n ∈ N, with n > m, we have

d
(
f(xn), f(xm)

) ≤ kd
(
f(xn), f(xn−1)

)
+ kd

(
f(xn−1), f(xn−2)

)
+ · · · + d

(
f(xm+1), f(xm)

)

=
(
kn−1 + kn−2 + · · · km

)
d
(
f(xo), f(x1)

)

≤ km

1 − k
df(xo), f(x1),

(3.5)

where k = (k + l +m)/(1 − (k + l)) ∈ [0, 1).
Let 0 � c be given and choose a natural numberN1 such that (km/(1−k))d(x, f(x)) �

c for all m ≥ N1. Thus,

d
(
f(xm), f(xn)

) � c (3.6)

for n > m. Therefore, {f(xn)}n≥1 is a Cauchy sequence. Since f(X) or g(X) is complete, then
there exists x∗ ∈ g(X) such that f(xn) → x∗ and g(xn) → x∗. Let y ∈ X such that g(y) = x∗.
We claim that f(y) = g(y). From (3.2), we have

d
(
f(xn), f

(
y
)) ≤ kd

(
f(xn), g(xn)

)
+ kd

(
f
(
y
)
, g

(
y
))

+ ld
(
f
(
y
)
, g(xn)

)

+ ld
(
f(xn), g

(
y
))

+md
(
g
(
y
)
, g(xn)

)
.

(3.7)

As n → ∞we obtain

d
(
x∗, f

(
y
)) ≤ kd

(
f
(
y
)
, g

(
y
))

+ ld
(
f
(
y
)
, x∗) + ld

(
x∗, g

(
y
))

+md
(
g
(
y
)
, x∗)

= (k + l)d
(
x∗, f

(
y
))
, and hence x∗ = f

(
y
)
= g

(
y
)
.

(3.8)

Since f(y) = g(y) and f and g are weakly compatible, then

f(x∗) = f
(
g
(
y
))

= g
(
g
(
y
))

= g(x∗). (3.9)

Next we show that x∗ = f(x∗) = g(x∗). Suppose f(x∗)/=x∗, from (3.2), we have

d
(
f(x∗), f

(
y
)) ≤ kd

(
f(x∗), g(x∗)

)
+ kd

(
f
(
y
)
, g

(
y
))

+ ld
(
f
(
y
)
, g(x∗)

)

+ ld
(
f(x∗), g

(
y
))

+md
(
g
(
y
)
, g(x∗)

)

= 2ld
(
f
(
y
)
, g(x∗)

)
= 2ld

(
f
(
y
)
, f(x∗)

)
.

(3.10)

This is a contradiction and hence f(x∗) = x∗ = g(x∗). Thus x∗ is a common fixed point of f
and g. The uniqueness follows from (3.1).

Remark 3.2. (i) If a3 = a4 = 0 and E is restricted to normed linear spaces in Theorem 3.1, with
the additional normality assumption, we obtain the common fixed point Theorem of Vetro
[7].



Fixed Point Theory and Applications 9

(ii) Suppose E is restricted to normed linear spaces, with the additional normality
assumption, if a1 = a2 = a3 = a4 = 0, then Theorem 3.1 gives [4, Theorem 2.1]; if a3 = a4 =
a5 = 0, we obtain [4, Theorem 2.3], and if a1 = a2 = a5 = 0, we obtain [4, Theorem 2.4]. Thus
our theorem is both an extension, generalization and an improvement of the results of [4, 7].

(iii) If E is restricted to normed linear spaces, Theorem 3.1 reduces to [14, Theorem
2.8].

(iv) If in Theorem 3.1 we choose choose g = IX the identity mapping on X, we have
Theorem 2.1.

Open Question

Theorem 2.3 was proved for the usual metric space by the author in [15] without the
assumptions that f is continuous and X is compact. Is the above Theorem 2.3 still valid if
we remove the assumption that f is continuous and X is compact?.
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