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1. Introduction

It is well known that the resolvent operator technique is an important method for solving
various variational inequalities and inclusions [1–20]. In particular, the generalized resolvent
operator technique has been applied more and more and has also been improved intensively.
For instance, Fang and Huang [5] introduced the class ofH-monotone operators and defined
the associated resolvent operators, which extended the resolvent operators associated with η-
subdifferential operators of Ding and Luo [3] and maximal η-monotone operators of Huang
and Fang [6], respectively. Later, Liu et al. [17] researched a class of general nonlinear
implicit variational inequalities including the H-monotone operators. Fang and Huang [4]
created a class of (H,η)-monotone operators, which offered a unifying framework for the
classes of maximal monotone operators, maximal η-monotone operators and H-monotone
operators. Recently, Lan [8] introduced a class of (A, η)-accretive operators which further
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enriched and improved the class of generalized resolvent operators. Lan [10] studied a
system of general mixed quasivariational inclusions involving (A, η)-accretive mappings in
q-uniformly smooth Banach spaces. Lan et al. [14] constructed some iterative algorithms
for solving a class of nonlinear (A, η)-monotone operator inclusion systems involving
nonmonotone set-valued mappings in Hilbert spaces. Lan [9] investigated the existence of
solutions for a class of (A, η)-accretive variational inclusion problems with nonaccretive set-
valued mappings. Lan [11] analyzed and established an existence theorem for nonlinear
parametric multivalued variational inclusion systems involving (A, η)-accretive mappings
in Banach spaces. By using the random resolvent operator technique associated with (A, η)-
accretive mappings, Lan [13] established an existence result for nonlinear random multi-
valued variational inclusion systems involving (A, η)-accretive mappings in Banach spaces.
Lan and Verma [15] studied a class of nonlinear Fuzzy variational inclusion systems with
(A, η)-accretivemappings in Banach spaces. On the other hand, some interesting and classical
techniques such as the Banach contraction principle and Nalder’s fixed point theorems have
been considered by many researchers in studying variational inclusions.

Inspired and motivated by the above achievements, we introduce a new system
of nonlinear variational-like inclusions involving s-(G, η)-maximal monotone operators in
Hilbert spaces and a class of (ζ, ϕ, �)-g-relaxed cocoercive operators. By virtue of the Banach’s
fixed point theorem and the resolvent operator technique, we prove the existence and
uniqueness of solution for the system of nonlinear variational-like inclusions. The results
presented in the paper generalize some known results in the field.

2. Preliminaries

In what follows, unless otherwise specified, we assume that Hi is a real Hilbert space
endowedwith norm ‖ · ‖i and inner product 〈·, ·〉i, and 2Hi denotes the family of all nonempty
subsets of Hi for i ∈ {1, 2}. Now let’s recall some concepts.

Definition 2.1. Let A : H1 → H2, f, g : H1 → H1, η : H1 ×H1 → H1 be mappings.

(1) A is said to be Lipschitz continuous, if there exists a constant α > 0 such that

∥
∥Ax −Ay

∥
∥
2 ≤ α

∥
∥x − y

∥
∥
1, ∀x, y ∈ H1; (2.1)

(2) A is said to be r-expanding, if there exists a constant r > 0 such that

∥
∥Ax −Ay

∥
∥
2 ≥ r

∥
∥x − y

∥
∥
1, ∀x, y ∈ H1; (2.2)

(3) f is said to be δ-strongly monotone, if there exists a constant δ > 0 such that

〈

fx − fy, x − y
〉

1 ≥ δ
∥
∥x − y

∥
∥
2
1, ∀x, y ∈ H1; (2.3)

(4) f is said to be δ-η-strongly monotone, if there exists a constant δ > 0 such that

〈

fx − fy, η(x, y)
〉

1 ≥ δ
∥
∥x − y

∥
∥
2
1, ∀x, y ∈ H1; (2.4)
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(5) f is said to be (ζ, ϕ, �)-g-relaxed cocoercive, if there exist nonnegtive constants ζ, ϕ
and � such that

〈

fx − fy, gx − gy
〉

1 ≥ −ζ∥∥fx − fy
∥
∥
2
1 − ϕ

∥
∥gx − gy

∥
∥
2
1 + �

∥
∥x − y

∥
∥
2
1, ∀x, y ∈ H1; (2.5)

(6) g is said to be ζ-relaxed Lipschitz, if there exists a constant ζ > 0 such that

〈

gx − gy, x − y
〉

1 ≤ −ζ∥∥x − y
∥
∥
2
1, ∀x, y ∈ H1. (2.6)

Definition 2.2. Let N : H2 ×H1 ×H2 → H1, A, C : H1 → H2, B : H2 → H1 be mappings. N
is called

(1) (λ, ξ)-relaxed cocoercive with respect to A in the first argument, if there exist
nonnegative constants λ, ξ such that

〈

N
(

Au, x, y
) −N

(

Av, x, y
)

, u − v
〉

1

≥ −λ‖Au −Av‖22 + ξ‖u − v‖21 , ∀u, v, x ∈ H1, y ∈ H2;
(2.7)

(2) θ-cocoercivewith respect to B in the second argument, if there exists a constant θ > 0
such that

〈

N
(

x, Bu, y
) −N

(

x, Bv, y
)

, u − v
〉

1 ≥ θ‖Bu − Bv‖21, ∀u, v, x, y ∈ H2; (2.8)

(3) τ-relaxed Lipschitz with respect to C in the third argument, if there exists a constant
τ > 0 such that

〈

N
(

x, y, Cu
) −N

(

x, y, Cv
)

, u − v
〉

1 ≤ −τ‖u − v‖21, ∀u, v, y ∈ H1, x ∈ H2; (2.9)

(4) τ-relaxed monotonewith respect to C in the third argument, if there exists a constant
τ > 0 such that

〈

N
(

x, y, Cu
) −N

(

x, y, Cv
)

, u − v
〉

1 ≥ −τ‖u − v‖21, ∀u, v, y ∈ H1, x ∈ H2; (2.10)

(5) Lipschitz continuous in the first argument, if there exists a constant μ > 0 such that

∥
∥N

(

u, x, y
) −N

(

v, x, y
)∥
∥
1 ≤ μ‖u − v‖1, ∀u, v, y ∈ H2, x ∈ H1. (2.11)

Similarly, we can define the Lipschitz continuity of N in the second and third
arguments, respectively.
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Definition 2.3. For i ∈ {1, 2}, j ∈ {1, 2} \ {i}, let Mi : Hj × Hi → 2Hi , ηi : Hi × Hi → Hi be
mappings. For each given (x2, x1) ∈ H1 ×H2 and i ∈ {1, 2},Mi(xi, ·) : Hi → 2Hi is said to be
si-ηi-relaxed monotone, if there exists a constant si > 0 such that

〈

x∗ − y∗, ηi
(

x, y
)〉

i ≥ −si
∥
∥x − y

∥
∥
2
i , ∀(x, x∗),

(

y, y∗) ∈ graph(Mi(xi, ·)). (2.12)

Definition 2.4. For i ∈ {1, 2}, j ∈ {1, 2}\{i}, letMi : Hj×Hi → 2Hi , Gi : Hi → Hi bemappings.
For any given (x2, x1) ∈ H1 ×H2 and i ∈ {1, 2},Mi(xi, ·) : Hi → 2Hi is said to be si-(Gi, ηi)-
maximal monotone, if (B1) Mi(xi, ·) is si-ηi-relaxed monotone; (B2) (Gi + ρiMi(xi, ·))Hi = Hi

for ρi > 0.

Lemma 2.5 (see [8]). LetH be a real Hilbert space, η : H×H → H be a mapping,G : H → H be a
d-η-strongly monotone mapping andM : H → 2H be a s-(G, η)-maximal monotone mapping. Then
the generalized resolvent operator RG,η

M,ρ = (G + ρM)−1 : H → H is singled-valued for d > ρs > 0.

Lemma 2.6 (see [8]). Let H be a real Hilbert space, η : H ×H → H be a σ-Lipschitz continuous
mapping, G : H → H be a d-η-strongly monotone mapping, and M : H → 2H be a s-(G, η)-
maximal monotone mapping. Then the generalized resolvent operator RG,η

M,ρ : H → H is σ/(d − ρs)-
Lipschitz continuous for d > ρs > 0.

For i ∈ {1, 2} and j ∈ {1, 2} \ {i}, assume that Ai, Ci : Hi → Hj, Bi : Hj → Hi, ηi :
Hi ×Hi → Hi,Ni : Hj ×Hi ×Hj → Hi, fi, gi : Hi → Hi are single-valued mappings, Mi :
Hj ×Hi → 2Hi satisfies that for each given xi ∈ Hj, Mi(xi, ·) is si-(Gi, ηi)-maximal monotone,
where Gi : Hi → Hi is di-ηi-strongly monotone and Range(fi − gi)

⋂
domMi(xi, ·)/= ∅. We

consider the following problem of finding (x, y) ∈ H1 ×H2 such that

x ∈ N1
(

A1x, B1y,C1x
)

+M1
(

y,
(

f1 − g1
)

x
)

,

y ∈ N2
(

A2y, B2x,C2y
)

+M2
(

x,
(

f2 − g2
)

y
)

,
(2.13)

where (fi − gi)x = fi(x) − gi(x) for x ∈ Hi and i ∈ {1, 2}. The problem (2.13) is called the
system of nonlinear variational-like inclusions problem.

Special cases of the problem (2.13) are as follows.
If A1 = B1 = B2 = C2 = f1 − g1 = f2 − g2 = I, N1(x, y, z) = N1(x, y) + x, N2(u, v,w) =

N2(v,w) +w, M1(x, y) = M1(y), M2(u, v) = M2(v) for each x, z, v ∈ H2, y, u,w ∈ H1, then
the problem (2.13) collapses to finding (x, y) ∈ H1 ×H2 such that

0 ∈ N1
(

x, y
)

+M1(x),

0 ∈ N2
(

x, y
)

+M2
(

y
)

,
(2.14)

which was studied by Fang and Huang [4]with the assumption thatMi is (Gi, ηi)-monotone
fori ∈ {1, 2}.
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If Hi = H,Ai = A,Bi = B,Ci = C,Mi = M,fi = f, gi = g, and Ni(u, v,w) = N(u, v), for
all u, v,w ∈ H for i ∈ {1, 2}, then the problem (2.13) reduces to finding x ∈ H such that

0 ∈ N(Ax,Bx) +M
(

x,
(

f − g
)

x
)

, (2.15)

which was studied in Shim et al. [19].
It is easy to see that the problem (2.13) includes a number of variational and

variational-like inclusions as special cases for appropriate and suitable choice of the
mappings Ni,Ai, Bi, Ci,Mi, fi, gi for i ∈ {1, 2}.

3. Existence and Uniqueness Theorems

In this section, we will prove the existence and uniqueness of solution of the problem (2.13).

Lemma 3.1. Let ρ1 and ρ2 be two positive constants. Then (x, y) ∈ H1 × H2 is a solution of the
problem (2.13) if and only if (x, y) ∈ H1 ×H2 satisfies that

f1(x) = g1(x) + R
G1,η1
M1(y,·),ρ1

[

x +G1
((

f1 − g1
)

x
) − ρ1N1

(

A1x, B1y,C1x
)]

,

f2
(

y
)

= g2
(

y
)

+ R
G2,η2
M2(x,·),ρ2

[

y +G2
((

f2 − g2
)

y
) − ρ2N2

(

A2y, B2x,C2y
)]

,
(3.1)

where R
G1,η1
M1(y,·),ρ1(u) = (G1 + ρ1M1(y, ·))−1(u), RG2,η2

M2(x,·),ρ2(v) = (G2 + ρ2M2(x, ·))−1(v), for all
(u, v) ∈ H1 ×H2.

Theorem 3.2. For i ∈ {1, 2}, j ∈ {1, 2} \ {i}, let ηi : Hi × Hi → Hi be Lipschitz continuous
with constant σi, Ai, Ci : Hi → Hj, Bi : Hj → Hi, fi, gi : Hi → Hi be Lipschitz continuous
with constants αi, γi, βi, ϑfi , ϑgi respectively, Ni : Hj × Hi × Hj → Hi be Lipschitz continuous in
the first, second and third arguments with constants μi, νi, ωi respectively, let Ni be (λi, ξi)-relaxed
cocoercive with respect to Ai in the first argument, and τi-relaxed Lipschitz with respect to Ci in the
third argument, fi be (ζi, ϕi, �i)-gi-relaxed cocoercive, fi − gi be δfi,gi-strongly monotone, Gi : Hi →
Hi be ti-Lipschitz continuous and di-ηi-strongly monotone, and Gi(fi − gi) be ζi-relaxed Lipschitz,
Mi : Hj ×Hi → 2Hi satisfy that for each fixed xi ∈ Hj,Mi(xi, ·) : Hi → 2Hi is si-(Gi, ηi)-maximal
monotone, Range(fi − gi) ∩ domMi(xi, ·)/= ∅ and
∥
∥
∥
∥
R

Gi,ηi

Mi(yi,·),ρi(x)−R
Gi,ηi
Mi(zi,·),ρi(x)

∥
∥
∥
∥
i

≤r∥∥yi − zi
∥
∥
j , ∀x∈Hi, yi, zi∈Hj, i ∈ {1, 2}, j ∈ {1, 2} \ {i}.

(3.2)

If there exist positive constants ρ1, ρ2, and k such that

di > ρisi, i ∈ {1, 2}, (3.3)

k=max
{

m1+
σ1

d1 − ρ1s1

(

c1+ρ1l1
)

+
σ2

d2 − ρ2s2
χ2, m2+

σ2

d2 − ρ2s2

(

c2+ρ2l2
)

+
σ1

d1 − ρ1s1
χ1

}

+r <1,

(3.4)
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where

mi =
√

1 − 2δfi,gi +
[

ϑ2
fi
+ 2

(

ζiϑfi + ϕiϑgi − �i
)

+ ϑ2
gi

]

,

ci =
√

1 − 2ζi + t2i
(

ϑfi + ϑgi

)2
,

li =
√

μ2
i α

2
i + 2(λiαi − ξi) + 1 +

√

ω2
i γ

2
i − 2τi + 1,

χi = ρiνiβi, i ∈ {1, 2},

(3.5)

then the problem (2.13) possesses a unique solution in H1 ×H2.

Proof. For any (x, y) ∈ H1 ×H2, define

Fρ1

(

x, y
)

= x − (

f1 − g1
)

x + R
G1,η1
M1(y,·),ρ1

[

x +G1
((

f1 − g1
)

x
) − ρ1N1

(

A1x, B1y,C1x
)]

,

Fρ2

(

x, y
)

= y − (

f2 − g2
)

y + R
G2,η2
M2(x,·),ρ2

[

y +G2
((

f2 − g2
)

y
) − ρ2N2

(

A2y, B2x,C2y
)]

.
(3.6)

For each (u1, v1), (u2, v2) ∈ H1 ×H2, it follows from Lemma 2.6 that

∥
∥Fρ1(u1, v1) − Fρ1(u2, v2)

∥
∥
1

≤ ∥
∥u1 − u2 −

[(

f1 − g1
)

u1 −
(

f1 − g1
)

u2
]∥
∥
1 +

σ1

d1 − ρ1s1

× {∥
∥u1 − u2 +G1

((

f1 − g1
)

u1
) −G1

((

f1 − g1
)

u2
)∥
∥
1

+ρ1‖N1(A1u1, B1v1, C1u1) −N1(A1u2, B1v2, C1u2)‖1
}

+ r‖v1 − v2‖2.

(3.7)

Because f1−g1 is δf1,g1 -strongly monotone, f1, g1 andG1 are Lipschitz continuous, andG1(f1−
g1) is ζ1-relaxed Lipschitz, we deduce that

∥
∥u1 − u2 −

[(

f1 − g1
)

u1 −
(

f1 − g1
)

u2
]∥
∥
2
1

≤
(

1 − 2δf1,g1 +
(

ϑ2
f1
+ 2

(

ζ1ϑf1 + ϕ1ϑg1 − �1
)

+ ϑ2
g1

))

‖u1 − u2‖21,
(3.8)

∥
∥u1 − u2 +G1

((

f1 − g1
)

u1
) −G1

((

f1 − g1
)

u2
)∥
∥
2
1

≤
(

1 − 2ζ1 + t21
(

ϑf1 + ϑg1

)2
)

‖u1 − u2‖21.
(3.9)
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Since A1, B1, C1 are all Lipschitz continuous, N1 is (λ1, ξ1)-relaxed cocoercive with respect to
A1, τ1-relaxed Lipschitz with respect to C1, and is Lipschitz continuous in the first, second
and third arguments, respectively, we infer that

‖N1(A1u1, B1v1, C1u1) −N1(A1u2, B1v1, C1u1) − (u1 − u2)‖21

≤
(

μ2
1α

2
1 + 2(λ1α1 − ξ1) + 1

)

‖u1 − u2‖21,
(3.10)

‖N1(A1u2, B1v2, C1u1) −N1(A1u2, B1v2, C1u2) + u1 − u2‖21

≤
(

ω2
1γ

2
1 − 2τ1 + 1

)

‖u1 − u2‖21,
(3.11)

‖N1(A1u2, B1v1, C1u1) −N1(A1u2, B1v2, C1u1)‖
≤ ν1β1‖v1 − v2‖2.

(3.12)

In terms of (3.7)–(3.12), we obtain that

∥
∥Fρ1(u1 − v1) − Fρ1(u2, v2)

∥
∥

≤ m1‖u1 − u2‖1 +
σ1

d1 − ρ1s1

[(

c1 + ρ1l1
)‖u1 − u2‖1 + χ1‖v1 − v2‖2

]

+ r‖v1 − v2‖2.
(3.13)

Similarly, we deduce that

∥
∥Fρ2(u1, v1) − Fρ2(u2, v2)

∥
∥

≤ m2‖v1 − v2‖2 +
σ2

d2 − ρ2s2

[(

c2 + ρ2l2
)‖v1 − v2‖2 + χ2‖u1 − u2‖1

]

+ r‖u1 − u2‖1.
(3.14)

Define ‖ · ‖∗ on H1 ×H2 by ‖(u, v)‖∗ = ‖u‖1 + ‖v‖1 for any (u, v) ∈ H1 ×H2. It is easy to see
that (H1 ×H2, ‖ · ‖∗) is a Banach space. Define Lρ1,ρ2 : H1 ×H2 → H1 ×H2 by

Lρ1,ρ2(u, v) =
(

Fρ1(u, v), Fρ2(u, v)
)

, ∀(u, v) ∈ H1 ×H2. (3.15)

By virtue of (3.3),(3.4),(3.13) and (3.14), we achieve that 0 < k < 1 and

∥
∥Lρ1,ρ2(u1, v1) − Lρ1,ρ2(u2, v2)

∥
∥
∗ ≤ k‖(u1, v1) − (u2, v2)‖∗, (3.16)

which means that Lρ1,ρ2 : H1 ×H2 → H1 ×H2 is a contractive mapping. Hence, there exists a
unique (x, y) ∈ H1 ×H2 such that Lρ1,ρ2(x, y) = (x, y). That is,

f1(x) = g1(x) + R
G1,η1
M1(y,·),ρ1

[

x +G1
((

f1 − g1
)

x
) − ρ1N1

(

A1x, B1y,C1x
)]

,

f2
(

y
)

= g2
(

y
)

+ R
G2,η2
M2(x,·),ρ2

[

y +G2
((

f2 − g2
)

y
) − ρ2N2

(

A2y, B2x,C2y
)]

.
(3.17)
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By Lemma 3.1, we derive that (x, y) is a unique solution of the problem (2.13). This completes
the proof.

Theorem 3.3. For i ∈ {1, 2}, j ∈ {1, 2} \ {i}, let ηi,Ai, Ci,Mi, fi, gi, fi − gi, Gi be all the same as in
Theorem 3.2, Bi : Hj → Hi be ri-expanding, Ni : Hj ×Hi ×Hj → Hi be Lipschitz continuous in
the first, second and third arguments with constants μi, νi, ωi respectively, and Ni be (λi, ξi)-relaxed
cocoercive with respect to Ai in the first argument, be θi-cocoercive with respect to Bi in the second
argument, be τi-relaxed Lipschtz with respect to Ci in the third argument. If there exist constants
ρ1, ρ2 and k such that (3.3) and (3.4), but

ci = ti
√

ϑ2
fi
+ 2

(

ζiϑfi + ϕiϑgi − �i
)

+ ϑ2
gi , χi =

√

ρ2i ν
2
i β

2
i − 2ρiθiri + 1, i ∈ {1, 2}, (3.18)

then the problem (2.13) possesses a unique solution in H1 ×H2.

Theorem 3.4. For i ∈ {1, 2}, j ∈ {1, 2} \ {i}, let ηi,Ai, Bi, Ci,Mi, fi, gi, fi − gi, Gi, Gi(fi − gi) be all
the same as in Theorem 3.2, Ni : Hj × Hi × Hj → Hi be Lipschitz continuous in the first, second
and third arguments with constants μi, νi, ωi respectively, and Ni be (λi, ξi)-relaxed cocoercive with
respect to Ai in the first argument, be θi-relaxed Lipschitz with respect to Bi in the second argument,
be τi-relaxed monotone with respect to Ci in the third argument. If there exist constants ρ1, ρ2 and k
such that (3.3) and (3.4), but

li =
√
(

μiαi +ωiγi
)2 + 2(λiαi − ξi + τi) + 1, χi = ρi

√

ν2i β
2
i − 2θi + 1, i ∈ {1, 2}, (3.19)

then the problem (2.13) possesses a unique solution in H1 ×H2.

Remark 3.5. In this paper, there are three aspects which are worth of being mentioned as
follows:

(1) Theorem 3.2 extends and improves in [4, Theorem 3.1] and in [19, Theorem 4.1];

(2) the class of (ζ, ϕ, �)-g-relaxed cocoercive operators includes the class of (α, ξ)-
relaxed cocoercive operators in [8] as a special case;

(3) the class of s-(G, η)-maximal monotone operators is a generalization of the classes
of η-subdifferential operators in [3], maximal η-monotone operators in [6], H-
monotone operators in [5] and (H,η)-monotone operators in [4].
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