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1. Introduction

In 1940, Ulam [1] gave a wide ranging talk before the mathematics club of the University of
Wisconsin in which he discussed a number of important unsolved problems. Among those
was the question concerning the stability of group homomorphisms: let G1 be a group and let G2

be a metric group with the metric d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a function
h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a
homomorphismH : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1?

The case of approximately additive functions was solved by Hyers [2] under the as-
sumption that G1 and G2 are Banach spaces. Indeed, he proved that each solution of the in-
equality ‖f(x + y) − f(x) − f(y)‖ ≤ ε, for all x and y, can be approximated by an exact so-
lution, say an additive function. Later, the result of Hyers was significantly generalized for
additive mappings by Aoki [3] (see also [4]) and for linear mappings by Rassias [5]. It should
be remarked that we can find in the books [6–8] a lot of references concerning the stability of
functional equations (see also [9–11]).

Recently, Jung and Sahoo [12] proved the generalized Hyers-Ulam stability of the func-
tional equation f(

√
r2 + 1) = f(r)+arctan(1/r)which is closely related to the square root spiral,

for the case that f(1) = 0 and f(r) is monotone increasing for r > 0 (see also [13, 14]).
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In 2003, Cădariu and Radu [15] applied the fixed point method to the investigation of
Jensen’s functional equation (see [16–19]). Using such a clever idea, they could present a short
and simple proof for the stability of the Cauchy functional equation.

In [20], Gronau investigated the solutions of the Theodorus functional equation

f(x + 1) =
(
1 +

i√
x + 1

)
f(x), (1.1)

where i =
√−1. The function T : (−1,∞) → C defined by

T(x) =
∞∏
k=1

1 + i/
√
k

1 + i/
√
x + k

(1.2)

is called the Theodorus function.

Theorem 1.1. The unique solution f : (−1,∞) → C of (1.1) satisfying the additional condition that

lim
n→∞

f(x + n)
f(n)

= 1 (1.3)

for all x ∈ (0, 1) is the Theodorus function.

Theorem 1.2. If f : (−1,∞) → C is a solution of (1.1) such that f(0) = 1, |f(x)| is monotonic and
arg(f(x)) is monotonic and continuous, then f is the Theodorus function.

Theorem 1.3. If f : (−1,∞) → C is a solution of (1.1) such that f(0) = 1, |f(x)| and arg(f(x)) are
monotonic and such that arg(f(n + 1)) = arg(f(n)) + arg (1 + i/

√
n + 1) for any n ∈ {0, 1, 2, . . .},

then f is the Theodorus function.

In this paper, wewill adopt the idea of Cădariu and Radu and apply a fixed pointmethod
for proving the Hyers-Ulam-Rassias stability of the Theodorus functional equation (1.1).

2. Preliminaries

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if and only if
d satisfies

(M1) d(x, y) = 0 if and only if x = y;

(M2) d(x, y) = d(y, x) for all x, y ∈ X;

(M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Note that the only substantial difference of the generalized metric from the metric is that the
range of generalized metric includes the infinity.

We now introduce one of fundamental results of fixed point theory. For the proof, refer
to [21].

Theorem 2.1. Let (X, d) be a generalized complete metric space. Assume that Λ : X → X is a strictly
contractive operator with the Lipschitz constant L < 1. If there exists a nonnegative integer k such that
d(Λk+1f,Λkf) < ∞ for some f ∈ X, then the following are true.
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(a) The sequence {Λnf} converges to a fixed point F of Λ;

(b) F is the unique fixed point of Λ in

X∗ =
{
g ∈ X | d(Λkf, g) < ∞}

; (2.1)

(c) If h ∈ X∗, then

d(h, F) ≤ 1
1 − L

d(Λh, h). (2.2)

3. Main results

In the following theorem, by using the idea of Cădariu and Radu (see [15, 16]), we will prove
the Hyers-Ulam-Rassias stability of the functional equation (1.1) for the spiral of Theodorus.

Theorem 3.1. Given a constant a > 0, suppose ϕ : [a,∞) → [0,∞) is a function and there exists a
constant L, 0 < L < 1, such that

ϕ(x + 1) +
1√
x + 1

ϕ(x) ≤ Lϕ(x) (3.1)

for all x ≥ a. If a function f : [a,∞) → C satisfies the inequality
∣∣∣∣f(x + 1) −

(
1 +

i√
x + 1

)
f(x)

∣∣∣∣ ≤ ϕ(x) (3.2)

for all x ≥ a, then there exists a unique solution F : [a,∞) → C of (1.1), which satisfies

∣∣F(x) − f(x)
∣∣ ≤ 1

1 − L
ϕ(x) (3.3)

for all x ≥ a. More precisely, F is defined by

F(x) = lim
n→∞

[
n∑

k=1

(−i)k
∑

1≤j1≤···≤jk≤n+1−k

(
k∏

m=1

1√
x + jm

)
f(x + n − k) + f(x + n)

]
(3.4)

for all x ≥ a.

Proof. We set X = {h | h : [a,∞) → C is a function} and introduce a generalized metric on X as
follows:

d(g, h) = inf
{
C ∈ [0,∞] | ∣∣g(x) − h(x)

∣∣ ≤ Cϕ(x), ∀x ≥ a
}
. (3.5)

First, we will verify that (X, d) is a complete space. Let {gn} be a Cauchy sequence in
(X, d). According to the definition of Cauchy sequences, there exists, for any given ε > 0,
a positive integer Nε such that d(gm, gn) ≤ ε for all m,n ≥ Nε. From the definition of the
generalized metric d, it follows that

∀ ε > 0 ∃Nε ∈ N ∀m,n ≥ Nε ∀x ≥ a : |gm(x) − gn(x)| ≤ εϕ(x). (3.6)
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If x ≥ a is fixed, (3.6) implies that {gn(x)} is a Cauchy sequence in (C, |·|). Since (C, |·|)
is complete, {gn(x)} converges in (C, |·|) for each x ≥ a. Hence we can define a function g :
[a,∞) → C by

g(x) = lim
n→∞

gn(x). (3.7)

If we let m increase to infinity, it follows from (3.6) that for any ε > 0, there exists a
positive integerNε with |gn(x)−g(x)| ≤ εϕ(x) for all n ≥ Nε and all x ≥ a, that is, for any ε > 0,
there exists a positive integerNε such that d(gn, g) ≤ ε for any n ≥ Nε. This fact leads us to the
conclusion that {gn} converges in (X, d). Hence (X, d) is a complete space (cf. the proof of [22,
Theorem 3.1] or [16, Theorem 2.5]).

We now define an operator Λ : X → X by

(Λh)(x) = h(x + 1) − i√
x + 1

h(x) (x ≥ a) (3.8)

for any h ∈ X. We assert that Λ is strictly contractive on X. Given g, h ∈ X, let C ∈ [0,∞] be an
arbitrary constant with d(g, h) ≤ C, that is,

|g(x) − h(x)| ≤ Cϕ(x) (3.9)

for all x ≥ a. It then follows from (3.1) and (3.8) that

∣∣(Λg)(x) − (Λh)(x)
∣∣ ≤ ∣∣g(x + 1) − h(x + 1)

∣∣ + 1√
x + 1

∣∣g(x) − h(x)
∣∣

≤ Cϕ(x + 1) +
C√
x + 1

ϕ(x)

≤ LCϕ(x)

(3.10)

for every x ≥ a, that is, d(Λg,Λh) ≤ LC. Hence we conclude that d(Λg,Λh) ≤ Ld(g, h), for any
g, h ∈ X.

Next, we assert that d(Λf, f) < ∞. In view of (3.2) and the definition of Λ, we get

∣∣(Λf)(x) − f(x)
∣∣ ≤ ϕ(x) (3.11)

for each x ≥ a, that is,

d(Λf, f) ≤ 1. (3.12)

By using mathematical induction, we now prove that

(Λnf)(x) =
n∑

k=1

(−i)k
∑

1≤j1≤···≤jk≤n+1−k

(
k∏

m=1

1√
x + jm

)
f(x + n − k) + f(x + n) (3.13)
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for all n ∈ N and all x ≥ a. Since f ∈ X, the definition (3.8) implies that (3.13) is true for n = 1.
Now, assume that (3.13) holds true for some n ≥ 1. It then follows from (3.8) and (3.13) that

(
Λn+1f

)
(x) =

(
Λnf

)
(x + 1) − i√

x + 1
(Λnf

)
(x)

=
(
Λnf

)
(x + 1) +

n∑
k=1

(−i)k+1
∑

1=j1≤···≤jk+1≤n+1−k

×
(

k+1∏
m=1

1√
x + jm

)
f(x + n − k) − i√

x + 1
f(x + n)

=
(
Λnf

)
(x + 1) +

n−1∑
k=1

(−i)k+1
∑

1=j1≤···≤jk+1≤n+1−k

×
(

k+1∏
m=1

1√
x + jm

)
f(x + n − k) + (−i)n+1

(
1√
x + 1

)n+1

f(x) − i√
x + 1

f(x + n)

=
n∑

k=1

(−i)k
∑

1≤j1≤···≤jk≤n+1−k

(
k∏

m=1

1√
x + (1 + jm)

)
f(x + 1 + n − k)

+ f(x + 1 + n) +
n∑

k=2

(−i)k
∑

1=j1≤···≤jk≤n+2−k

(
k∏

m=1

1√
x + jm

)
f(x + n + 1 − k)

− i√
x + 1

f(x + n) + (−i)n+1
(

1√
x + 1

)n+1

f(x)

=
n∑

k=1

(−i)k
∑

2≤j1≤···≤jk≤n+2−k

(
k∏

m=1

1√
x + jm

)
f(x + n + 1 − k)

+ f(x + n + 1) +
n∑

k=1

(−i)k
∑

1=j1≤···≤jk≤n+2−k

(
k∏

m=1

1√
x + jm

)
f(x + n + 1 − k)

+ (−i)n+1
∑

1≤j1≤···≤jn+1≤1

(
n+1∏
m=1

1√
x + jm

)
f(x)

=
n+1∑
k=1

(−i)k
∑

1≤j1≤···≤jk≤n+2−k

(
k∏

m=1

1√
x + jm

)
f(x+n+1−k)+ f(x+n +1),

(3.14)

which is the case when n is replaced by n + 1 in (3.13).
Considering (3.12), if we set k = 0 in Theorem 2.1, then Theorem 2.1(a) implies that

there exists a function F ∈ X, which is a fixed point of Λ, such that d(Λnf, F) → 0 as n → ∞.
Hence, we can choose a sequence {Cn} of positive numbers with Cn → 0 as n → ∞ such that
d(Λnf, F) ≤ Cn for each n ∈ N. In view of definition of d, we have

∣∣(Λnf
)
(x) − F(x)

∣∣ ≤ Cnϕ(x) (x ≥ a) (3.15)

for all n ∈ N. This implies the pointwise convergence of {(Λnf)(x)} to F(x) for every fixed
x ≥ a. Therefore, using (3.4), we can conclude that (3.4) is true.
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Moreover, because F is a fixed point of Λ, definition (3.8) implies that F is a solution to
(1.1).

Since k = 0 (see (3.12)) and f ∈ X∗ = {g ∈ X | d(f, g) < ∞} in Theorem 2.1, by
Theorem 2.1(c) and (3.12), we obtain

d(f, F) ≤ 1
1 − L

d(Λf, f) ≤ 1
1 − L

, (3.16)

that is, the inequality (3.3) is true for all x ≥ a.
Assume that inequality (3.3) is also satisfied with another function G : [a,∞) → C

which is a solution of (1.1). (As G is a solution of (1.1), G satisfies that G(x) = G(x + 1) −
(i/

√
x + 1)G(x) = (ΛG)(x) for all x ≥ a. In other words, G is a fixed point of Λ.) In view of

(3.3) with G and the definition of d, we know that

d(f,G) ≤ 1
1 − L

< ∞, (3.17)

that is, G ∈ X∗ = {g ∈ X | d(f, g) < ∞}. Thus, Theorem 2.1(b) implies that F = G. This proves
the uniqueness of F.

Indeed, Cădariu and Radu proved a general theorem concerning the Hyers-Ulam-
Rassias stability of a generalized equation for the square root spiral

f
(
p−1(p(x) + k)

)
= f(x) + h(x) (3.18)

(see [23, Theorem 3.1]).
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[16] L. Cădariu and V. Radu, “On the stability of the Cauchy functional equation: a fixed point approach,”
in Iteration Theory (ECIT ’02), vol. 346 of Grazer Mathematische Berichte, pp. 43–52, Karl-Franzens-Univ.,
Graz, 2004.

[17] V. Radu, “The fixed point alternative and the stability of functional equations,” Fixed Point Theory, vol.
4, no. 1, pp. 91–96, 2003.

[18] J. M. Rassias, “Alternative contraction principle and Ulam stability problem,” Mathematical Sciences
Research Journal, vol. 9, no. 7, pp. 190–199, 2005.

[19] J. M. Rassias, “Alternative contraction principle and alternative Jensen and Jensen type mappings,”
International Journal of Applied Mathematics & Statistics, vol. 4, no. M06, pp. 1–10, 2006.

[20] D. Gronau, “The spiral of Theodorus,” The American Mathematical Monthly, vol. 111, no. 3, pp. 230–237,
2004.

[21] J. B. Diaz and B. Margolis, “A fixed point theorem of the alternative, for contractions on a generalized
complete metric space,” Bulletin of the American Mathematical Society, vol. 74, pp. 305–309, 1968.

[22] S.-M. Jung and T.-S. Kim, “A fixed point approach to the stability of the cubic functional equation,”
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