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Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This
follows from G. S. Young’s general theorem (1946) that establishes the fixed-point property for
every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is
contained in an arc. Here we give a short proof based on the structure of the Alexandroff-Urysohn
Square.
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Alexandroff and Urysohn [1] in Mémoire sur les espaces topologiques compacts defined a variety
of important examples in general topology. The final manuscript for this classical paper
was prepared in 1923 by Alexandroff shortly after the death of Urysohn. On [1, page 15],
Alexandroff denoted a certain space by U1. While Steen and Seebach in Counterexamples
in Topology [2, Example 101] refer to this space as the Alexandroff Square, we concur
with Cameron [3, pages 791-792], who attributes it to Urysohn. Hence we refer to U1 as
the Alexandroff-Urysohn Square and for convenience denote it by (X, τ). The following
definition of (X, τ) is given by Steen and Seebach [2, Example 101, pages 120-121]. DefineX to
be the closed unit square [0, 1]×[0, 1]with the topology τ defined by taking as a neighborhood
basis of each point (s, t) off the diagonal Δ = {(x, x) ∈ X | x ∈ [0, 1]} the intersection of X \Δ
with open vertical line segments centered at (s, t) (e.g.,Nε(s, t) = {(s, y) ∈ X \Δ | |t−y| < ε}).
Neighborhoods of each point (s, s) ∈ Δ are the intersection with X of open horizontal
strips less a finite number of vertical lines (e.g., Mε(s, s) = {(x, y) ∈ X | |y − s| < ε and
x /=x0, x1, . . . , xn}). Note (X, τ) is not first countable, and therefore not metrizable. However,
(X, τ) is a compact arcwise-connected Hausdorff space [2].

In Young’s paper [4] of 1946, local connectivity is introduced on a space by a change
of topology with consequent implications on generalized dendrites. A non-specialist may
not notice that the fixed-point property for the Alexandroff-Urysohn Square follows from
a result in Young’s paper. We offer the following short proof based on the structure of
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the Alexandroff-Urysohn Square. The proof is direct and uses a dog-chases-rabbit argument
[5, page 123–125]; first having the dog run up the diagonal, and then up (or down) a vertical
fiber. The Alexandroff-Urysohn Square is a Hausdorff dendroid. For a dog-chases-rabbit
argument that metric dendroids have the fixed point property, see [6], and also see [7].

Definition 1. A set U in (X, τ) is an ordered segment if U is a connected vertical linear
neighborhood or U is a component of the intersection of Δ and a horizontal strip
neighborhood.

Note the relative topology induced on each ordered segment by τ is the Euclidean
topology. Each point of (X, τ) is contained in arbitrarily small ordered segments.

Let π1 : (X, τ) → [0, 1] be the function defined by π1(x, y) = x. Since each
neighborhood in (X, τ) of a point of Δ is projected by π1 onto the complement of a finite
set in [0, 1], the function π1 is discontinuous at each point of Δ.

Let π2 : (X, τ) → [0, 1] be the function defined by π2(x, y) = y. Note π2 is continuous.

Lemma 2. Let f : (X, τ) → (X, τ) be a continuous function. Let p = (x, x) be a point of Δ. If
π1f(p)/=x, then there is an ordered segment U containing p such that π1f(U) is in one component
of [0, 1] \ π1(U).

Proof. Suppose π1f(p)/=x. We consider two cases.

Case 1. Assume f(p)/∈Δ. Let V be a vertical ordered segment containing f(p).
Since p ∈ Δ and f is continuous, there is a horizontal strip neighborhood H in (X, τ)

of p such that π1(V )/∈π1(H ∩ Δ) and f(H) ⊂ V . Let U be the p-component of H ∩ Δ. Note
U is an ordered segment containing p and f(U) ⊂ V . The point π1f(U) is contained in one
component of [0, 1] \ π1(U).

Case 2. Assume f(p) ∈ Δ. LetK be a horizontal strip neighborhood in (X, τ) of f(p) such that
x /∈π1(K ∩Δ) and K ∩Δ is connected. Let L be the f(p)-component of K. Note L is a square
set with diagonal K ∩Δ.

Let H be a horizontal strip neighborhood in (X, τ) of p such that H ∩ K = ∅ and
f(H) ⊂ K. Let U be the ordered segment that is the p-component of H ∩ Δ. Note f(U)
is a connected subset of L and π1(U) ∩ π1(L) = ∅. Hence π1f(U) is in one component of
[0, 1] \ π1(U). This completes the proof of our lemma.

Theorem 3. The Alexandroff-Urysohn Square (X, τ) has the fixed-point property.

Proof. Let f : (X, τ) → (X, τ) be a continuous function. We will show there exists a point of
(X, τ) that is not moved by f .

Let B = {x ∈ [0, 1] | π1f(x, x) ≥ x}. Note 0 ∈ B. Let b be the least upper bound of B.
Note π1f(b, b) = b. To see this assume π1f(b, b)/= b. Then, by the lemma, there is an

ordered segment U in Δ containing (b, b) such that π1f(U) is in one component of [0, 1] \
π1(U). However since b is the least upper bound of B, there exist points a and c in π1(U)
such that π1f(a, a) ≥ a and π1f(c, c) < c, a contradiction. Hence, π1f(b, b) = b.

If π2f(b, b) = b, then f(b, b) = (b, b) as desired.
If π2f(b, b)/= b, then either π2f(b, b) > b or π2f(b, b) < b. Assume without loss of

generality that π2f(b, b) > b.
Let I denote the interval {b} × [b, 1].
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Let r : (X, τ) → (X, τ) be the function defined by r(p) = p if p ∈ I and r(p) = (b, b) if
p /∈ I.

Note {b} × (b, 1] is an open and closed subset of X \ {(b, b)}. It follows that r is
continuous. Thus, r is a retraction of (X, τ) to I.

Let ̂f be the restriction of f to I. Since r ̂f is a continuous function of the interval I into
itself, there is a point (b, d) ∈ I such that r ̂f(b, d) = (b, d).

Since every point of I that is sent intoX\I by f is moved by r ̂f , it follows that f(b, d) ∈
I. Hence f(b, d) = r ̂f(b, d) = (b, d).
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