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the domain of the mapping. The results given in this paper extend some previous theorems.
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1. Introduction

Let X be a real Banach space and K a nonempty closed subset of X. A mapping T : K→K is
said to be pseudocontractive (see, e.g., [1]) if

‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖(I − T)x − (I − T)y‖2 (1.1)

holds for all x, y ∈ K. T is said to be strictly pseudocontractive if, for all x, y ∈ K, there exists a
constant k ∈ [0, 1) such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k‖(I − T)x − (I − T)y‖2. (1.2)

Denote by Fix(T) = {x ∈ K : Tx = x} the set of fixed points of T . A map T : K→K is called
hemicontractive if Fix(T)/=∅ and for all x ∈ K, x∗ ∈ Fix(T), the following inequality holds:

‖Tx − x∗‖2 ≤ ‖x − x∗‖2 + ‖x − Tx‖2. (1.3)
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It is easy to see that the class of pseudocontractive mappings with fixed points is a subset of
the class of hemicontractions.

There are many papers in the literature dealing with the approximation of fixed points
for several classes of nonlinear mappings (see, e.g., [1–11], and the reference therein). In these
works, there are two iterative methods to be used to find a point in Fix(T). One is explicit and
one is implicit.

The explicit one is the following well-known Mann iteration.
Let K be a nonempty closed convex subset of X. For any x0 ∈ K, the sequence {xn} is

defined by

xn+1 =
(
1 − αn

)
xn + αnTxn, ∀n ≥ 0, (1.4)

where {αn} is a real sequence in [0, 1] satisfying some assumptions.
It has been applied tomany classes of nonlinearmappings to find a fixed point. However,

for hemicontractive mappings and strictly pseudocontractive mappings, the iteration process
of convergence is in general not strong (see a counterexample given by Chidume and
Mutangadura [3]). Most recently, Marino and Xu [6] proved that the Mann iterative sequence
{xn} converges weakly to a fixed point for strictly pseudocontractive mappings in a Hilbert
space, while the real sequence {αn} satisfying (i) k < αn < 1 and (ii)

∑∞
n=0(αn −k)(1−αn) = +∞.

In order to get strong convergence for fixed points of hemicontractive mappings and
strictly pseudocontractive mappings, the following Mann-type implicit iteration scheme is
introduced.

Let K be a nonempty closed convex subset of X with K +K ⊆ K. For any x0 ∈ K, the sequence
{xn} is generated by

xn = αnxn−1 +
(
1 − αn

)
Txn, ∀n ≥ 1, (I)

where {αn} is a real sequence in [0, 1] satisfying suitable conditions.
Recently, in the setting of a Hilbert space, Rafiq [12] proved that the Mann-type implicit

iterative sequence {xn} converges strongly to a fixed point for hemicontractive mappings,
under the assumption that the domain K of T is a compact convex subset of a Hilbert space,
and {αn} ⊂ [δ, 1 − δ] for some δ ∈ (0, 1).

In this paper, we will study the strong convergence of the generalized Mann-type
iteration scheme (see Definition 2.1) for hemicontractive and, respectively, pseudocontractive
mappings. As we will see, our theorems extend the corresponding results in [12] in four
aspects. (1) The space setting is a more general one: uniformly convex Banach space, which
could not be a Hilbert space. (2) The requirement of the compactness on the domain of the
mapping is dropped. (3) A single mapping is replaced by a family of mappings. (4) The
Mann-type implicit iteration is replaced by the generalized Mann iteration. Moreover, we give
answers to a question asked in [13].

2. Preliminaries and lemmas

Definition 2.1 (generalized Mann iteration). LetN ≥ 1 be a fixed integer,Λ := {1, 2, . . . ,N}, and
K a nonempty closed convex subset of X satisfying the condition K +K ⊆ K. Let {Ti : i ∈ Λ} :
K→K be a family of mappings. For each x0 ∈ K, the sequence {xn} is defined by

xn = anxn−1 + bnT[n]xn + cnun, ∀n ≥ 1, (II)
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where T[n] = TnmodN , {an}, {bn}, and {cn} are three sequences in [0, 1]with an + bn + cn = 1 and
{un} ⊂ K is bounded.

The modulus of convexity of X is the function δX : [0, 2]→[0, 1] defined by

δX(ε) = inf
{
1 −

∥
∥
∥
∥
1
2
(x + y)

∥
∥
∥
∥ : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
, 0 ≤ ε ≤ 2. (2.1)

X is called uniformly convex if and only if, for all 0 < ε ≤ 2 such that δX(ε) > 0. X is called
p-uniformly convex if there exists a constant a > 0, such that δX(ε) ≥ aεp. It is well known (see
[10]) that

Lp, lp, W1,p is

{
2-uniformly convex, if 1 < p ≤ 2,

p-uniformly convex, if p ≥ 2.

Let X be a Banach space, Y ⊂ X, and x ∈ X. Then, we denote d(x, Y ) := infy∈Y‖x − y‖.

Definition 2.2 (see [4]). Let f : [0,+∞)→[0,+∞) be a nondecreasing function with f(0) = 0 and
f(r) > 0, for all r ∈ (0,+∞).

(i) A mapping T : K→K with Fix(T)/=∅ is said to satisfy condition (A) on K if there is a
function f such that for all x ∈ K, ‖x − Tx‖ ≥ f(d(x,Fix(T))).

(ii) A finite family of mappings {Ti : i ∈ Λ} : K→K with F :=
⋂N

i=1Fix(Ti)/=∅ are said
to satisfy condition (B) if there exists a function f , such that max1≤i≤N{‖x − Tix‖} ≥
f(d(x, F)) holds for all x ∈ K.

Lemma 2.3 (see [8]). Let X be a real uniformly convex Banach space with the modulus of convexity of
power type p ≥ 2. Then, for all x, y in X and λ ∈ (0, 1), there exists a constant dp > 0 such that

∥∥λx + (1 − λ)y
∥∥p ≤ λ‖x‖p + (1 − λ)‖y‖p −wp(λ)dp‖x − y‖p, (2.2)

where wp(λ) = λp(1 − λ) + λ(1 − λ)p.

Remark 2.4. If p = 2 in the previous lemma, then we denote d2 := d.

Lemma 2.5. Let X be a real Banach space and J : X→2X
∗
the normalized duality mapping. Then for

any x, y in X and j(x + y) ∈ J(x + y), such that

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, j(x + y)

〉
. (2.3)

Lemma 2.6 (see [7]). Let {αn}, {βn}, and {γn} be three nonnegative real sequences, satisfying

αn+1 ≤
(
1 + βn

)
αn + γn, ∀n ≥ 1, (2.4)

with
∑∞

n=1βn < +∞ and
∑∞

n=1γn < +∞. Then, limn→∞αn exists. In addition, if {αn} has a subsequence
converging to zero, then limn→∞αn = 0.

Proposition 2.7. If T is a strict pseudocontraction, then T satisfies the Lipschitz condition

‖Tx − Ty‖ ≤ 1 +
√
k

1 −
√
k
‖x − y‖, ∀x, y ∈ K. (2.5)
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Proof. By the definition of the strict pseudocontraction, we have

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k
∥
∥(I − T)x − (I − T)y

∥
∥2 ≤ (‖x − y‖ +

√
k
∥
∥(I − T)x − (I − T)y

∥
∥)2.
(2.6)

A simple computation shows the conclusion.

3. Main results

Lemma 3.1. LetX be a uniformly convex Banach space with the convex modulus of power type p ≥ 2,K
a nonempty closed convex subset of X satisfyingK +K ⊆ K, and {Ti : i ∈ Λ} : K→K hemicontractive
mappings with

⋂N
i=1Fix(Ti)/=∅. Let {an}, {bn}, {cn}, {un}, and {xn} be the sequences in (II) and

(i)
∞∑

n=1

cn < +∞,

(ii)

⎧
⎪⎨

⎪⎩

ε ≤ bn ≤ 1 − ε, for some ε ∈ (0, 1), if d ≥ 1,

bn(1 − bn) ≥ ε, bn > 1 − d + ε, ε ∈
(
0,

d

2

)
, if d < 1,

∀n ≥ 1,

(3.1)

where d is the constant in Remark 2.4. Then,

(1) limn→∞‖xn − q‖ exists for all q ∈ F :=
⋂N

i=1Fix(Ti),

(2) limn→∞d(xn, F) exists,

(3) if Ti (i ∈ Λ) is continuous, then limn→∞‖xn − Tixn‖ = 0, for all i ∈ Λ.

Proof. (1) Let q ∈ F =
⋂N

i=1Fix(Ti). By the boundedness assumption on {un}, there exists a
constant M > 0, for any n ≥ 1, such that ‖un − q‖ ≤ M. From the definition of hemicontractive
mappings, we have

∥∥Tixn − q
∥∥2 ≤ ∥∥xn − q

∥∥2 +
∥∥xn − Tixn

∥∥2
, ∀i ∈ Λ. (3.2)

Using Lemmas 2.3, 2.5, and (3.2), we obtain

∥∥xn − q
∥∥2 =

∥∥(1 − bn
)(
xn−1 − q

)
+ bn

(
T[n]xn − q

)
+ cn

(
un − xn−1

)∥∥2

≤ ∥∥(1 − bn
)(
xn−1 − q

)
+ bn

(
T[n]xn − q

)∥∥2 + 2cn
〈
un − xn−1, j

(
xn − q

)〉

≤ (
1 − bn

)∥∥xn−1 − q
∥∥2 + bn

∥∥T[n]xn − q
∥∥2 − bn

(
1 − bn

)
d
∥∥xn−1 − T[n]xn

∥∥2

+ 2cn
(∥∥un − q

∥∥ +
∥∥xn−1 − q

∥∥)∥∥xn − q
∥∥

≤ (
1 − bn

)∥∥xn−1 − q
∥∥2 + bn

∥∥xn − q
∥∥2 + bn

∥∥xn − T[n]xn

∥∥2

− bn
(
1 − bn

)
d
∥∥xn−1 − T[n]xn

∥∥2 + 2cnM

+ 2cnM
∥∥xn − q

∥∥2 + cn
∥∥xn−1 − q

∥∥2 + cn
∥∥xn − q

∥∥2
.

(3.3)
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Hence,
(
an − 2cnM

)∥∥xn − q
∥
∥2 ≤ (

an + 2cn
)∥∥xn−1 − q

∥
∥2 + bn

∥
∥xn − T[n]xn

∥
∥2

− bn
(
1 − bn

)
d
∥∥xn−1 − T[n]xn

∥∥2 + 2cnM.
(3.4)

It follows from (II) and Lemma 2.5 that
∥
∥xn − T[n]xn

∥
∥2 =

∥
∥(an + cn

)(
xn−1 − T[n]xn

)
+ cn

(
un − xn−1

)∥∥2

≤ (
1 − bn

)2∥∥xn−1 − T[n]xn

∥∥2 + 2cn
〈
un − xn−1, j

(
xn − T[n]xn

)〉

≤ (
1 − bn

)2∥∥xn−1 − T[n]xn

∥
∥2 + 2cnM2 + 2cn

∥
∥xn−1 − q

∥
∥2 + cn

∥
∥xn − T[n]xn

∥
∥2
.

(3.5)

By the condition
∑∞

n=1cn < +∞, we may assume that

1
1 − cn

≤ 1 + 2cn, ∀n ≥ 1. (3.6)

Therefore,

∥
∥xn − T[n]xn

∥
∥2 ≤

(
1 − bn

)2

1 − cn

∥
∥xn−1 − T[n]xn

∥
∥2 + 2M2cn

(
1 + 2cn

)
+ 2cn

(
1 + 2cn

)∥∥xn−1 − q
∥
∥2
.

(3.7)

Substituting (3.7) into (3.4), we get

(
an − 2cnM

)∥∥xn − q
∥∥2 ≤ [

an + 2cn + 2bncn
(
1 + 2cn

)]∥∥xn−1 − q
∥∥2 +

bn(1 − bn)
2

1 − cn

∥∥xn−1 − T[n]xn

∥∥2

− bn
(
1 − bn

)
d
∥∥xn−1 − T[n]xn

∥∥2 + 2cnM + 2cnbn
(
1 + 2cn

)
M2

=
[
an + 2cn + 2bncn

(
1 + 2cn

)]∥∥xn−1 − q
∥∥2 − bn

(
1 − bn

)
(
d − 1 − bn

1 − cn

)

× ∥∥xn−1 − T[n]xn

∥∥2 + 2cnM + 2cnbn
(
1 + 2cn

)
M2.

(3.8)

Assumptions (i) and (ii) imply that there exists a positive integer N1 such that for every n >
N1,

an − 2cnM ≥ η > 0, d − 1 − bn
1 − cn

≥ ζ > 0. (3.9)

Hence, for all n > N1,

∥∥xn − q
∥∥2 ≤

{
1 +

2
[
M + 1 + bn

(
1 + 2cn

)]
cn

an − 2cnM

}∥∥xn−1 − q
∥∥2

− bn
(
1 − bn

)

an − 2cnM

[
d − 1 − bn

1 − cn

]∥∥xn−1 − T[n]xn

∥∥2 +
2M

[
bn
(
1 + 2cn

)
M + 1

]
cn

an − 2cnM

=
(
1 + λn

)∥∥xn−1 − q
∥∥2 − σn

∥∥xn−1 − T[n]xn

∥∥2 + δn,

(3.10)
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where

λn = 2
[
M + 1 + bn

(
1 + 2cn

)]
cnη

−1,

σn =
bn
(
1 − bn

)

an − 2cnM

[
d − 1 − bn

1 − cn

]
,

δn = 2M
[
bn
(
1 + 2cn

)
M + 1

]
cnη

−1.

(3.11)

From (3.9) and conditions (i) and (ii), it follows that

∞∑

n=1

λn < +∞,
∞∑

n=1

δn < +∞, σn ≥ σ > 0. (3.12)

By Lemma 2.6, we see that limn→+∞‖xn − q‖ exists and the sequence {‖xn − q‖} is bounded.
(2) It is easy to verify that limn→∞d(xn, F) exists.
(3) By the boundedness of {‖xn − q‖}, there exists a constantM1 > 0 such that ‖xn − q‖ ≤

M1, for all n ≥ 1. From (3.10), we get, for n > N1,

σ
∥∥xn−1 − T[n]xn

∥∥2 ≤ ∥∥xn−1 − q
∥∥2 − ∥∥xn − q

∥∥2 + λnM1 + δn, (3.13)

which implies

σ
∞∑

n=N1

∥∥xn−1 − T[n]xn

∥∥2 ≤
∞∑

n=N1

(∥∥xn−1 − q
∥∥2 − ∥∥xn − q

∥∥2) +
∞∑

n=N1

(
λnM1 + δn

)
< +∞. (3.14)

Thus,

∞∑

n=1

∥
∥xn−1 − T[n]xn

∥
∥2

< +∞. (3.15)

It implies that

lim
n→∞

∥∥xn−1 − T[n]xn

∥∥ = 0. (3.16)

Therefore, by (3.7), we have

lim
n→∞

∥∥xn − T[n]xn

∥∥ = 0. (3.17)

Using (II), we obtain

∥
∥xn − xn−1

∥
∥ ≤ bn

an

∥
∥xn−1 − T[n]xn

∥
∥ +

cn
an

∥
∥un − xn−1

∥
∥ −→ 0, n −→ ∞,

∥∥xn+i − xn

∥∥ −→ 0, n −→ ∞, i ∈ Λ.

(3.18)

By a combination with the continuity of Ti (i ∈ Λ), we get
∥∥xn − T[n+i]xn‖ ≤ ∥∥xn − xn+i

∥∥ +
∥∥xn+i − T[n+i]xn+i

∥∥ +
∥∥T[n+i]xn+i − T[n+i]xn

∥∥ −→ 0 (n −→ ∞).
(3.19)
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It is clear that for each l ∈ Λ, there exists i ∈ Λ such that l = (n + i)modN. Consequently,

lim
n→∞

∥
∥xn − Tlxn

∥
∥ = lim

n→∞
∥
∥xn − T[n+i]xn

∥
∥ = 0. (3.20)

This completes the proof.

Theorem 3.2. Let the assumptions of Lemma 3.1 hold, and let Ti (i ∈ Λ) be continuous. Then, {xn}
converges strongly to a common fixed point of {Ti : i ∈ Λ} if and only if lim infn→∞d(xn, F) = 0.

Proof. The necessity is obvious.
Now, we prove the sufficiency. Since lim infn→∞d(xn, F) = 0, it follows from Lemma 3.1

that limn→∞d(xn, F) = 0.
For any q ∈ F, we have

∥∥xn − xm

∥∥ ≤ ∥∥xn − q
∥∥ +

∥∥xm − q
∥∥. (3.21)

Hence, we get

∥∥xn − xm

∥∥ ≤ inf
q∈F

{∥∥xn − q
∥∥ +

∥∥xm − q
∥∥} = d

(
xn, F

)
+ d

(
xm, F

) −→ 0, n −→ ∞, m −→ ∞.

(3.22)

So, {xn} is a Cauchy sequence in K. By the closedness of K, we get that the sequence {xn}
converges strongly to x∗ ∈ K. Let a sequence {qn} ∈ Fix(Ti), for some i ∈ Λ, be such that {qn}
converges strongly to q. By the continuity of Ti (i ∈ Λ), we obtain

∥∥q − Tiq
∥∥ ≤ ∥∥q − qn

∥∥ +
∥∥qn − Tiq

∥∥ =
∥∥q − qn

∥∥ +
∥∥Tiqn − Tiq

∥∥ −→ 0, n −→ ∞. (3.23)

Therefore, q ∈ F(Ti). This implies that F(Ti) is closed. Therefore, F :=
⋂N

i=1Fix(Ti) is closed. By
limn→∞d(xn, F) = 0, we get x∗ ∈ F. This completes the proof.

Theorem 3.3. Let the assumptions of Lemma 3.1 hold. Let Ti (i ∈ Λ) be continuous and {Ti : i ∈ Λ}
satisfy condition (B). Then, {xn} converges strongly to a common fixed point of {Ti : i ∈ Λ}.

Proof. Since {Ti : i ∈ Λ} satisfies condition (B), and limn→∞‖xn − Tixn‖ = 0 for each i ∈ Λ, it
follows from the existence of limn→∞d(xn, F) that limn→∞d(xn, F) = 0. Applying the similar
arguments as in the proof of Theorem 3.2, we conclude that {xn} converges strongly to a
common fixed point of {Ti : i ∈ Λ}. This completes the proof.

As a direct consequence of Theorem 3.3, we get the following result.

Corollary 3.4 (see [12, Theorem 3]). Let H be a real Hilbert space, K a nonempty closed convex
subset ofH satisfyingK +K ⊆ K, and T : K→K continuous hemicontractive mapping which satisfies
condition (A). Let {αn} be a real sequence in (0, 1) with

∑∞
n=1(1 − αn)

2 = +∞. For any x0 ∈ K, the
sequence {xn} is defined by

xn = αnxn−1 +
(
1 − αn

)
Txn, n ≥ 1. (3.24)

Then, {xn} converges strongly to a fixed point of T .
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Proof. Employing the similar proof method of Lemma 3.1, we obtain by (3.10)

∥∥xn − q
∥∥ ≤ ∥∥xn−1 − q

∥∥2 − (
1 − αn

)2∥∥xn−1 − Txn

∥∥2
. (3.25)

This implies

∞∑

n=1

(
1 − αn

)2∥∥xn−1 − Txn

∥∥2 ≤ ∥∥x0 − q
∥∥2

< +∞. (3.26)

By
∑∞

n=1(1 − αn)
2 = +∞, we have lim infn→∞‖xn−1 − Txn‖ = 0. Equation (3.7) implies that

lim infn→∞‖xn − Txn‖ = 0. Since T satisfies condition (A) and the limit limn→∞d(xn, F) exists,
we get limn→∞d(xn, F) = 0. The rest of the proof follows now directly from Theorem 3.2. This
completes the proof.

Remark 3.5. Theorems 3.2 and 3.3 extend [12, Theorem 3] essentially since the following hold.

(i) Hilbert spaces are extended to uniformly convex Banach spaces.

(ii) The requirement of compactness on domain D(T) on [12, Theorem 3] is dropped.

(iii) A single mapping is replaced by a family of mappings.

(iv) The Mann-type implicit iteration is replaced by the generalized Mann iteration. So
the restrictions of {αn} with {αn} ⊂ [δ, 1 − δ] for some δ ∈ (0, 1) are relaxed to∑∞

n=1(1 − αn)
2 = +∞. The error term is also considered in the iteration (II).

Moreover, ifK +K ⊆ K, then {xn} is well defined by (II). Hence, Theorems 3.2 and 3.3 are also
answers to the question proposed by Qing [13].

Theorem 3.6. Let X and K be as the assumptions of Lemma 3.1. Let {Ti : i ∈ Λ} : K→K be strictly
pseudocontractive mappings with

⋂N
i=1Fix(Ti) being nonempty. Let {an}, {bn}, {cn}, {un}, and {xn}

be the sequences in (II) and

(i)
∞∑

n=1

cn < +∞,

(ii)

⎧
⎪⎪⎨

⎪⎪⎩

ε ≤ bn ≤ 1 − ε, for some ε ∈ (0, 1), if d ≥ k,

bn − b2n ≥ ε, bn > 1 − d

k
+ ε, for some ε ∈

(

0,
√

1 − d

k
+
d

k
− 1

)

, if k /= 0, d < k,

(3.27)

where d is the constant in Remark 2.4. Then,

(1) {xn} converges strongly to a common fixed point of {Ti : i ∈ Λ} if and only if
lim infn→∞d(xn, F) = 0.

(2) If {Ti : i ∈ Λ} satisfies condition ((B)) , then {xn} converges strongly to a common fixed point
of {Ti : i ∈ Λ}.
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Remark 3.7. Theorem 3.6 extends the corresponding result [6, Theorem 3.1].
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