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1. Introduction

In 1940, Ulam [1] gave a wide ranging talk before the Mathematics Club of the University of
Wisconsin in which he discussed a number of important unsolved problems. Among those was
the question concerning the stability of group homomorphisms.

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there
exist a δ > 0 such that if a function h : G1→G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all
x, y ∈ G1, then there exists a homomorphismH : G1→G2 with d(h(x),H(x)) < ε for all x ∈ G1?

The case of approximately additive functions was solved by Hyers [2] under the
assumption that G1 and G2 are Banach spaces. Indeed, he proved that each solution of the
inequality ‖f(x+y)−f(x)−f(y)‖ ≤ ε, for all x and y, can be approximated by an exact solution,
say an additive function. Rassias [3] attempted to weaken the condition for the bound of the
norm of the Cauchy difference as follows:

∥
∥f(x + y) − f(x) − f(y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p), (1.1)

and generalized the result of Hyers. Since then, the stability problems for several functional
equations have been extensively investigated.
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The terminology Hyers-Ulam-Rassias stability originates from these historical back-
grounds. The terminology can also be applied to the case of other functional equations. For
more detailed definitions of such terminologies, we can refer to [4–9].

Let E1 and E2 be real vector spaces. If an additive function σ : E1→E1 satisfies σ(σ(x)) =
x for all x ∈ E1, then σ is called an involution of E1 (see [10, 11]). For a given involution
σ : E1→E1, the functional equation

f(x + y) + f
(

x + σ(y)
)

= 2f(x) + 2f(y) (1.2)

is called the quadratic functional equation with involution. According to [11, Corollary 8],
a function f : E1→E2 is a solution of (1.2) if and only if there exists an additive function
A : E1→E2 and a biadditive symmetric function B : E1 × E1 →E2 such that A(σ(x)) = A(x),
B(σ(x), y) = −B(x, y) and f(x) = B(x, x) +A(x) for all x ∈ E1.

Indeed, if we set σ = I in (1.2), where I : E1→E1 denotes the identity function, then (1.2)
reduces to the additive functional equation

f(x + y) = f(x) + f(y). (1.3)

On the other hand, if σ = −I in (1.2), then (1.2) is transformed into the quadratic functional
equation

f(x + y) + f(x − y) = 2f(x) + 2f(y). (1.4)

Recently, Belaid et al. have proved the Hyers-Ulam-Rassias stability of the quadratic
functional equation with involution (1.2) (see [10]).

In this paper, we will apply the fixed point method to prove the Hyers-Ulam-Rassias
stability of the functional equation (1.2) for a large class of functions from a vector space into
a complete β-normed space. We remark that Isac and Rassias [12] were the first to apply the
Hyers-Ulam-Rassias stability approach for the proof of new fixed point theorems.

2. Preliminaries

Let X be a set. A function d : X × X→ [0,∞] is called a generalized metric on X if and only if
d satisfies

(M1) d(x, y) = 0, if and only if x = y;

(M2) d(x, y) = d(y, x), for all x, y ∈ X;

(M3) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

Note that the only substantial difference of the generalized metric from the metric is that the
range of generalized metric includes the infinity.

We now introduce one of fundamental results of fixed point theory. For the proof, refer to
[13]. For an extensive theory of fixed point theorems and other nonlinear methods, the reader
is referred to the book of Hyers et al. [14].

Theorem 2.1. Let (X, d) be a generalized complete metric space. Assume that Λ : X→X is a strictly
contractive operator with the Lipschitz constant 0 < L < 1. If there exists a nonnegative integer k such
that d(Λk+1x,Λkx) < ∞ for some x ∈ X, then the followings are true:
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(a) the sequence {Λnx} converges to a fixed point x∗ of Λ;

(b) x∗ is the unique fixed point of Λ in

X∗ =
{

y ∈ X : d
(

Λkx, y
)

< ∞}

; (2.1)

(c) if y ∈ X∗, then

d
(

y, x∗) ≤ 1
1 − L

d(Λy, y). (2.2)

Throughout this paper, we fix a real number β with 0 < β ≤ 1 and let K denote either R
or C. Suppose E is a vector space over K. A function ‖·‖β : E→ [0,∞) is called a β-norm if and
only if it satisfies

(N1) ‖x‖β = 0, if and only if x = 0;

(N2) ‖λx‖β = |λ|β‖x‖β, for all λ ∈ K and all x ∈ E;

(N3) ‖x + y‖β ≤ ‖x‖β + ‖y‖β, for all x, y ∈ E.

Recently, Cădariu and Radu [15] applied the fixed point method to the investigation of
the Cauchy additive functional equation (see [16, 17]). Using such a clever idea, they could
present a short, simple proof for the Hyers-Ulam stability of Cauchy and Jensen functional
equations.

3. Main results

In this section, by using an idea of Cădariu and Radu (see [15, 16]), we will prove the Hyers-
Ulam-Rassias stability of the quadratic functional equation with involution (1.2).

Theorem 3.1. Let E1 be a vector space overK and let E2 be a complete β-normed space overK, where β
is a fixed real number with 0 < β ≤ 1. Suppose a function ϕ : E1 ×E1 → [0,∞) is given and there exists
a constant L, 0 < L < 1, such that

ϕ(2x, 2y) ≤ 4β

2
Lϕ(x, y),

ϕ
(

x + σ(x), y + σ(y)
) ≤ 4β

2
Lϕ(x, y)

(3.1)

for all x, y ∈ E1. Furthermore, let f : E1→E2 be a function satisfying the inequality

∥
∥f(x + y) + f

(

x + σ(y)
) − 2f(x) − 2f(y)

∥
∥
β ≤ ϕ(x, y) (3.2)

for all x, y ∈ E1, where σ : E1 →E1 is an involution of E1. Then there exists a unique solution T :
E1→E2 of (1.2) such that

∥
∥f(x) − T(x)

∥
∥
β ≤

1
4β

1
1 − L

ϕ(x, x) (3.3)

for all x ∈ E1.
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Proof. First, let us define X to be the set of all functions h : E1→E2 and introduce a generalized
metric on X as follows:

d(g, h) = inf
{

C ∈ [0,∞] :
∥
∥g(x) − h(x)

∥
∥
β ≤ Cϕ(x, x) ∀x ∈ E1

}

. (3.4)

Let {fn} be a Cauchy sequence in (X, d). According to the definition of Cauchy
sequences, there exists, for any given ε > 0, a positive integer Nε such that d(fm, fn) ≤ ε
for all m,n ≥ Nε. By considering the definition of the generalized metric d, we see that

∀ ε > 0 ∃Nε ∈ N ∀m,n ≥ Nε ∀x ∈ E1 :
∥
∥fm(x) − fn(x)

∥
∥
β ≤ εϕ(x, x). (3.5)

If x is any given point of E1, (3.5) implies that {fn(x)} is a Cauchy sequence in E2. Since
E2 is complete, {fn(x)} converges in E2 for each x ∈ E1. Hence, we can define a function
f : E1→E2 by

f(x) = lim
n→∞

fn(x) (3.6)

for any x ∈ E1.
If we let m increase to infinity, it follows from (3.5) that for any ε > 0, there exists a

positive integer Nε with ‖fn(x) − f(x)‖β ≤ εϕ(x, x) for all n ≥ Nε and for all x ∈ E1, that is,
for any ε > 0, there exists a positive integer Nε such that d(fn, f) ≤ ε for any n ≥ Nε. This fact
leads us to a conclusion that {fn} converges in (X, d). Hence, (X, d) is a complete space (cf. the
proof of [15, Theorem 2.5]).

We now define an operator Λ : X→X by

(Λh)(x) =
1
4
[

h(2x) + h
(

x + σ(x)
)]

(3.7)

for all x ∈ E1.
First, we assert that Λ is strictly contractive on X. Given g, h ∈ X, let C ∈ [0,∞] be an

arbitrary constant with d(g, h) ≤ C, that is,

∥
∥g(x) − h(x)

∥
∥
β ≤ Cϕ(x, x) (3.8)

for all x ∈ E1. If we replace y by x in (3.2), then we obtain

∥
∥f(2x) + f

(

x + σ(x)
) − 4f(x)

∥
∥
β ≤ ϕ(x, x) (3.9)

for every x ∈ E1. It follows from (3.1) and (3.8) that

∥
∥(Λg)(x) − (Λh)(x)

∥
∥
β =

1
4β

∥
∥g(2x) + g

(

x + σ(x)
) − h(2x) − h

(

x + σ(x)
)∥
∥
β

≤ 1
4β

∥
∥g(2x) − h(2x)

∥
∥
β +

1
4β

∥
∥g

(

x + σ(x)
) − h

(

x + σ(x)
)∥
∥
β

≤ C

4β
ϕ(2x, 2x) +

C

4β
ϕ
(

x + σ(x), x + σ(x)
) ≤ LCϕ(x, x)

(3.10)
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for all x ∈ E1, that is, d(Λg,Λh) ≤ LC. We hence conclude that d(Λg,Λh) ≤ Ld(g, h) for any
g, h ∈ X. Therefore, Λ is strictly contractive because L is a constant with 0 < L < 1.

Next, we assert that d(Λf, f) < ∞. If we put y = x in (3.2) and we divide both sides by
4β, then we get

∥
∥(Λf)(x) − f(x)

∥
∥
β =

∥
∥
∥
∥

1
4
[

f(2x) + f
(

x + σ(x)
)] − f(x)

∥
∥
∥
∥
β

≤ 1
4β

ϕ(x, x) (3.11)

for any x ∈ E1, that is,

d(Λf, f) ≤ 1
4β

< ∞. (3.12)

Now, it follows from Theorem 2.1(a) that there exists a function T : E1→E2 which is a
fixed point of Λ, such that d(Λnf, T)→ 0 as n→∞.

By mathematical induction, we can easily show (and hence we can omit to show) that

(

Λnf
)

(x) =
1
22n

[

f
(

2nx
)

+
(

2n − 1
)

f
(

2n−1x + 2n−1σ(x)
)]

(3.13)

for each n ∈ N.
Since d(Λnf, T)→ 0 as n→∞, there exists a sequence {Cn} such that Cn→ 0 as n→∞

and d(Λnf, T) ≤ Cn for every n ∈ N. Hence, it follows from the definition of d that

∥
∥
(

Λnf
)

(x) − T(x)
∥
∥
β ≤ Cnϕ(x, x) (3.14)

for all x ∈ E1. Thus, for each (fixed) x ∈ E1, we have

lim
n→∞

∥
∥
(

Λnf
)

(x) − T(x)
∥
∥
β = 0. (3.15)

Therefore

T(x) = lim
n→∞

1
22n

[

f
(

2nx
)

+
(

2n − 1
)

f
(

2n−1x + 2n−1σ(x)
)]

(3.16)

for all x ∈ E1. It follows from (3.1), (3.2), and (3.16) that

∥
∥T(x + y) + T

(

x + σ(y)
) − 2T(x) − 2T(y)

∥
∥
β

= lim
n→∞

1
22βn

∥
∥f

(

2nx + 2ny
)

+
(

2n − 1
)

f
(

2n−1(x + y) + 2n−1
(

σ(x) + σ(y)
))

+ f
(

2nx + 2nσ(y)
)

+
(

2n − 1
)

f
(

2n−1
(

x + σ(y)
)

+ 2n−1
(

σ(x) + y
))

− 2f
(

2nx
) − 2(2n − 1

)

f
(

2n−1
(

x + σ(x)
))

− 2f
(

2ny
) − 2(2n − 1

)

f
(

2n−1
(

y + σ(y)
))∥
∥
β,
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≤ lim
n→∞

1
4βn

∥
∥f

(

2nx + 2ny
)

+ f
(

2nx + 2nσ(y)
) − 2f

(

2nx
) − 2f

(

2ny
)∥
∥
β

+ lim
n→∞

(

2n − 1
)β

4βn
∥
∥f

(

2n−1
(

x + σ(x)
)

+ 2n−1
(

y + σ(y)
))

+ f
(

2n−1
(

x + σ(x)
)

+ 2n−1
(

y + σ(y)
))

− 2f
(

2n−1
(

x + σ(x)
)) − 2f

(

2n−1
(

y + σ(y)
))∥
∥
β

≤ lim
n→∞

1
4βn

ϕ
(

2nx, 2ny
)

+ lim
n→∞

(

2n − 1
)β

4βn
ϕ
(

2n−1
(

x + σ(x)
)

, 2n−1
(

y + σ(y)
))

≤ lim
n→∞

1
4βn

(
4β

2
L

)n

ϕ(x, y) + lim
n→∞

(

2n − 1
)β

4βn

(
4β

2
L

)n

ϕ(x, y) = 0

(3.17)

for all x, y ∈ E1, which implies that T is a solution of (1.2).
By Theorem 2.1(c) and by (3.12), we obtain

d(f, T) ≤ 1
1 − L

d(Λf, f) ≤ 1
4β(1 − L)

, (3.18)

that is, (3.3) is true for all x ∈ E1.
Assume that T1 : E1→E2 is another solution of (1.2) satisfying (3.3). (We know that T1

is a fixed point of Λ.) In view of (3.3) and the definition of d, we can conclude that (3.18) is
true with T1 in place of T . Due to Theorem 2.1(b), we get T = T1. This proves the uniqueness
of T .

In a similar way, by applying Theorem 2.1, we can prove the following theorem.

Theorem 3.2. Let E1 be a vector space over K and let E2 be a complete β-normed space over K, where
β is a fixed real number with 0 < β ≤ 1. Assume that a function ϕ : E1 ×E1→ [0,∞) is given and there
exists a constant L, 0 < L < 1, such that

ϕ(x, y) ≤ L

2·4β ϕ(2x, 2y),

ϕ
(

x + σ(x), y + σ(y)
) ≤ 2βϕ(2x, 2y)

(3.19)

for all x, y ∈ E1. Furthermore, let f : E1→E2 be a function satisfying (3.2) for all x, y ∈ E1, where
σ : E1→E1 is an involution of E1. Then there exists a unique solution T : E1 →E2 of (1.2) such that

∥
∥f(x) − T(x)

∥
∥
β ≤

1
4β

L

1 − L
ϕ(x, x) (3.20)

for all x ∈ E1.

Proof. We use the same definitions for X and d as in the proof of Theorem 3.1. Then, we can
similarly prove that (X, d) is complete. Let us define an operator Λ : X→X by

(Λh)(x) = 4
[

h

(
x

2

)

− 1
2
h

(
x

4
+
σ(x)
4

)]

(3.21)



S.-M. Jung and Z.-H. Lee 7

for all x ∈ E1. By induction, we can prove that

(

Λnf
)

(x) = 22n
[

f

(
x

2n

)

+
(

1
2n

− 1
)

f

(
x

2n+1
+
σ(x)
2n+1

)]

(3.22)

for all x ∈ E1 and for every n ∈ N.
We apply the same argument as in the proof of Theorem 3.1 and prove that Λ is a strictly

contractive operator. Given g, h ∈ X, let C ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ C,
that is, ‖g(x) − h(x)‖β ≤ Cϕ(x, x) for all x ∈ E1. It then follows from (3.19) and (3.21) that

∥
∥(Λg)(x) − (Λh)(x)

∥
∥
β

= 4β
∥
∥
∥
∥
g

(
x

2

)

− 1
2
g

(
x

4
+
σ(x)
4

)

− h

(
x

2

)

+
1
2
h

(
x

4
+
σ(x)
4

)∥
∥
∥
∥
β

≤ 4β
∥
∥
∥
∥
g

(
x

2

)

− h

(
x

2

)∥
∥
∥
∥
β

+ 2β
∥
∥
∥
∥
g

(
x

4
+
σ(x)
4

)

− h

(
x

4
+
σ(x)
4

)∥
∥
∥
∥
β

≤ 4βCϕ
(
x

2
,
x

2

)

+ 2βCϕ
(
x

4
+
σ(x)
4

,
x

4
+
σ(x)
4

)

≤ LCϕ(x, x)

(3.23)

for all x ∈ E1, that is, d(Λg,Λh) ≤ Ld(g, h).
If we replace x/2, respectively, x/4 + σ(x)/4, for x and y in (3.2), then we obtain

∥
∥
∥
∥
f(x) + f

(
x

2
+
σ(x)
2

)

− 4f
(
x

2

)∥
∥
∥
∥
β

≤ ϕ

(
x

2
,
x

2

)

, (3.24)

respectively,

∥
∥
∥
∥
f

(
x

2
+
σ(x)
2

)

− 2f
(
x

4
+
σ(x)
4

)∥
∥
∥
∥
β

≤ 1
2β

ϕ

(
x

4
+
σ(x)
4

,
x

4
+
σ(x)
4

)

. (3.25)

Therefore, it follows from (3.19), (3.21), (3.24), and (3.25) that

∥
∥f(x) − (Λf)(x)

∥
∥
β

=
∥
∥
∥
∥
f(x) − 4

[

f

(
x

2

)

− 1
2
f

(
x

4
+
σ(x)
4

)]∥
∥
∥
∥
β

≤
∥
∥
∥
∥
f(x) + f

(
x

2
+
σ(x)
2

)

− 4f
(
x

2

)∥
∥
∥
∥
β

+
∥
∥
∥
∥
2f

(
x

4
+
σ(x)
4

)

− f

(
x

2
+
σ(x)
2

)∥
∥
∥
∥
β

≤ ϕ

(
x

2
,
x

2

)

+
1
2β

ϕ

(
x

4
+
σ(x)
4

,
x

4
+
σ(x)
4

)

≤ 1
4β

Lϕ(x, x)

(3.26)

for all x ∈ E1. This means that

d(Λf, f) ≤ 1
4β

L. (3.27)
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According to Theorem 2.1(a) there exists a unique function T : E1→E2, which is a fixed
point of Λ, such that

T(x) = lim
n→∞

22n
[

f

(
x

2n

)

+
(

1
2n

− 1
)

f

(
x

2n+1
+
σ(x)
2n+1

)]

(3.28)

for all x ∈ E1. Analogously to the proof of Theorem 3.1, we can show that T is a solution of
(1.2).

Using Theorem 2.1(c) and (3.27), we get

d(f, T) ≤ 1
4β

L

1 − L
, (3.29)

which implies the validity of (3.20).

In the following corollaries, we will investigate some special cases of Theorems 3.1
and 3.2.

Corollary 3.3. Fix a nonnegative number p less than 1 and choose a constant β with (p + 1)/2 <
β ≤ 1. Let E1 be a normed space over K and let E2 be a complete β-normed space over K. If a function
f : E1→E2 satisfies

∥
∥f(x + y) + f

(

x + σ(y)
) − 2f(x) − 2f(y)

∥
∥
β ≤ ε

(‖x‖p + ‖y‖p) (3.30)

and ‖x + σ(x)‖p ≤ 2p‖x‖p for all x ∈ E1 and for some ε > 0, then there exists a unique solution
T : E1→E2 of (1.2) such that

∥
∥f(x) − T(x)

∥
∥
β ≤

2ε
4β − 2p+1

‖x‖p (3.31)

for any x ∈ E1.

Proof. If we set ϕ(x, y) = ε(‖x‖p + ‖y‖p) for all x, y ∈ E1 and if we set L = 2p+1/4β, then we have
0 < L < 1 and

ϕ
(

2x, 2y
)

= 2pε
(‖x‖p + ‖y‖p) =

4β

2
Lϕ(x, y) (3.32)

for all x, y ∈ E1. Furthermore, we get

ϕ
(

x + σ(x), y + σ(y)
) ≤ 4β

2
Lϕ(x, y) (3.33)

for any x, y ∈ E1.
According to Theorem 3.1, there exists a unique solution T : E1→E2 of (1.2) such that

(3.31) holds for every x ∈ E1.
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Remark 3.4. It may be remarked that if we set p = 0 and β = 1 in Corollary 3.3, then it reduces
to [10, Theorem 2.1].

If we set σ(x) = −x in Corollary 3.3, then ‖x + σ(x)‖p = ‖0‖p ≤ 2p‖x‖p is true for all
x ∈ E1. In this case, (3.30) reduces to

∥
∥f(x + y) + f(x − y) − 2f(x) − 2f(y)

∥
∥
β ≤ ε

(‖x‖p + ‖y‖p), (3.34)

and the quadratic function T is defined by

T(x) = lim
n→∞

1
22n

f
(

2nx
)

. (3.35)

For the case when σ(x) = −x and β = 1, Corollary 3.3 reduces to [10, Corollary 3.3].
If we let σ(x) = x in Corollary 3.3, then ‖x + σ(x)‖p= 2p‖x‖p holds for all x ∈ E1, (3.30)

reduces to

∥
∥f(x + y) − f(x) − f(y)

∥
∥
β ≤

ε

2β
(‖x‖p + ‖y‖p), (3.36)

and the additive function T is given by

T(x) = lim
n→∞

1
2n

f
(

2nx
)

. (3.37)

If we set σ(x) = x and β = 1, then the upper bound of (3.31) is smaller than that of [10, Corollary
3.2].

Corollary 3.5. Fix a number p larger than 1 and choose a constant β with 0 < β < (p − 1)/2. Let E1

be a normed space over K and let E2 be a complete β-normed space over K. If a function f : E1 →E2

satisfies (3.30) and ‖x + σ(x)‖p ≤ 2p+β‖x‖p for all x, y ∈ E1 and for some ε > 0, then there exists a
unique solution T : E1→E2 of (1.2) such that

∥
∥f(x) − T(x)

∥
∥
β ≤

2ε
2p−1 − 4β

‖x‖p (3.38)

for any x ∈ E1.

Proof. If we set ϕ(x, y) = ε(‖x‖p + ‖y‖p) for all x, y ∈ E1 and if we set L = 4β/2p−1, then we have
0 < L < 1 and

ϕ(x, y) = ε
(‖x‖p + ‖y‖p) =

L

2·4β ϕ
(

2x, 2y
)

(3.39)

for all x, y ∈ E1. Furthermore, we get

ϕ
(

x + σ(x), y + σ(y)
) ≤ 2βϕ

(

2x, 2y
)

(3.40)

for any x, y ∈ E1.
According to Theorem 3.2, there exists a unique solution T : E1→E2 of (1.2) such that

(3.38) holds for every x ∈ E1.
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Remark 3.6. If σ(x) = −x in Corollary 3.5, then ‖x + σ(x)‖p = ‖0‖p ≤ 2p+β‖x‖p is true for all
x ∈ E1. In this case, (3.30) reduces to

∥
∥f(x + y) + f(x − y) − 2f(x) − 2f(y)

∥
∥
β ≤ ε

(‖x‖p + ‖y‖p), (3.41)

and the quadratic function T is defined by

T(x) = lim
n→∞

22nf
(

x

2n

)

(3.42)

for all x ∈ E1. If we let σ(x) = −x, p > 3 and β = 1 in Corollary 3.5, then the upper bound of
(3.38) is smaller than that of [10, Corollary 4.3].

We cannot expect the Hyers-Ulam-Rassias stability for (3.41) when p = 2 and the range
space E2 of the relevant functions f is a Banach space (i.e., E2 is a complete 1-normed space)
(see [18]). However, if E2 is a complete β-normed space over K, where β is a fixed real number
with 0 < β < 1/2, then (3.41) is stable in the sense of Hyers, Ulam, and Rassias in spite of p = 2.

If we set σ(x) = x in Corollary 3.5, then ‖x + σ(x)‖p= 2p‖x‖p ≤ 2p+β‖x‖p for all x ∈ E1,
(3.30) reduces to

∥
∥f(x + y) − f(x) − f(y)

∥
∥
β ≤

ε

2β
(‖x‖p + ‖y‖p), (3.43)

and the additive function T is given by

T(x) = lim
n→∞

2nf
(

x

2n

)

. (3.44)

Unfortunately, if we set σ(x) = x, p > 3 and β = 1 in Corollary 3.5, then the upper bound of
(3.38) is larger than that of [10, Corollary 4.2].
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