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1. Introduction

It is well known that Ky Fan minimax inequality [1] plays a very important role in various
fields of mathematics, such as variational inequality, game theory, mathematical economics,
fixed point theory, control theory. Many authors have got some interesting achievements in
generalization of the inequality in various ways. For example, Ferro [2] obtained a minimax
inequality by a separation theorem of convex sets. Tanaka [3] introduced some quasiconvex
vector-valued mappings to discuss minimax inequality. Li and Wang [4] obtained a minimax
inequality by using some scalarization functions. Tan [5] obtained a minimax inequality
by the generalized G-KKM mapping. Verma [6] obtained a minimax inequality by an R-
KKM mapping. Li and Chen [7] obtained a set-valued minimax inequality by a nonlinear
separation function ξk,a. Ding [8, 9] obtained a minimax inequality by a generalized R-KKM
mapping. Some other results can be found in [10–16].

In this paper, we will establish some generalized Ky Fan minimax inequalities
forvector-valued mappings by the classical Browder fixed point theorem and the Kakutani-
Fan-Glicksberg fixed point theorem.

2. Preliminaries

Now, we recall some definitions and preliminaries needed. Let X and Y be two nonempty
sets, and let T : X → 2Y be a nonempty set-valued mapping, x ∈ T−1(y) if and only if
y ∈ T(x), T(X) =

⋃
x∈XT(x). Throughout this paper, assume that every space is Hausdorff.
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Definition 2.1 (see [10]). For topological spaces X and Y , a mapping T : X → 2Y is said to be

(i) upper semicontinuous (usc), if for each open set B ⊂ Y , the set T−1(B) = {x ∈ X :
T(x) ⊂ B} is open subset of X;

(ii) lower semicontinuous (lsc), if for each closed set B ⊂ Y , the set T−1(B) = {x ∈ X :
T(x) ⊂ B} is closed subset of X;

(iii) continuous, if it is both (usc) and (lsc);

(iv) compact-valued, if T(x) is compact in Y for any x ∈ X.

Definition 2.2 (see [11]). Let Z be a topological vector space and C ⊂ Z be a pointed convex
cone with a nonempty interior intC, and let B be a nonempty subset of Z. A point z ∈ B is
said to be

(i) a minimal point of B if B ∩ (z − C) = {z};

(ii) a weakly minimal point of B if B ∩ (z − intC) = ∅;

(iii) a maximal point of B if B ∩ (z + C) = {z};

(iv) a weakly maximal point of B if B ∩ (z + intC) = ∅.

By minB, minwB, maxB, maxwB, we denote, respectively, the set of all minimal points,
the set of all weakly minimal points, the set of all maximal points, the set of all weakly
maximal points of B.

Lemma 2.3 (see [11]). Let B be a nonempty compact subset of a topological vector space Z with a
closed pointed convex cone C. Then

(i) minB /= ∅;
(ii) B ⊂ minB + C ⊂ minwB + C;

(iii) maxB /= ∅;
(iv) B ⊂ maxB − C ⊂ maxwB − C.

Lemma 2.4 (see [11]). Let E and Z be two topological vector spaces, ∅/=X ⊂ E, and let F : X → 2Z

be a set-valued mapping. If X is compact, and F is upper semicontinuous and compact-valued, then
F(X) =

⋃
x∈XF(x) is compact set.

Lemma 2.5 (see [2, Theorem 3.1]). Let E be a topological vector space, let Z be a topological vector
space with a closed pointed convex cone C, intC/= ∅, let X and Y be two nonempty compact subsets
of E, and let f : X × Y → Z be a continuous mapping. Then both F1 : X → 2Z defined by
F1(x) = maxwf(x, Y ) and F2 : X → 2Z defined by F2(x) = minwf(x, Y ) are upper semicontinuous
and compact-valued.

Definition 2.6. Let Z be a topological vector space and let C be a closed pointed convex cone
in Z, intC/= ∅. Given e ∈ intC and a ∈ Z, the function he,a and ge,a : Z → R are, respectively,
defined by he,a(z) = min{t ∈ R : z ∈ a + te − C}, and ge,a(z) = max{t ∈ R : z ∈ a + te + C}.

We quote some of their properties as follows (see [12]):

(i) he,a(z) < r ⇔ z ∈ a + re − intC; ge,a(z) > r ⇔ z ∈ a + re + intC;

(ii) he,a(z) ≤ r ⇔ z ∈ a + re − C; ge,a(z) ≥ r ⇔ z ∈ a + re + C;

(iii) he,a(z) > r ⇔ z/∈ a + re − C; ge,a(z) < r ⇔ z/∈ a + re + C;
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(iv) he,a(z) ≥ r ⇔ z/∈ a + re − intC; ge,a(z) ≤ r ⇔ z/∈ a + re + intC;

(v) he,a is a continuous and convex function; ge,a is a continuous and concave function;

(vi) he,a and ge,a are strictly monotonically increasing (monotonically increasing), that
is, if z1 − z2 ∈ intC ⇒ f(z1) > f(z2) (z1 − z2 ∈ C ⇒ f(z1) ≥ f(z2)), where f denotes
he,a or ge,a.

Definition 2.7 (see [3]). Let E be a topological vector space, let X be a nonempty convex
subsets of E, and let Z be a topological vector space with a pointed convex cone C, intC/= ∅.
A vector-valued mapping f : X → Z is said to be

(i) C-quasiconcave if for each z ∈ Z, the set {x ∈ X : f(x) ∈ z + C} is convex;

(ii) properly C-quasiconcave if for any x, y ∈ X and t ∈ [0, 1], either f(tx + (1 − t)y) ∈
f(x) + C or f(tx + (1 − t)y) ∈ f(y) + C.

The following two propositions are very important in proving Proposition 2.10.

Proposition 2.8 (see [4]). Let Z be a topological vector space and let C be a closed pointed convex
cone in Z, intC/= ∅, f : X → Z:

(i) f isC-quasiconcave if and only if for all e ∈ intC and for all a ∈ Z, ge,a(f) is quasiconcave;

(ii) if f is properly C-quasiconcave.

Then he,a(f) is quasiconcave.

Proposition 2.9. Let E be a topological vector space and let X be a nonempty convex subset of E,
f : X → R. Then the following two statements are equivalent:

(i) for any r ∈ R, {x ∈ X : f(x) ≥ r} is convex;
(ii) for any t ∈ R, {x ∈ X : f(x) > t} is convex.

Proof. (i)⇒(ii) For any t ∈ R, x1, x2 ∈ {x ∈ X : f(x) > t}. Let r = min{f(x1), f(x2)} > t,
then x1, x2 ∈ {x ∈ X : f(x) ≥ r}. By (i), we have {x ∈ X : f(x) ≥ r} is convex, then
co({x1, x2}) ⊂ {x ∈ X : f(x) ≥ r > t}. Thus, co({x1, x2}) ⊂ {x ∈ X : f(x) > t} is convex.

(ii)⇒(i) For any r ∈ R, x1, x2 ∈ {x ∈ X : f(x) ≥ r}, then for all ε > 0, x1, x2 ∈ {x ∈ X :
f(x) > r − ε}. By (ii), we have {x ∈ X : f(x) > r − ε} is convex, that is, co({x1, x2}) ⊂ {x ∈ X :
f(x) > r − ε}. Since ε is arbitrary, then co({x1, x2}) ⊂ {x ∈ X : f(x) ≥ r} is convex.

Proposition 2.10. Let E be a topological vector space, let Z be a topological vector space with a closed
pointed convex cone C, intC/= ∅, and let X be a nonempty compact convex subset of E, f : X → Z
be a vector mapping. Then the following two statements are equivalent:

(i) for any z ∈ Z, {x ∈ X : f(x) ∈ z + C} is convex, that is, f(x) is C-quasiconcave;
(ii) for any z ∈ Z, {x ∈ X : f(x) ∈ z + intC} is convex.

Proof. (i)⇒(ii) for all z ∈ Z and for all e ∈ intC, let a = z − e. By Proposition 2.8, we have
ge,a(f(x)) is quasiconcave, that is, for any r ∈ R, {x ∈ X : ge,a(f(x)) ≥ r} is convex, then
by Proposition 2.9, we have for any t ∈ R, {x ∈ X : ge,a(f(x)) > t} is convex. Thus, {x ∈
X : ge,a(f(x)) > 1} is convex. Therefore, we have {x ∈ X : f(x) ∈ z + intC} is convex since
{x ∈ X : f(x) ∈ z + intC} = {x ∈ X : ge,a(f(x)) > 1} by property (i) of ge,a.
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(ii)⇒(i) By Proposition 2.8, we need only prove for all e ∈ intC and for all a ∈ Z,
ge,a(f(x)) is quasiconcave, that is, for any r ∈ R, {x ∈ X : ge,a(f(x)) ≥ r} is convex.

For any t ∈ R, let z = a + te. By property (i) of ge,a, we have

{
x ∈ X : f(x) ∈ z + intC

}
=
{
x ∈ X : ge,a

(
f(x)

)
> t

}
. (2.1)

Thus, for any t ∈ R, {x ∈ X : ge,a(f(x)) > t} is convex since {x ∈ X : f(x) ∈ z+ intC} is
convex by (ii). Therefore, by Proposition 2.9, we have for any r ∈ R, {x ∈ X : ge,a(f(x)) ≥ r}
is convex.

3. Generalized Ky Fan Minimax Inequalities

In this section, we will establish some generalized Ky Fan minimax inequalities and a
corollary by Propositions 1.1, 1.3 and Lemmas 3.1, 3.2.

Lemma 3.1 (see [13]). Let E be a topological vector space, let X ⊂ E be a nonempty compact and
convex set, and let T : X → 2X , such that

(i) for each x ∈ X, T(x) is nonempty and convex;

(ii) for each x ∈ X, T−1(x) is open.

Then T has a fixed point.

Lemma 3.2 (see [11], Kakutani-Fan-Glicksberg fixed point theorem). Let E be a locally convex
topological vector space and letX ⊂ E be a nonempty compact and convex set. If T : X → 2X is upper
semicontinuous, and for any x ∈ X, T(x) is a nonempty, closed and convex subset, then T has a fixed
point.

Theorem 3.3. Let E be a topological vector space, let Z be a topological vector space with a closed
pointed convex coneC, intC/= ∅, letX be a nonempty compact convex subset of E, and let f : X×X →
Z be a continuous mapping, such that

(i) for all z ∈ (maxw)t∈Xf(t, t), for any x ∈ X, {y ∈ X : f(x, y) ∈ z + intC} is convex.
Then

maxw
t∈X

f(t, t) ⊂ min
x∈X

maxw
y∈X

f
(
x, y

)
+ Z \ (−intC). (3.1)

Proof. Let z ∈ (maxw)t∈Xf(t, t), then by the definition of the weakly maximal point, we have

for any x ∈ X, f(x, x)/∈ z + intC. (∗)

For each x ∈ X, let

T(x) =
{
y ∈ X : f

(
x, y

) ∈ z + intC
}
. (3.2)

Now, we prove that there exists x0 ∈ X, such that T(x0) = ∅.
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Supposed for each x ∈ X, T(x)/= ∅, then by condition (i), we have for each x ∈ X,
T(x) is nonempty and convex. In addition, we have for each y ∈ X, T−1(y) is open since f is
continuous.

Thus, by Lemma 3.1, there exists x′ ∈ X, such that x′ ∈ T(x′), that is, f(x′, x′) ∈ z+intC,
which contradicts (∗).

Therefore, there exists x0 ∈ X, such that T(x0) = ∅, that is, for any y ∈ X,

z/∈ f
(
x0, y

) − intC. (3.3)

Since maxwf(x0, X)/= ∅, then z ∈ maxwf(x0, X)+Z\(−intC) ⊂ ⋃
x∈Xmaxwf(x,X)+Z\

(−intC) = minx∈X(maxw)y∈Xf(x, y) +Z \ (−intC) (because of Z \ (−intC) = Z \ (−intC) +C,
and Lemma 2.3).

Remark 3.4. By Proposition 2.10, in the above Theorem 3.3, the condition (i) can be replaced
by “for each x ∈ X, f(x, y) is C-quasiconcave in y”.

Theorem 3.5. Let E be a topological vector space, let Z be a topological vector space with a closed
convex pointed coneC, intC/= ∅, letX be a nonempty compact convex subset of E, and let f : X×X →
Z be a continuous mapping, such that

(i) for each x ∈ X, f(x, y) is properly C-quasiconcave in y.

Then

minw
x∈X

maxw
y∈X

f
(
x, y

) ⊂ max
t∈X

f(t, t) + Z \ intC. (3.4)

Proof. Since X is compact, and f is continuous, then by Lemma 2.3, we have for any x ∈ X,
maxwf(x,X)/= ∅ and (minw)x∈X (maxw)y∈Xf(x, y)/= ∅.

For any x ∈ X, there exists yx ∈ X, such that f(x, yx) ∈ maxwf(x,X). Let
z ∈ (minw)x∈X (maxw)y∈Xf(x, y), by the definition of the weakly minimal point, we have
f(x, yx)/∈ z − intC. Thus, for each x ∈ X, let

T(x) =
{
y ∈ X : f

(
x, y

)
/∈ z − intC

}
/= ∅. (3.5)

Now, we prove that there exists x0 ∈ X, such that x0 ∈ T(x0).
For all e ∈ intC, let a = z − e ∈ Z, the function he,a : Z → R is defined by

he,a(z) = min{t ∈ R : z ∈ a + te − C}. (3.6)

Let g(x, y) = he,a(f(x, y)), then g(x, y) is continuous since both he,a and f are
continuous. By property (iv) of he,a, we have

T(x) =
{
y ∈ X : f

(
x, y

)
/∈ z − intC

}
=
{
y ∈ X : g

(
x, y

) ≥ 1
}
. (∗∗)

For any n ∈ N, let Tn(x) = {y ∈ X : g(x, y) > 1−1/n}, then it satisfies the all conditions
of Lemma 3.1.
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In fact, firstly, by T(x) ⊂ Tn(x), we have Tn(x)/= ∅, and for each y ∈ X, T−1
n (y) is open

since g(x, y) is continuous. Secondly, by condition (i) and Proposition 2.8, we have g(x, y)
is quasiconcave in y, that is, for any r ∈ R, {y ∈ X : g(x, y) ≥ r} is convex. Thus, by
Proposition 2.9, Tn(x) = {y ∈ X : g(x, y) > 1 − 1/n} is convex.

By Lemma 3.1, there exists xn ∈ X, such that xn ∈ Tn(x), that is,

g(xn, xn) > 1 − 1
n
. (3.7)

Since X is compact, then {xn} has a subnet converging to x0 ∈ X. Let n → ∞ in the
above expression, together with (∗∗), yields

g(x0, x0) ≥ 1 ⇐⇒ x0 ∈ T(x0). (3.8)

Thus,

z/∈ f(x0, x0) + intC. (3.9)

Therefore, for all z ∈ (minw)x∈X(maxw)y∈Xf(x, y), we have

z ∈ f(x0, x0) + Z \ intC ⊂ max
t∈X

f(t, t) − C + Z \ intC = max
t∈X

f(t, t) + Z \ intC. (3.10)

Theorem 3.6. Let E be a locally convex topological vector space, let Z be a topological vector space
with a closed convex pointed cone C, intC/= ∅, let X be a nonempty compact and convex subset of E,
let f : X ×X → Z be a continuous mapping, and let z0 ∈ Z such that

(i) for each x ∈ X, T(x) = {y ∈ X : f(x, y) ∈ z0 + C} is nonempty convex.

Then

z0 ∈ max
x∈X

f(x, x) − C. (3.11)

Proof. For each x ∈ X, we define T : X → 2X by

T(x) =
{
yx ∈ X : f

(
x, yx

) ∈ z0 + C
}
. (3.12)

Now, we prove that T has a fixed point.

(1) By the condition (i), we have for each x ∈ X, T(x)/= ∅ is closed and convex since f
is continuous and C is closed.

(2) T is upper semicontinuous mapping.

For each x ∈ X, T(x) is compact since X is compact and T(x) ⊂ X is closed. We only
need to prove T has a closed graph.
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In fact, Let (x′, y′) ∈ Gr(T), and a net (xα, yα) in Gr(T) converging to (x′, y′).
Since f is continuous and z0 + C is closed, then

f
(
xα, yα

) −→ f
(
x′, y′) ∈ z0 + C. (3.13)

Thus,

y′ ∈ T
(
x′) =⇒ (

x′, y′) ∈ Gr(T). (3.14)

Therefore, by Lemma 3.2 (KFG fixed point theorem), T has a fixed point x3 such that

x3 ∈ T(x3). (3.15)

Then

z0 ∈ f(x3, x3) − C ⊂
⋃

x∈X
f(x, x) − C ⊂ max

x∈X
f(x, x) − C. (3.16)

Remark 3.7. If for each x ∈ X, f(x, y) is C-quasiconcave in y and z0 ⊂ f(x,X) − C, then the
condition (i) holds. Thus, we can obtain the following corollary.

Corollary 3.8. Let E be a locally convex topological vector space, let Z be a topological vector space
with a closed convex pointed cone C, intC/= ∅, let X be a nonempty compact and convex subset of E,
and let f : X ×X → Z be a continuous mapping such that

(i) f(x, y) is C-quasiconcave in y for each x ∈ X;

(ii) (minw)x∈X(maxw)y∈Xf(x, y) ⊂ f(x,X) − C for each x ∈ X.

Then

minw
x∈X

maxw
y∈X

f
(
x, y

) ⊂ max
x∈X

f(x, x) − C. (3.17)

Proof. Let z0 ∈ (minw)x∈X(maxw)y∈Xf(x, y), and for each x ∈ X, let T(x) = {yx ∈ X :
f(x, yx) ∈ z0 + C}. By condition (ii), T(x) is nonempty. And by condition (i), T(x) is convex.
Thus, by Theorem 3.6, the conclusion holds.

Remark 3.9. By Definition 2.7, the condition (i) can be replaced by “(i) f(x, y) is properly
C-quasiconcave in y for each x ∈ X.”

Example 3.10. Let E = R, X = [0, 1], Z = R2, C = {(x, y) ∈ R×R : |x| ≤ y}. Given a fixed x ∈ X,
for each y ∈ X, we define f : X ×X → Z by

f
(
x, y

)
=

⎧
⎨

⎩

(
x, y

)
, ify ≤ x

(
y, y

)
, ify ≥ x.

(3.18)

In Figure 1, the red line denotes the graph of f(x, y) for each x ∈ X.
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y

C

(1, 1)

X
X 1

Figure 1: The function’s graph.

Now we prove f satisfies the conditions of Corollary 3.8:

(i) f is a continuous.

Let B ⊂ Z is closed, let (xα, yα) ⊂ f−1(B) = {(x, y) : f(x, y) ∈ B}, and (xα, yα) →
(x′, y′). Then by the definition of f , we have

f
(
xα, yα

)
=

⎧
⎪⎨

⎪⎩

(
xα, yα

)
, ifyα ≤ xα

(
yα, yα

)
, ifyα ≥ xα.

(3.19)

Thus there exists a subnet yet denoted by (xα, yα), and yα ≤ xα, such that f(xα, yα) =
(xα, yα) → (x′, y′) ∈ B since B is closed. Hence, y′ ≤ x′, and f(x′, y′) = (x′, y′) ∈ B ⇒
(x′, y′) ∈ f−1(B). Therefore, f−1(B) is closed.

(ii) From Figure 1, we can check that f(x, y) is properly C-quasiconcave in y for each
x ∈ X.

(iii) From Figure 1, we can check that (minw)x∈X(maxw)y∈Xf(x, y) = {(x, x) : x ∈
[0, 1]} ⊂ (1, 1) − C ⊂ maxwf(x,X) = {(y, y) : y ∈ [x, 1]} − C for each x ∈ X.
Thus, (minw)x∈X(maxw)y∈Xf(x, y) ⊂ maxwf(x,X) − C for each x ∈ X.

Finally, from Figure 1, we can check that (minw)x∈X(maxw)y∈Xf(x, y) = {(x, x) : x ∈
[0, 1]} ⊂ (1, 1) − C = maxx∈Xf(x, x) − C, that is, Corollary 3.8 holds.
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