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1. Introduction

Let E be a Banach space with norm || - ||, let E* denote the dual of E and let (x, f) denote
the value of f € E* atx € E. Let T : E — E* be an operator. The problem of finding
v € E satisfying 0 € Tv is connected with the convex minimization problems and variational
inequalities. When T is maximal monotone, a well-known method for solving the equation
0 € Tv in Hilbert space H is the proximal point algorithm (see [1]): x; = x € H and

Xpi1 = Jr,Xn, n=12,..., (1.1)

where 1, C (0,00) and J, = (I + rT)"" for all r > 0 is the resolvent operator for T. Rockafellar
(see [1]) proved the weak convergence of the algorithm (1.1). These results were extended to
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more general Banach spaces; see Kamimura and Takahashi [2] and Ohsawa and Takahashi
[3]. In 2004, Kamimura et al. [4] considered the algorithm (1.2) in a uniformly smooth and
uniformly convex Banach space E, namely,

Xn+l = ]71 (“n](xn) + (1 - “n)](]rnxn))/ n=12,..., (1-2)

where J, = (J +rT)™"J, J is the duality mapping of E. They showed that the algorithm (1.2)
converges weakly to some element of T~!0 provided that the sequences {a,} and {r,} of real
numbers are chosen appropriately.

Let C be a nonempty closed convex subset of E and let A be a monotone operator of C
into E*. The variational inequality problem is to find a point u# € C such that

(v-u,Au) >0, YveC. (1.3)

The set of solutions of the variational inequality problem is denoted by VI(C, A). Such a
problem is connected with the convex minimization problem, the complementarity problem,
the problem of finding a point u € E satisfying 0 = Au and so on. An operator A of C into E*
is said to be inverse-strongly-monotone, if there exists a positive real number a such that

(x -y, Ax - Ay) > a||Ax - Ay|® (1.4)

forall x, y € C.In such a case, A is said to be a-inverse-strongly-monotone. If an operator A of
C into E* is a-inverse-strongly-monotone, then A is Lipschitz continuous, that is, || Ax — Ay|| <
(1/a)|lx =yl forall x,y € C.

In a Hilbert space H, one method of solving a point in VI(C, A) is the projection
algorithm which starts with any x; = x € C and updates iteratively x,.; according to the
formula

Xns1 = Pc(xn — Ay Axy) (1.5)

for every n = 1,2,..., where A is a monotone operator of C in to H, Pc, is the metric
projection of H onto C and {1,} is a sequence of positive numbers. In the case where A
is inverse-strongly-monotone, liduka et al. [5] proved that the sequence {x,} generated by
(1.5) converges weakly to some element of VI(C, A).

Recently, Iliduka and Takahashi [6] introduced the following iterative scheme for
finding a solution of the variational inequality problem for an inverse-strongly-monotone
operator A in Banach space: x; = x € C and

Xn+l = HC]_l (Jxn = AnAxy) (1.6)

for every n = 1,2,..., where I'lc is the generalized metric projection from E onto C, J is the
duality mapping from E into E*, and {A,} is a sequence of positive numbers. They proved
that the sequence {x,} generated by (1.6) converges weakly to some element of VI(C, A).
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In this paper, motivated by the idea of extragradient method [7], Kamimura et al. [4],
and liduka and Takahashi [6], we introduce the iterative scheme (3.1) for finding a common
element of the set of zero of a maximal monotone operator and the solution set of the
variational inequality problem for an inverse-strongly-monotone operator in a 2-uniformly
convex and uniformly smooth Banach space. Then, the weak and strong convergence
theorems are proved under some parameters controlling conditions. Further, we apply our
convergence theorem to the convex minimization problem, the problem of finding a zero
point of a maximal monotone operator and the complementary problem. The results obtained
in this paper improve and extend the corresponding results of Kamimura et al. [4], and liduka
and Takahashi [6], and many others.

2. Preliminaries

Let E be a real Banach space. When {x,} is a sequence in E, we denote strong convergence of
{xn} tox € Eby x, — x and weak convergence by x, — x. An operator T C ExE* is said to be
monotone if (x—y, x*—y*) > 0 whenever (x, x*), (y, y*) € T. We denote the set {x € E : 0 € Tx}
by T-10. A monotone T is said to be maximal if its graph G(T) = {(x,y) : y € Tx} is not
properly contained in the graph of any other monotone operator. If T is maximal monotone,
then the solution set T~10 is closed and convex.

The normalized duality mapping J from E into E* is defined by

Je) = {x" € E*: (x,x) = IxI” = =" }. (2.1)

We recall (see [8]) that E is reflexive if and only if J is surjective; E is smooth if and only if J
is single-valued; E is strictly convex if and only if J is one-to-one; if E is uniformly smooth,
then | is uniformly norm-to-norm continuous on each bounded subset of E. We note thatin a
Hilbert space, H, ] is the identity operator. The definitions of the strict (uniform) convexity,
(uniformly) smoothness of Banach spaces and related properties can be found in [8].

The duality ] from a smooth Banach space E into E* is said to be weakly sequentially
continuous [9] if x, — x implies Jx,—*]x, where —* implies the weak" convergence.

Let E be a Banach space. The modulus of convexity of E is the function 6 : [0,2] — [0,1]
defined by

5(e) = inf{l - H%'

cx,y€E, x|l =yl =1 ||x-vl 25}. (2.2)

E is uniformly convex if and only if 6(¢) > 0 for all € € (0,2]. Let p be a fixed real number
with p > 2. Then E is said to be p-uniformly convex if there exists a constant ¢ > 0 such that
6(g) > ceP for all € € [0,2]. For example, see [10, 11] for more detials. Observe that every
p-uniformly convex space is uniformly convex. One should note that no Banach space is p-
uniformly convex for 1 < p < 2; see [11] for more details. It is well known that Hilbert and
Lebesgue L1 (1 < g < 2) spaces are 2-uniformly convex and uniformly smooth.
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Lemma 2.1 (see [12, 13]). Let E be a 2-uniformly convex Banach space. Then, for all x,y € E, one
has

2
lx=yll < Zl7x=Jyll, (2.3)

where ] is the normalized duality mapping of E and 0 < ¢ < 1.

The best constant 1/c in Lemma 2.1 is called the 2-uniformly convex constant of E; see
[10].

Lemma 2.2 (see [13]). Let E be a uniformly convex Banach space. Then for each r > 0, there exists
a strictly increasing, continuous, and convex function K : [0, 00) — [0, c0) such that K(0) = 0 and

[ + (1= ) || < Mxll> + (1= V]y])* = 21 = YK (|]x - y]]) (2.4)

forallx,y e {z€E:|z|<r}and X € [0,1].

Let E be a smooth Banach space. The function ¢ : E x E — R defined by
¢(x,y) = lxI* - 2(x, Jy) + |ly||> Vx,y€E (2.5)

is studied by Alber [14], Kamimura and Takahashi [2], and Reich [15]. It is obvious from the
definition of ¢ that (||x|| - lyl)* < ¢(x, v) < (||x|| + |ly||)* for all x, y € E.
Let E be a reflexive, strictly convex smooth Banach space, and C a nonempty closed

convex subset of E. By Alber [14], for each x € E, there corresponds a unique element x, € C
(denoted by I'lc(x)) such that

$(x0,x) = minp(y, x). (2.6)
yeC
The mapping Ilc(x) is called the generalized projection from E onto C. If E is a Hilbert space,
then I (x) is coincident with the metric projection from E onto C.

Lemma 2.3 (see [2]). Let E be a uniformly convex smooth Banach space, and let {x,} and {y,} be
sequences in E. If {x,} or {y,} is bounded and lim,, _, .o (xn, Y,) = 0, then lim,, _, oo ||y, — Y| = 0.

Lemma 2.4 (see [2, 14]). Let E be a smooth Banach space and C be a nonempty, closed convex subset
of E. Let x € E and let xo € C. Then ¢(xo, x) = min,eccdp(y, x) if and only if (y — xo, Jx — Jxo) <0
forally € C.

Lemma 2.5 (see [2, 14]). Let E be a reflexive, strictly convex, and smooth Banach space, C a
nonempty, closed convex subset of E, and x € E. Then

d(y,Tc(x)) + ¢(Ic(x), x) < Pp(y,x) VyeC. (2.7)

Let E be a reflexive, strictly convex, and smooth Banach space and ] the duality
mapping from E into E*. Then J! is also single-valued, one-to-one, surjective, and it is the
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duality mapping from E* into E. We make use of the following mapping V studied in Alber
[14]:

V(x, x%) = [lx]* = 2(x, x*) + [|*)? (2.8)

for all x € E and x* € E*. In other words, V (x, x*) = ¢(x, J}(x*)) for all x € E and x* € E*.

Lemma 2.6 (see [14]). Let E be a reflexive, strictly convex, and smooth Banach space and let V be as
in (2.8). Then

V(x,x*)+2<]*1(x*)—x,y*> <V(x,x*+y*) (2.9)

forall x € E and x*,y* € E*.

Let E be a smooth, strictly convex, and reflexive Banach space and let T C E x E* be
a maximal monotone operator. Then for each r > 0 and x € E, there corresponds a unique
element x, € D(T) satisfying

J(x) € J(xy) + 7T (xr), (2.10)

see Barbu [16] or Takahashi [17]. We define the resolvent of T by J,x = x,. In other words,
J, = (J+rT) ' Jforallr > 0.1t easy to show that T10 = F(J,) for all > 0, where F(J,) denotes
the set of all fixed points of J,. We can also define, for each r > 0, the Yosida approximation of T
by A, = rY(J = J];). We know that (J,x, A,x) € T for all r > 0 and x € E. We also know the
following.

Lemma 2.7 (see [18]). Let E be a smooth, strictly convex, and reflexive Banach space, let T C E x E*
be a maximal monotone operator with T*0# 0, let r > 0 and let J, = (J + rT)_l]. Then

o(x, Jry) +o(ry,y) < d(xy) (2.11)

forall x e T"'0and y € E.

An operator A of C into E* is said to be hemicontinuous if for all x,y € C, the mapping
f of [0,1] into E* defined by f(t) = A(tx + (1 —t)y) is continuous with respect to the weak”
topology of E*. We denote by N¢(v) the normal cone for C at a point v € C, thatis, Nc(v) =
(x*e E*: (v-y,x*) >0forall y € C}.

Theorem 2.8 (see [19]). Let C be a nonempty closed convex subset of a Banach space E, and A a
monotone, hemicontinuous operator of C into E*. Let T C E x E* be an operator defined as follows:

Tv =

{AU + N¢(v), veC,
(2.12)

0, vé¢C.

Then T is maximal monotone and T~0 = VI(C, A).
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Lemma 2.9 (see [8]). Let C be a nonempty, closed convex subset of a Banach space E and A a
monotone, hemicontinuous operator of C into E*. Then

VI(C,A)={ueC:{u-v,Av) >0Vov € C}. (2.13)
It is obvious from Lemma 2.9 that the set VI(C, A) is a closed convex subset of C.

Further, we know the following lemma [8, Theorem 7.1.8].

Lemma 2.10 (see [8]). Let C be a nonempty, compact, and convex subset of a Banach space E, and
A a monotone, hemicontinuous operator of C into E*. Then the set VI(C, A) is nonempty.

3. Main Result
In this section, we first prove the following strong convergence theorem.

Theorem 3.1. Let E be a 2-uniformly convex and smooth Banach space, T C E x E* be a maximal
monotone operator and, let J, = (J +rT) ™ J for all ¥ > 0. Let C be a nonempty closed convex subset of
E such that D(T) C C C J7X(N,»oR(J + rT)) and let A be an a-inverse-strongly-monotone operator
of C into E* with F := VI(C,A) N T~'0# 0 and || Ay| < ||Ay — Aul| forall y € C and u € F. Let
{xn} be a sequence defined by x, = x € C and

Yn = HC]_l (Jxn — AnAxy),

(3.1)
Xnt1 = I—[C]71 (an](xn) +(1- an)](]r,,yn))r n=12,...,

where Ilc is the generalized projection from E onto C, {a,,} C [0,1], {r»} C (0, 00), and {1} C [a,b]
for some a,b with 0 < a < b < c*a/2, where c is a constant in (2.3). Then the sequence {TTr(x,)}
converges strongly to an element of F, which is a unique element v € F such that

lim ¢(v, x,) = mip lim ¢ (y, x,), (3.2)

where I is the generalized projection from C onto F.

Proof. Let z € F := VI(C, A) N T~!0. By Lemmas 2.5 and 2.6, we have

P(z ) = (2T Jxn - nAx)) < § (2, )7 T~ 1 Ax,))
=V(z, Jxn — AnAxy)
< V(z, (J = L Ax) + Ay Ax) = 2(T7 (T2 = AnAxy) = 2,4, Ay ) (33)
= V(2 Jx0) = 20 (J7 Ut = AnAxa) - 2, Ax, )

= $(2, %) — 200 (Xn — 2, Axy) + 2< T (Jxn = AyAxn) — X, —)LnAxn>
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for all n € N. Since A is a-inverse-strongly-monotone and z € VI(C, A), it follows that

2 {xy — 2, Axy) = 20 {xy — 2, Axyy — Az) — 20y (X, — 2, AZ)

(34)
< —2al,||Ax, — Az|)?
for all n € N. By Lemma 2.1, we also have
277 (360 = AnA%n) = 0, =k A ) < 2[|J7 = A AX) = J7 () |40 A
4
< ;”(]xn = M Axn) = (Jxu) ||| An Axy| (3.5)
4
= SR < S Ax, - Azl
c c
for all n € N. From (3.3), (3.4) and (3.5), we get
2 2
B (2, Yn) < Pz, %n) + 200 S An — a ) || Axy — Az]|
c
(3.6)

< p(z, ) +20( b - 0 )| Ax, - A2l < (2,3
c
for all n € N. By Lemmas 2.5 and 2.7 and (3.6), we have

Pz x0) = (2T (@] (en) + (1= ) (T ya)) )
<p(z ) (@ () + (=) ()
= V(2 ] () + (1= @) T (Jr,ya))
S apV(z,Jxn) + (1= an)V (2, ] (Jryn)) (37)
= au (2, %) + (1~ @) P (2, T yn)
< and(z,x0) + (1= an) (§(2, yn) = P(r,Yn Yn))
< and(z, %) + (1= an)P(z, yn)
< au (2, %) + (1~ an)P(z, %) = (2, %)

for all n € N. Thus lim, ¢ (z, x,) exists and hence, {¢(z, x,)} is bounded. It implies that
{xn} and {y,} are bounded. Define a function g : F — [0, o0) as follows:

g(z) = r}ijr;o¢(z, x,), VzeF (3.8)
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Then, by the same argument as in proof of [4, Theorem 3.1], we obtain g is a continuous
convex function and if ||z,|| — oo then g(z,) — oo. Hence, by [8, Theorem 1.3.11], there
exists a point v € F such that

8(v) = ming(y)(:= 1) (3.9)
ye

Put u, = Ilfx, for all n € N. We next proof that u, — vasn — oo. If not, then there exists
€0 > 0 such that for each m € N, there is m' > m satisfying ||u,y — v|| > &9. Since v € F, we have

@ (un, xn) = p(Ipxp, x,) < (0, xp) (3.10)
for all n € N. This implies that

lim sup ¢(uy,, x,) < lim ¢p(v, x,,) = 1. (3.11)

Since (||| - [unl)* < ¢(v,un) < ¢p(v,x,) for all n € N and {x,} is bounded, the sequence
{u,} is also bounded. Applying Lemma 2.2, there exists a strictly increasing, continuous, and
convex function K : [0, 00) — [0, o0) such that K(0) =0 and

for all n € N. Now, choose b satisfying 0 < b < (1/4)K(ep). Hence, there exists ny € N such
that

Uy + 0
2

2 1 5 01 501
< Z - _Z _
| < Sl + S0l = 3K (lun =l (3.12)

P, x,) <1+ Db, ¢(v,x,) <1+Db (3.13)
for all n > ny. Thus there exists k > ny satisfying the following:
¢(ur, xx) <I+0, ¢(v,xk) <1+b, lux — v|| > eo. (3.14)
From (3.7), (3.12), and (3.14), we have

¢<uk2+v,xn+k> S(,’b(uk;v,xk)

e Y A A

1 1 1
< lluel’ + 3ol - Kl —ol) - (g +,Jxi) + el (315)
= L 1) + 20, x) — 2K (Juk — o)
—2¢ ks Xk 2¢ %K)~ g K

Sl“'b_}IK(EO)
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for all n € N. Hence

I< 1im¢(”k2+ U,xn> = lim ¢(”" “’,x,Hk) <l+b- %K(ao) <l+b-b=1 (3.16)

n— oo n—oo 2

This is a contradiction. Therefore the sequence {u,} converges strongly tov € F := VI(C, A)N
T-10. Consequently, v € F is the unique element of F such that

lim ¢(v, x,,) = min lim ¢(y, x,). (3.17)

n— oo yeF n— o

This completes the proof. O
When C = E and A = 0 in Theorem 3.1, we obtain the following corollary.

Corollary 3.2 (see Kamimura et al. [4]). Let E be a smooth and uniformly convex Banach space.
Let T C E x E* be a maximal monotone operator with T10#0, let J, = (J + rT)_ljfor all r > 0. and
let TI-1q be the generalized projection of E onto T0. Let {x,} be a sequence defined by x; = x € E
and

Xn+l = ]71 (an ] (xn) + (1 = an) J(Jr,xn)), (3.18)

foreveryn =1,2,..., where {a,} C [0,1], {r,} C (0,00). Then the sequence {I1r-19(x,)} converges
strongly to an element of T~10, which is a unique element v € T~10 such that

nh_r)n (v, x,) = min lim ¢(y, x,). (3.19)

yeTr-lon—oo

Now, we can prove the following weak convergence theorem for finding a common
element of the set of zero of a maximal monotone operator and the set of solution of the
variational inequality problem for an inverse-strongly-monotone operator in a 2-uniformly
convex and uniformly smooth Banach space.

Theorem 3.3. Let E be a 2-uniformly convex and smooth Banach space whose duality mapping |
is weakly sequentially continuous. Let T C E x E* be a maximal monotone operator and let J, =
(J+rT)'J forall r > 0. Let C be a nonempty closed convex subset of E such that D(T) ¢ C C
T HN,soR(J + rT)) and let A be an a-inverse-strongly-monotone operator of C into E* with F :=
VI(C, A)NT10#@and | Ay|| < ||Ay—Aul| forally € Candu € F. Let {a,} C [0,1], {rs} C (0, 0)
such that limsup, | a, < 1 and liminf, ,,r, > 0, and let {1,} C [a,b] for some a,b with
0 < a<b < c*a/2, where cis a constant in (2.3). Let {x,} be a sequence generated by (3.1). Then
the sequence {x,} converges weakly to an element v of F. Further v = lim,, _, ,,TTp (x,).

Proof. As in proof of Theorem 3.1, we have {x,} and {y,} are bounded. It holds from (3.7)
and (3.6) that

(1= an)d(Jr,Yn Yn) < P(z, %) — P(2, Xp11) (3.20)
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for all n € N. Since limsup, , _a, < 1, it follows that lim, @ (J:,yn, ¥») = 0. Applying
Lemma 2.3, we have lim,_, || J,¥» — Yull = 0. Since E is uniformly smooth, the duality
mapping | is uniformly norm-to-norm continuous on each bounded subset of E. Thus

1 17 Uryi) - T ()| = 0. (321)

By (3.7) and (3.6), we note that

_2a<C2—2b - a) (1 - an)||Axy — Az|]* < (2, %0) — P(2, Xns1) (3.22)

for all n € N and hence lim,,_, .|| Ax, — Az||* = 0. From Lemmas 2.5 and 2.6 and (3.5), we
have

(;b(xn/ ]/n) = ¢<xnz HC]_I (Jxn - -)LnAxn)> < ¢<xm ]_1 (Jxn = )‘nAxn)>

=V (xy, Jxn — AnAxy)

<V, (T = AuA%) + A Axa) = 2(]7 U = 1aAxn) = X, A% ) (3.3

= d)(xnr xn) + 2<]_1 (]xn - J\nAxn) - Xn, _)LnAxn>

4 4

= g)tillen - Az|* < ;bzllen - Az|?
for all n € N. Since lim,_, . ||Axy —Az||2 = 0, we have lim,_, ¢ (x,, y») = 0. Applying
Lemma 2.3, we obtain lim,_, ||x, — ¥x|| = 0. From the uniform smoothness of E, we have
limy, . || Jxn — Jyull = 0. Since {x,} is bounded, there exists a subsequence {x,,} of {x,}

such that x,, — u € E. It follows that y,, — u as i — oo. We will show that u € F. Since
lim, _, 1y, > 0, it follows from (3.21) that

. 1
Jim [| Ay, yull = Tim = {|Jyn = T (Tryn) || = 0. (3.24)
If (z,z*) € T, then it holds from the monotonicity of T that
<Z — Ynis z" - Arni Yn; > > 0 (325)

foralli € N. Lettingi — oo, we get (z—u, z*) > 0. Then, the maximality of T implies u € T~10.
Next, we show that u € VI(C, A). Let B C E x E* be an operator as follows:

Av+ Nc(v), veC,
Bv = (3.26)

0, v¢C.
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By Theorem 2.8, B is maximal monotone and B~!0 = VI(C, A). Let (v,w) € G(B). Since
w € Bu = Av + N¢(v), it follows that w — Av € N¢(v). From y,, € C, we have

(v —yn,w— Av) > 0. (3.27)

On the other hand, from y, = I1cJ ' (Jx, — A, Ax,) and Lemma 2.4, we have (v — vy, Jy, —
(Jxy, — AyAxy)) > 0 and hence

<v—ymlﬁﬁiﬂﬁ-u&m>so. (3.28)

Then it follows from (3.27) and (3.28) that
(v = yn,w) > (V- yn, Av)

> (v —yn, Av) + <U ~ Yn, —]x"): Jyn _ Axn>

= (v - yn, Av — Axy) + <v—yn,M>

An

]xn — ]yn > (329)

= (0~ Yn, AV = AYp) + (U = Yn, AYn — AXy) + <v—yn, 0

|||yn_x"” _” |||]x"_]y"”
o a

V= Y|

Z_M<||yn—xn|| . IIan—JanI>

[24 a

2 ~|[o=yal

for all n € N, where M = sup{||v — y,|| : n € N}. Taking n = n;, we have (v - u,w) > 0 as
i — oo. Hence, by the maximality of B, we obtain u € B7'0 = VI(C, A) and therefore u € F.
By Theorem 3.1, the {ITr(x,)} converges strongly to a point v € F which is a unique element
of F such that

lim ¢(v, x,) = mip lim ¢(y, x,). (3.30)

By the uniform smoothness of E, we also have lim,_, ;|| JTIrx,, — Jo| = 0. Finally we prove
that u = v. From Lemma 2.4 and u € F, we have

(u—Ilpxy, Jxu, — JT1px,) <0 (3.31)

for all i € N. Since J is weakly sequentially continuous, we have Jx,, — Ju asi — oo. Letting
i — ooin (3.31), we get

(u—v, Ju-Jo) <0. (3.32)
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This implies (u—v, Ju— Jv) = 0. Since E is strictly convex, it follows that u = v. Therefore the
sequence {x,} converges weakly to v = lim, _, . IIr(x,). This completes the proof. O

When C = E and A = 0 in Theorem 3.3, we obtain the following result.

Corollary 3.4 (see Kamimura et al. [4]). Let E be a uniformly convex and uniformly smooth Banach
space whose duality mapping J is weakly sequentially continuous. Let T C E x E* be a maximal
monotone operator with T-10+0, let J, = (J + rT)_ljfor all v > 0 and let {x,} be a sequence defined
by x1 =x € Eand

Xn+1 = ]_1 (an] (xn) + (1 = an) J(Jr,xn)), (3.33)

for every n = 1,2,..., where {a,} C [0,1], {r,} C (0,00) satisfy limsup, , a, < 1 and
liminf,_ 7, > 0. Then the sequence {x,} converges weakly to an element v of T~'0. Further
v =lim,, . I Ir19(x,).

When a,, = 0 and T = 0 in Theorem 3.3, we have the following corollary.

Corollary 3.5 (see liduka and Takahashi [6]). Let E be a 2-uniformly convex and uniformly
smooth Banach space whose duality mapping | is weakly sequentially continuous. Let C be a nonempty
closed convex subset of E and let A be an a-inverse-strongly-monotone operator of C into E* with
VI(C, A) #0. Assume that ||Ay|| < ||Ay — Aul| forall y € C and u € VI(C, A). Let {1,,} C [a,b]
for some a,b with 0 < a < b < c*a/2, where c is a constant in (2.3). Let {x,} be a sequence defined
by x1 =x € Cand

Xn+1 = HC]_l (]xn - -)‘nAxn)/ (334)

foreveryn =1,2,..., where Ilc is the generalized projection from E onto C. Then the sequence {x, }
converges weakly to an element v in VI(C, A). Further v = lim,, _, Iy a)(xn).

4. Application

In this section, we prove some weak convergence theorems in a 2-uniformly convex,
uniformly smooth Banach space by using Theorem 3.3. We first apply Theorem 3.3 to the
convex minimization problem.

Theorem 4.1. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous and let f : E — (—oo,00] be a proper lower
semicontinuous convex function. Let C be a nonempty closed convex subset of E such that D(0f) C
C C J7H(N,»oRU + rdf)) and let A be an a-inverse-strongly-monotone operator of C into E* with
F:=VI(C, A)ﬁ(af)_loaé Qand | Ay|| < ||Ay —Aul| forall y € Cand u € F. Let {x,} be a sequence
defined as follows: x1 = x € C and

Zn = Iﬁ[C]i1 (]xn - )tnAxn)r

. 1 1
o =asgmin £ () + 5yl - (2 | @)
Xt = e ] (] () + (1= a0) ] (yn)),
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foreveryn =1,2,..., where Ilc is the generalized projection from E onto C, {a,} C [0,1], {r,} C
(0, 00) satisfy limsup, , a, < 1 and liminf, 7, > 0, and {A,} C [a,b] for some a,b with
0 < a<b<ca/2 where cis a constant in (2.3). Then the sequence {x,} converges weakly to an
element v of F := VI(C, A) N (af)_10. Further v = limy, . I Tr(x5).

Proof. By Rockafellar’s theorem [20, 21], the subdifferential mapping 0f C E x E* is maximal
monotone. Let J, = (J + raf)flf forall r > 0. As in the proof of [4, Theorem 4.1], we have y,, =
Jr,zn for all n € N. Hence, by Theorem 3.3, {x,} converges weakly to v = lim,,_, . ITr(x,). O

Next, we study the problem of finding a zero point of a maximal monotone operator
of E into E* and a minimizer of a continuously Fréchet differentiable, convex functional in a
Banach space. To prove this, we need the following lemma.

Lemma 4.2 (see [22]). Let E be a Banach space, f a continuously Fréchet differentiable, convex
function on E, and V f the gradient of f. If V f is 1/a-Lipschitz continuous, then V f is a-inverse-
strongly-monotone.

Theorem 4.3. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping | is weakly sequentially continuous. Let T C E x E* be a maximal monotone operator and let
I, =+ rT)_ljfor all r > 0. Let C be a nonempty closed convex subset of E such that D(T) c C C
T HN,soR(J + rT)). Assume that f is a function on E satisfies the following:

(1) f is a continuously Fréchet differentiable convex function on E, and V f is 1/a-Lipschitz
continuous;

(2) S=argmin,eccf(y) = {z € C: f(z) = mingecf(y)} N T'0+#0;

G VA <1V fle(y) = Vflc@) forally € Candu € SNT'0.

Suppose that x1 = x € C and {x,} is given by

Yn = I_IC]_1 (]xn - )anﬂC(xn))/

(4.2)
Xpt1 = l—IC]71 (“n](xn) +(1- ‘xn)](]rnyn))r

for every n = 1,2,..., where Ilc is the generalized projection from E onto C and {a,} C [0,1],
{rn} C (0, 00) satisfy limsup, , _a, <1andliminf,_r, >0and {1,} C [a,b] for some a,b with
0 < a<b<ca/2, where cisaconstant in (2.3). Then the sequence {x,} converges weakly to some
element v in F := T7'0N S. Further v = lim,,_, o ITr(x,,).

Proof. It follows from Lemma4.2 and the condition (1) that Vf|c is an a-inverse-
strongly-monotone operator of C into E*. We also obtain from the convexity and Fréchet
differentiability of f that

VI(C,Vflc) = argmin f (y). (4.3)
By using Theorem 3.3, {x,} converges weakly to some element v in F := T~!0N S. O

We next consider the problem of finding a zero point of a maximal monotone operator
of E into E* and a zero point of an inverse-strongly-monotone operator of E into E*. In the
case where C = E.
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Theorem 4.4. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous. Let T C E x E* be a maximal monotone operator and
let J, = (J+rT)"'] forall r > 0. Let A be an a-inverse-strongly-monotone of E into E* with A0 N
T-10#0. Let x; = x € E and {x,} is given by

Yn = ]_1(]xn - )LnAxn)r

(4.4)
Xp+1 = ]71 (“n](xn) +(1- an)](jrnyn))’

for every n = 1,2,..., where {a,} C [0,1], {r,} C (0,00) satisfy limsup, , a, < 1 and
liminf, 1, > 0 and {1,} C [a,b] for some a,b with 0 < a < b < c*a/2, where c is a constant
in (2.3). Then the sequence {x,} converges weakly to some element v in F := T~'0 N A™'0. Further
v =1lim, . I (x,).

Proof. From Il = I, VI(E, A) = A7!0, and || Ay|| = ||Ay —0|| = || Ay — Aul| forally € Eand u €
Ao, by using Theorem 3.3, {x, } converges weakly to some element v in F := TlonA™0. O

Corollary 4.5. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping | is weakly sequentially continuous. Let T C E x E* be a maximal monotone operator and let
Jr = (J+7T) "] forall v > 0. Assume that f is a function on E such that f is a continuously Fréchet
differentiable convex function on E, V f is 1/ a-Lipschitz continuous, and (Vf)'0 = {z € E: f(z) =
minyeef(y)} NT'0#0. Let {x,,} be a sequence generated by x; = x € E and

Yn = jil(jxn - /\nvfxn)/
45)

Xnt1 = ]_1 (an](xn) +(1- an)](]rny"))’

for every n = 1,2,..., where {a,} C [0,1], {r,} C (0,00) satisfy limsup, , a, < 1 and
liminf, 1, > 0and {1,} C [a,b] for some a,b with 0 < a < b < c*a/2, where c is a constant in
(2.3). Then the sequence {x,} converges weakly to some element v in F := T'0N (V f y720. Further
v =1lim, . ITp(x,).

Proof. By Lemma 4.2, we have Vf is an a-inverse-strongly-monotone operator of E into E*.
Hence, by Theorem 4.4, {x,} converges weakly to some element v in F := T~10N(V f )y lo. O

Finally we consider the complementary problem. Let K be a nonempty closed convex
cone in E, A an operator of K into E*. We define its polar in E* to be the set

K*={y*€eE*: (x,y*) 20 Vx € K}. (4.6)

Then an element u € K is called a solution of the complementarity problem if

Au € K*, (u,Au)=0. (4.7)

The set of solutions of the complementarity problem is denoted by C(K, A).
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Theorem 4.6. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping | is weakly sequentially continuous. Let T C E x E* be a maximal monotone operator and let
Jo = (J+7T) "] forall r > 0. Let K be a nonempty closed convex cone of E such that D(T) C K C
T HN,soR(J + rT)). Let A be an a-inverse-strongly-monotone of K into E* with F := C(K, A) N
T'0#0 and |Ay|| < ||Ay — Aul|| for all y € K and u € F. Suppose that x; = x € K and {x,} is
given by

Yn = HK]_l (]xn - )‘nAxn)/

(4.8)
Xn+1 = HK]_l (an](xn) +(1- “ﬂ)](]‘fnyn))'

for every n = 1,2,..., where Ik is the generalized projection from E onto K and {a,} C [0,1],
{rn} C (0,00) satisfy limsup, , _a, <1andliminf,_, .r, >0and {1,} C [a,b] for some a,b with
0 < a<b<ca/2, where cisa constant in (2.3). Then the sequence {x,} converges weakly to some
element v in F := T'0N C(K, A). Further v = lim,,_, o ITr(x,,).

Proof. It follows by of [8, Lemma 7.11] that VI(K, A) = C(K, A). Hence, Theorem 3.3, {x,}
converges weakly to some element v in F := T~10N C(K, A). O
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