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1. Introduction

Equilibrium problems theory provides us with a unified, natural, innovative, and general
framework to study a wide class of problems arising in finance, economics, network analysis,
transportation, elasticity, and optimization, which has been extended and generalized in
many directions using novel and innovative techniques; see [1–8]. Inspired and motivated
by the research and activities going in this fascinating area, we introduce and consider a
new class of equilibrium problems, which is known as the generalized mixed equilibrium
problems.

Let C be a nonempty closed convex subset of a real Hilbert spaceH and T : C → 2H a
multivalued mapping. Let ϕ : C × C → R be a real-valued function and Φ : H × C × C → R
an equilibrium-like function, that is,

Φ(w,u, v) + Φ(w,v, u) = 0, ∀(w,u, v) ∈ H × C × C. (1.1)

We consider the problem of finding u ∈ C and w ∈ T(u) such that

Φ(w,u, v) + ϕ(v, u) − ϕ(u, u) ≥ 0, ∀v ∈ C, (1.2)
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which is called the generalized mixed equilibrium problem (for short, GMEP). If T is a single-
valued mapping, then problem (1.2) is equivalent to finding u ∈ C such that

Φ
(
T(u), u, v

)
+ ϕ(v, u) − ϕ(u, u) ≥ 0, ∀v ∈ C. (1.3)

We denote Ω for the set of solutions of GMEP (1.2). This class is a quite general
and unifying one and includes several classes of equilibrium problems and variational
inequalities as special cases. In recent years, several numerical techniques including
projection, resolvent, and auxiliary principle have been developed and analyzed for solving
variational inequalities. It is well known that projection- and resolvent-type methods cannot
be extended for equilibrium problems. To overcome this drawback, one usually uses the
auxiliary principle technique. Glowinski et al. [9] have used this technique to study the
existence of a solution of mixed variational inequalities. The viscosity approximation method
is one of the important methods for approximation fixed points of nonexpansive type
mappings. It was first discussed by Moudafi [10]. Recently, Hirstoaga [11] and S. Takahashi
and W. Takahashi [12] applied viscosity approximation technique for finding a common
element of set of solutions of an equilibrium problem (EP) and set of fixed points of a
nonexpansive mapping. Very recently, Yao et al. [13] introduced and studied an iteration
process for finding a common element of the set of solutions of the EP and the set of common
fixed points of infinitely many nonexpansive mappings in H. Let {Tn}∞n=1 be a sequence of
nonexpansive mappings ofC into itself and let {λn}∞n=1 be a sequence of nonnegative numbers
in [0, 1]. For any n ≥ 1, define a mapping Sn of C into itself as follows:

Un,n+1 = I,

Un,n = λnTnUn,n+1 +
(
1 − λn

)
I,

Un,n−1 = λn−1Tn−1Un,n +
(
1 − λn−1

)
I,

...

Un,k = λkTkUn,k+1 +
(
1 − λk

)
I,

Un,k−1 = λk−1Tk−1Un,k +
(
1 − λk−1

)
I,

...

Un,2 = λ2T2Un,3 +
(
1 − λ2

)
I,

Sn = Un,1 = λ1T1Un,2 +
(
1 − λ1

)
I.

(1.4)

Such a mapping Sn is called the S-mapping generated by Tn, Tn−1, . . . , T1 and λn, λn−1, . . . , λ1,
see [14].

The purpose of this paper is to develop an iterative algorithm for finding a common
element of set of solutions of GMEP (1.2) and set of common fixed points of a sequence of
nonexpansive mappings in Hilbert spaces. The result presented in this paper improves and
extends the main result of S. Takahashi and W. Takahashi [12].
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2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, and let C be a closed
convex subset ofH. Then, for any x ∈ H, there exists a unique nearest point in C, denoted by
PC(x), such that

∥
∥x − PC(x)

∥
∥ ≤ ‖x − y‖, ∀y ∈ C. (2.1)

PC is called metric projection of H onto C. It is well known that PC is nonexpansive.
Furthermore, for x ∈ H and u ∈ C,

u = PC(x) ⇐⇒ 〈x − u, u − y〉 ≥ 0, ∀y ∈ C. (2.2)

We denote by F(T) the set of fixed points of a self-mapping T on C, that is, F(T) = {x ∈
C : Tx = x}. It is well known that if C ⊂ H is nonempty, bounded, closed, and convex and T
is nonexpansive, then F(T) is nonempty; see [15]. Let {Tn}∞n=1 be a sequence of nonexpansive
mappings of C into itself, where C is a nonempty closed convex subset of a real Hilbert space
H. Given a sequence {λn}∞n=1 in [0, 1], we define a sequence {Sn}∞n=1 of self-mappings on C by
(1.4). Then we have the following lemmas which are important to prove our results.

Lemma 2.1 (see [14]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Tn}∞n=1 be a sequence of nonexpansive mappings of C into itself such that

⋂∞
n=1F(Tn)/=∅, and let

{λn}∞n=1 be a sequence in (0, b] for some b ∈ (0, 1). Then, for every x ∈ C and k ∈ N the limit
limn→∞Un,kx exists.

Using Lemma 2.1, one can define mapping S of C into itself as follows:

Sx = lim
n→∞

Snx = lim
n→∞

Un,1x, (2.3)

for every x ∈ C. Such a mapping S is called the S-mapping generated by T1, T2, . . . and
λ1, λ2, . . . . Throughout this paper, we will assume that 0 < λn ≤ b < 1 for every n ≥ 1.
Since Sn is nonexpansive, S : C → C is also nonexpansive.

Lemma 2.2 (see [14]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Tn}∞n=1 be a sequence of nonexpansive mappings of C into itself such that

⋂∞
n=1F(Tn)/=∅, and let

{λn}∞n=1 be a sequence in (0, b] for some b ∈ (0, 1). Then, F(S) =
⋂∞

n=1F(Tn).

Let C be a convex subset of a real Hilbert spaceH and κ : C → R a Fréchet differential
function. Then κ is said to be η-convex strongly convex if there exists a constant μ > 0 such
that

κ(y) − κ(x) − 〈
κ′(x), η(y, x)

〉 ≥ μ

2
‖x − y‖2, ∀x, y ∈ C. (2.4)

If μ = 0, then κ is said to be η-convex. In particular, if η(y, x) = y − x for all y, x ∈ C, then κ is
said to be strongly convex.
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Let C be a nonempty subset of a real Hilbert spaceH. A bifunction ϕ(·, ·) : C ×C → R
is said to be skew-symmetric if

ϕ(u, v) + ϕ(v, u) − ϕ(u, u) − ϕ(v, v) ≤ 0, ∀u, v ∈ C. (2.5)

If the skew-symmetric bifunction ϕ(·, ·) is linear in both arguments, then

ϕ(u, u) ≥ 0, ∀u ∈ C. (2.6)

We denote⇀ for weak convergence and → for strong convergence. A function ψ : C×C → R
is called weakly sequentially continuous at (x0, y0) ∈ C × C, if ψ(xn, yn) → ψ(x0, y0) as
n → ∞ for each sequence {(xn, yn)} in C × C converging weakly to (x0, y0). The function
ψ(·, ·) is called weakly sequentially continuous onC×C if it is weakly sequentially continuous
at each point of C × C.

LetCB(X) denote the set of nonempty closed bounded subsets ofX. ForA,B ∈ CB(X),
define the Hausdorff metric H as follows:

H(A,B) = max
{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)
}
. (2.7)

Lemma 2.3 (see [16]). LetA,B ∈ CB(X) and a ∈ A. Then for � > 1, there must exist a point b ∈ B
such that d(a, b) ≤ �H(A,B).

Let C be a nonempty closed convex subset of a real Hilbert space H and T : C → 2H

a multivalued mapping. For x ∈ C, letw ∈ T(x). Let ϕ : C ×C → R be a real-valued function
satisfying the following:

(ϕ1) ϕ(·, ·) is skew symmetric;

(ϕ2) for each fixed y ∈ C, ϕ(·, y) is convex and upper semicontinuous;

(ϕ3) ϕ(·, ·) is weakly continuous on C × C.

Let κ : C → R be a differentiable functional with Fréchet derivative κ′(x) at x satisfying the
following:

(κ1) κ′ is sequentially continuous from the weak topology to the strong topology;

(κ2) κ′ is Lipschitz continuous with Lipschitz constant ν > 0.

Let η : C × C → H be a function satisfying the following:

(η1) η(x, y) + η(y, x) = 0 for all x, y ∈ C;

(η2) η(·, ·) is affine in the first coordinate variable;

(η3) for each fixed y ∈ C, x �→ η(y, x) is sequentially continuous from the weak topology
to the weak topology.

Let us consider the equilibrium-like functionΦ : H×C×C → Rwhich satisfies the following
conditions with respect to the multivalued mapping T : C → 2H :
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(Φ1) for each fixed v ∈ C, (w,u) �→ Φ(w,u, v) is an upper semicontinuous function
from H × C to R, that is, wn → w and un → u imply lim supn→∞Φ(wn, un, v) ≤
Φ(w,u, v);

(Φ2) for each fixed (w,v) ∈ H × C, u �→ Φ(w,u, v) is a concave function;

(Φ3) for each fixed (w,u) ∈ H × C, v �→ Φ(w,u, v) is a convex function.

Let r be a positive parameter. For a given element x ∈ C and wx ∈ T(x), consider the
following auxiliary problem for GMEP(1.2): find u ∈ C such that

Φ(wx, u, v) + ϕ(v, u) − ϕ(u, u) +
1
r

〈
κ′(u) − κ′(x), η(v, u)

〉 ≥ 0, ∀v ∈ C. (2.8)

It is easy to see that if u = x, then u is a solution of GMEP(1.2).

Lemma 2.4 (see [6]). Let C be a nonempty closed convex bounded subset of a real Hilbert space H
and ϕ : C ×C → R a real-valued function satisfying the conditions (ϕ1)–(ϕ3). Let T : C → 2H be a
multivalued mapping andΦ : H ×C×C → R the equilibrium-like function satisfying the conditions
(Φ1)–(Φ3). Assume that η : C×C → H is a Lipschitz function with Lipschitz constant λ > 0 which
satisfies the conditions (η1)–(η3). Let κ : C → R be an η-strongly convex function with constant
μ > 0 which satisfies the conditions (κ1) and (κ2). For each x ∈ C, letwx ∈ T(x). For r > 0, define a
mapping Tr : C → C by

Tr(x) =
{
u ∈ C : Φ(wx, u, v) + ϕ(v, u) − ϕ(u, u) +

1
r

〈
κ′(u) − κ′(x), η(v, u)

〉 ≥ 0, ∀v ∈ C

}
.

(2.9)

Then one has the following:

(a) the auxiliary problem (2.8) has a unique solution;

(b) Tr is single valued;

(c) if λν/μ and Φ(w1, Tr(x1), Tr(x2)) + Φ(w2, Tr(x2), Tr(x1)) ≤ 0 for all x1, x2 ∈ C and all
w1 ∈ T(x1), w2 ∈ T(x2), it follows that Tr is nonexpansive;

(d) F(Tr) = Ω;

(e) Ω is closed and convex.

We also need the following lemmas for our main results.

Lemma 2.5 (see [17]). Let {an}, {bn}, and {cn} be three sequences of nonnegative numbers such
that

an+1 ≤ bnan + cn, ∀n = 1, 2, . . . . (2.10)

If bn ≥ 1,
∑∞

n=1(bn − 1) < ∞, and
∑∞

n=1cn < ∞, then limn→∞an exists.

Lemma 2.6. Let {an} and {cn} be sequences of nonnegative numbers such that

an+1 ≤ Θan + cn, ∀n = 1, 2, . . . . (2.11)

If Θ ∈ (0, 1) and
∑∞

n=1cn < ∞, then limn→∞an = 0.
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Proof. It is easy to see that inequality (2.11) is equivalent to

an+1 ≤ Θbnan + cn, ∀n = 1, 2, . . . , (2.12)

where Θ ∈ (0, 1), bn = 1 and
∑∞

n=1cn < ∞. It follows that

an+1 ≤ bnan + cn ∀n = 1, 2, . . . . (2.13)

Note that Lemma 2.5 implies that limn→∞an exists. Suppose limn→∞an = d for some d > 0.
It is obvious that limn→∞cn = 0 and so inequality (2.12) implies that d ≤ Θd, which is a
contradiction. Thus, limn→∞an = d = 0. This completes the proof.

Lemma 2.7 (see [6]). Let {xn} be a sequence in a normed space (X, ‖·‖) such that
∥∥xn+1 − xn+2

∥∥ ≤ Θ
∥∥xn − xn+1

∥∥bn + cn, ∀n = 1, 2, . . . , (2.14)

where Θ ∈ (0, 1), and {bn} and {cn} are sequences satisfy the following conditions:

(i) bn ≥ 1 for all n = 1, 2, . . . and
∑∞

n=1(bn − 1) < ∞;

(ii) cn ≥ 0 for all n = 1, 2, . . . and
∑∞

n=1cn < ∞.

Then {xn} is a Cauchy sequence.

Lemma 2.8 (see [18]). Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − λn

)
an + λnσn + ξn, ∀n = 1, 2, . . . , (2.15)

where {λn}, {σn} and {ξn} are sequences of real numbers satisfying the following conditions:

(i) {λn} ⊂ [0, 1], limn→∞λn = 0 and
∑∞

n=1λn = ∞;

(ii) lim supn→∞σn ≤ 0;

(iii) ξn ≥ 0 for all n = 1, 2, . . . and
∑∞

n=1ξn < ∞.

Then, limn→∞an = 0.

3. Iterative algorithm and convergence theorem

Let C be a nonempty closed convex subset of a real Hilbert space H, T : C → CB(H) a
multivalued mapping, f : C → C a contraction mapping with constant α ∈ [0, 1), and
Sn : C → C an S-mapping generated by T1, T2, . . . and λ1, λ2, . . ., where sequence {Tn} is
nonexpansive. Let {αn} be a sequence in (0, 1) and {rn} a sequence in (0,∞). We can develop
Algorithm 3.1 for finding a common element of a set of fixed points of S-mapping Sn and a
set of solutions of GMEP(1.2).
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Algorithm 3.1. For given x1 ∈ C and w1 ∈ T(x1), there exist sequences {xn}, {un} in C and
{wn : wn ∈ T(xn)} in H such that for all n = 1, 2, . . .,

∥
∥wn −wn+1

∥
∥ ≤

(
1 +

1
n

)
H(

T
(
xn

)
, T

(
xn+1

))
;

Φ
(
wn, un, v

)
+ ϕ

(
v, un

) − ϕ
(
un, un

)
+

1
rn

〈
κ′(un

) − κ′(xn

)
, η
(
v, un

)〉 ≥ 0, ∀v ∈ C;

xn+1 = αnf
(
xn

)
+
(
1 − αn

)
Sn

(
un

)
.

(3.1)

We now prove the strong convergence of iterative sequence {xn}, {un}, and {wn}
generated by Algorithm 3.1.

Theorem 3.2. Let C be a nonempty closed convex bounded subset of a real Hilbert space H, T :
C → CB(H) a multivalued H-Lipschitz continuous mapping with constant L > 0, f : C → C a
contraction mapping with constant α ∈ [0, 1). Let ϕ : C×C → R be a real-valued function satisfying
the conditions (ϕ1)–(ϕ3) and let Φ : H × C × C → R be an equilibrium-like function satisfying
conditions (Φ1)–(Φ3) and (Φ4):

(Φ4) Φ(w, Tr(x), Ts(y)) + Φ(w̃, Ts(y), Tr(x)) ≤ −γ‖Tr(x) − Ts(y)‖2 for all x, y ∈ C and
r, s ∈ (0,∞), where γ > 0, w ∈ T(x) and w̃ ∈ T(y).

Assume that η : C × C → H is a Lipschitz function with Lipschitz constant λ > 0 which satisfies
the conditions (η1)∼(η3). Let κ : C → R be an η-strongly convex function with constant μ > 0
which satisfies conditions (κ1) and (κ2) with λν/μ ≤ 1. Let Sn : C → C be an S-mapping generated
by T1, T2, . . . and λ1, λ2, . . . and

⋂∞
n=1F(Tn) ∩Ω/=∅, where sequence {Tn} is nonexpansive. Let {xn},

{un} and {wn} be sequences generated by Algorithm 3.1, where {αn} is a sequence in (0, 1) and {rn}
in (0,∞) satisfying the following conditions:

(C1) limn→∞αn = 0,
∑∞

n=1αn = ∞ and
∑∞

n=1|αn − αn+1| < ∞;

(C2) lim infn→∞rn > 0 and
∑∞

n=1|rn − rn+1| < ∞;

(C3)
∑∞

n=1(1 − αn)εn < ∞ where εn = supx∈C‖Sn(x) − Sn+1(x)‖.
Then the sequences {xn} and {un} converge strongly to x∗ ∈ ⋂∞

n=1F(Tn) ∩ Ω, and {wn} converges
strongly to w∗ ∈ T(x∗), where x∗ = P∩∞

n=1F(Tn)∩Ωf(x
∗).

Proof. It is easy to see from (Φ4) that

Φ
(
w, Tr(x), Ts(y)

)
+ Φ

(
w̃, Ts(y), Tr(x)

) ≤ 0 (3.2)

for all x, y ∈ C and r, s ∈ (0,∞), where γ > 0, w ∈ T(x), and w̃ ∈ T(y). All the conclusions
(a)–(e) of Lemma 2.4 hold.

Let Q = P∩∞
n=1F(Tn)∩Ω. Then Qf is a contraction of C into itself. In fact,

∥∥Qf(x) −Qf(y)
∥∥ ≤ ∥∥f(x) − f(y)

∥∥ < α‖x − y‖, ∀x, y ∈ C. (3.3)

Hence there exists a unique element q ∈ C such that q = Qf(q). Noting that f(q) ∈ C and
Qf(q) ∈ ⋂∞

n=1F(Tn) ∩Ω, we get that q ∈ ⋂∞
n=1F(Tn) ∩Ω.
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Now, we prove that ‖xn − xn+1‖ → 0 and ‖un − un+1‖ → 0 as n → ∞. Observe that

∥
∥xn+1 − xn

∥
∥ =

∥
∥αnf

(
xn

)
+
(
1 − αn

)
Sn

(
un

) − αn−1f
(
xn−1

) − (
1 − αn−1

)
Sn−1

(
un−1

)∥∥

=
∥
∥αnf

(
xn

) − αnf
(
xn−1

)
+ αnf

(
xn−1

) − αn−1f
(
xn−1

)

+
(
1 − αn

)
Sn

(
un

) − (
1 − αn

)
Sn−1

(
un−1

)

+
(
1 − αn

)
Sn−1

(
un−1

) − (
1 − αn−1

)
Sn−1

(
un−1

)∥∥

≤ αn

∥
∥f

(
xn

) − f
(
xn−1

)∥∥ +
∣
∣αn − αn−1

∣
∣(
∥
∥f

(
xn−1

)∥∥ +
∥
∥Sn−1

(
un−1

)∥∥)

+
(
1 − αn

)∥∥Sn

(
un

) − Sn−1
(
un−1

)∥∥

≤ ααn

∥
∥xn − xn−1

∥
∥ + 2

∣
∣αn − αn−1

∣
∣diam(C)

+
(
1 − αn

)(∥∥Sn

(
un

) − Sn−1
(
un

)∥∥ +
∥∥Sn−1

(
un

) − Sn−1
(
un−1

)∥∥)

≤ ααn

∥∥xn − xn−1
∥∥ + 2

∣∣αn − αn−1
∣∣diam(C) +

(
1 − αn

)(∥∥un − un−1
∥∥ + εn−1

)
.

(3.4)

Noting that un = Trnxn and un+1 = Trn+1xn+1, it follows from (3.1) that

Φ
(
wn, un, v

)
+ ϕ

(
v, un

) − ϕ
(
un, un

)
+

1
rn

〈
κ′(un

) − κ′(xn

)
, η
(
v, un

)〉 ≥ 0, (3.5)

Φ
(
wn+1, un+1, v

)
+ϕ

(
v, un+1

)−ϕ(un+1, un+1
)
+

1
rn+1

〈
κ′(un+1

)−κ′(xn+1
)
, η
(
v, un+1

)〉 ≥ 0 ∀v ∈ C.

(3.6)

Putting v = un+1 in (3.5) and v = un in (3.6), respectively, we have

Φ
(
wn, un, un+1

)
+ ϕ

(
un+1, un

) − ϕ
(
un, un

)
+

1
rn

〈
κ′(un

) − κ′(xn

)
, η
(
un+1, un

)〉 ≥ 0,

Φ
(
wn+1, un+1, un

)
+ ϕ

(
un, un+1

) − ϕ
(
un+1, un+1

)
+

1
rn+1

〈
κ′(un+1

) − κ′(xn+1
)
, η
(
un, un+1

)〉 ≥ 0.

(3.7)

Adding up those inequalities, we obtain from (2.5), (η1), and (Φ4) that

− 1
rn

〈
κ′(un

) − κ′(xn

)
, η
(
un, un+1

)〉
+

1
rn+1

〈
κ′(un+1

) − κ′(xn+1
)
, η
(
un, un+1

)〉 ≥ γ
∥∥un − un+1

∥∥2
.

(3.8)
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It follows that

γrn
∥
∥un − un+1

∥
∥2

≤
〈
κ′(un

) − κ′(xn

) − rn
rn+1

(
κ′(un+1

) − κ′(xn+1
))
, η
(
un+1, un

)
〉

≤ 〈
κ′(un

) − κ′(un+1
)
, η
(
un+1, un

)〉

+
〈
κ′(un+1

) − κ′(xn+1
)
+ κ′(xn+1

) − κ′(xn

) − rn
rn+1

(
κ′(un+1

) − κ′(xn+1
))
, η
(
un+1, un

)
〉

≤ −μ∥∥un − un+1
∥
∥2 +

(∥
∥κ′(xn+1

) − κ′(xn

)∥∥ +
∣
∣
∣
∣1 −

rn
rn+1

∣
∣
∣
∣
∥
∥κ′(un+1

) − κ′(xn+1
)∥∥

)∥
∥η

(
un+1, un

)∥∥

≤ −μ∥∥un − un+1
∥
∥2 + λν

(∥
∥xn+1 − xn

∥
∥ +

∣
∣rn+1 − rn

∣
∣

rn+1

∥
∥un+1 − xn+1

∥
∥
)∥
∥un+1 − un

∥
∥,

(3.9)

since η and κ′ are Lipschitz continuous wiht Lipschitz constants λ and ν, respectively. Noting
that lim infn→∞rn > 0, without loss of generality, we assume that there exists a real number
r > 0 such that rn ≥ r > 0 for all n = 1, 2, . . . . Thus,

γr
∥∥un+1 − un

∥∥ ≤ −μ∥∥un+1 − un

∥∥ + λν

(∥∥xn+1 − xn

∥∥ +

∣∣rn+1 − rn
∣∣

r

∥∥un+1 − xn+1
∥∥
)
, (3.10)

which implies that

(
1 +

γr

μ

)∥∥un+1 − un

∥∥ ≤ ∥∥xn+1 − xn

∥∥ +

∣∣rn+1 − rn
∣∣

r
diam(C), (3.11)

and hence

∥∥un+1 − un

∥∥ ≤ δ
∥∥xn+1 − xn

∥∥ +

∣∣rn+1 − rn
∣∣

r
δ diam(C), (3.12)

where δ = 1/(1+γr/μ) ∈ (0, 1). SetΘ := max{α, δ} ∈ (0, 1). Combining (3.4) and (3.12) yields

∥∥xn+1 − xn

∥∥ ≤ (
ααn +

(
1 − αn

)
δ
)∥∥xn − xn−1

∥∥ +
(
1 − αn

)
εn−1

+
(
2
∣∣αn − αn−1

∣∣ +
(
1 − αn

)
δ

∣∣rn − rn−1
∣∣

r

)
diam(C)

≤ Θ
∥∥xn − xn−1

∥∥ +
(
1 − αn

)
εn−1 +

(
2
∣∣αn − αn−1

∣∣ +

∣∣rn − rn−1
∣∣

r

)
diam(C).

(3.13)
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From conditions (C1) and (C3),

∞∑

n=1

(
1 − αn+1

)
εn =

∞∑

n=1

((
1 − αn

)
εn +

(
αn − αn+1

)
εn
)

≤
∞∑

n=1

(
(
1 − αn

)
εn +

∣
∣αn − αn+1

∣
∣sup
n∈N

εn

)
< ∞.

(3.14)

Set an := ‖xn − xn−1‖ and

cn :=
(
1 − αn

)
εn−1 +

(
2
∣
∣αn − αn−1

∣
∣ +

∣
∣rn − rn−1

∣
∣

r

)
diam(C). (3.15)

Then Lemmas 2.6 and 2.7 imply that limn→∞‖xn+1 − xn‖ = 0 and {xn} is a Cauchy sequence
in C. Hence from (3.12), we get

lim
n→∞

∥∥un+1 − un

∥∥ = 0. (3.16)

We know from (C3) that limn→∞εn = 0. It follows that

∥∥xn+1 − Sn+1
(
un+1

)∥∥ ≤ ∥∥xn+1 − Sn

(
un

)∥∥ +
∥∥Sn

(
un

) − Sn

(
un+1

)∥∥ +
∥∥Sn

(
un+1

) − Sn+1
(
un+1

)∥∥

≤ αn

∥∥f
(
xn

) − Sn

(
un

)∥∥ +
∥∥un+1 − un

∥∥ + εn

≤ αndiam(C) +
∥∥un+1 − un

∥∥ + εn.

(3.17)

Thus, limn→∞‖xn − Sn(un)‖ = 0.
Next, we prove that there exists x∗ ∈ C, such that xn → x∗, un → x∗, and wn → ŵ as

n → ∞, where ŵ ∈ T(x∗).
Let p ∈ ⋂∞

n=1F(Tn) ∩Ω. Then

∥∥un − p
∥∥2 =

∥∥Trn
(
xn

) − Trn(p)
∥∥2

≤ 〈
Trn

(
xn

) − Trn(p), xn − p
〉

≤ 〈
un − p, xn − p

〉

≤ 1
2
(∥∥un − p

∥∥2 +
∥∥xn − p

∥∥2 − ∥∥un − xn

∥∥2)
,

(3.18)

and so

∥∥un − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ∥∥un − xn

∥∥2 ≤ ∥∥xn − p
∥∥2
. (3.19)
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By the convexity of ‖·‖, we have

∥
∥xn+1 − p

∥
∥2 ≤ αn

∥
∥f

(
xn

) − p
∥
∥2 +

(
1 − αn

)∥∥Sn

(
un

) − p
∥
∥2

≤ αn

∥
∥f

(
xn

) − p
∥
∥2 +

(
1 − αn

)∥∥un − p
∥
∥2

≤ αndiam(C)2 +
∥
∥xn − p

∥
∥2 − ∥

∥un − xn

∥
∥2
.

(3.20)

It follows that

∥
∥un − xn

∥
∥2 ≤ αndiam(C)2 +

(∥∥xn − p
∥
∥2 − ∥

∥xn+1 − p
∥
∥2)

≤ αndiam(C)2 +
(∥∥xn − p

∥
∥ +

∥
∥xn+1 − p

∥
∥)

∥
∥xn − xn+1

∥
∥

≤ αndiam(C)2 + 2
∥∥xn − xn+1

∥∥diam(C).

(3.21)

This implies that

lim
n→∞

∥∥un − xn

∥∥ = 0. (3.22)

Since {xn} is a Cauchy sequence inC, there exists an element x∗ ∈ C such that limn→∞xn = x∗.
Now limn→∞‖un − xn‖ = 0 implies that limn→∞un = x∗. From (3.1), we have

∥∥wn −wn+1
∥∥ ≤

(
1 +

1
n

)
H(

T
(
xn

)
, T

(
xn+1

))

≤ 2H(
T
(
xn

)
, T

(
xn+1

))

≤ 2L
∥∥xn − xn+1

∥∥

(3.23)

and for m > n ≥ 1,

∥∥wm −wn

∥∥ ≤
m−1∑

i=n

∥∥wi −wi+1
∥∥ ≤ 2L

m−1∑

i=n

∥∥xi − xi+1
∥∥, (3.24)

m−1∑

i=n

∥∥xi − xi+1
∥∥ =

m−1∑

i=n

ai+1 ≤
m−1∑

i=n

(
Θai + ci

)

= Θ
m−1∑

i=n

ai +
m−1∑

i=n

ci

= Θ
m−1∑

i=n

ai+1 + Θ
(
an − am

)
+

m−1∑

i=n

ci

≤ Θ
m−1∑

i=n

ai+1 + Θan +
m−1∑

i=n

ci.

(3.25)
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Thus,

m−1∑

i=n

∥
∥xi − xi+1

∥
∥ ≤ Θ

1 −Θ
∥
∥xn − xn−1

∥
∥ +

∑m−1
i=n ci

1 −Θ
. (3.26)

By (3.24) and (3.26), we have

lim
m,n→∞

∥
∥wm −wn

∥
∥ = 0. (3.27)

It follows that {wn} is a Cauchy sequence in H and so there exists an element ŵ in H such
that limn→∞wn = ŵ:

d
(
ŵ, T

(
x∗)) = inf

b∈T(x∗)
d
(
ŵ, b

)

≤ ∥∥ŵ −wn

∥∥ + d
(
wn, T

(
x∗))

≤ ∥∥ŵ −wn

∥∥ +H(
T
(
xn

)
, T

(
x∗))

≤ ∥∥ŵ −wn

∥∥ + L
∥∥xn − x∗∥∥ −→ 0 as n −→ ∞,

(3.28)

that is, d(ŵ, T(x∗)) = 0. We conclude that ŵ ∈ T(x∗) as T(x∗) ∈ CB(H).
It follows that

∥∥x∗ − Sn

(
x∗)∥∥ ≤ ∥∥x∗ − un

∥∥ +
∥∥un − xn

∥∥ +
∥∥xn − Sn

(
un

)∥∥ +
∥∥Sn

(
un

) − Sn

(
x∗)‖

≤ 2
∥∥x∗ − un

∥∥ +
∥∥un − xn

∥∥ +
∥∥xn − Sn

(
un

)∥∥ −→ 0 as n −→ ∞
(3.29)

and so x∗ = limn→∞Sn(x∗) = S(x∗), that is, x ∈ F(S) =
⋂∞

n=1F(Tn). Since xn → x∗ and
un → x∗, we know that κ′(un) − κ′(xn) → 0. From (3.1) and (Φ1), we have

Φ
(
ŵ, x∗, v

)
+ ϕ

(
v, x∗) − ϕ

(
x∗, x∗) ≥ 0, (3.30)

that is, x∗ ∈ Ω. Thus, x∗ ∈ ⋂∞
n=1F(Tn) ∩Ω.

Since q = Qf(q), we have 〈f(q)−q, p−q〉 ≤ 0 for all p ∈ ⋂∞
n=1F(Tn)∩Ω. From xn → x∗,

we have

lim
n→∞

〈
f(q) − q, xn − q

〉
=
〈
f(q) − q, x∗ − q

〉 ≤ 0 (3.31)
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and so

∥
∥xn+1 − q

∥
∥2 =

∥
∥(1 − αn

)(
Sn

(
un

) − q
)
+ αn

(
f
(
xn

) − q
)∥∥2

≤ (
1 − αn)

2∥∥Sn

(
un

) − q
∥
∥2 + 2αn

〈
f
(
xn

) − q, xn+1 − q
〉

≤ (
1 − αn

)2∥∥un − q
∥
∥2 + 2αn

〈
f
(
xn

) − f(q) + f(q) − q, xn+1 − q
〉

≤ (
1 − αn

)2∥∥un − q
∥
∥2 + 2ααn

∥
∥xn − q

∥
∥
∥
∥xn+1 − q

∥
∥ + 2αn

〈
f(q) − q, xn+1 − q

〉

≤ (
1 − αn

)2∥∥un − q
∥
∥2 + ααn

(∥∥xn − q
∥
∥2 +

∥
∥xn+1 − q

∥
∥2) + 2αn

〈
f(q) − q, xn+1 − q

〉
.

(3.32)

It follows from (3.19) that

∥∥xn+1 − q
∥∥2 ≤

(
1 − αn

)2 + ααn

1 − ααn

∥∥xn − q
∥∥2 +

2αn

1 − ααn

〈
f(q) − q, xn+1 − q

〉

≤
(
1 − 2αn(1 − α)

1 − ααn

)∥∥xn − q
∥∥2 +

2αn(1 − α)
1 − ααn

×
[

αn

1 − α
sup
n∈N

∥∥xn − q
∥∥2 +

1
1 − α

〈
f(q) − q, xn+1 − q

〉
]
.

(3.33)

Set

λn :=
2αn(1 − α)
1 − ααn

, ξn := 0,

σn :=
αn

1 − α
sup
n∈N

∥∥xn − q
∥∥2 +

1
1 − α

〈
f(q) − q, xn+1 − q

〉
.

(3.34)

Then, limn→∞λn = 0,
∑∞

n=1λn = ∞, and lim supn→∞σn ≤ 0. It follows from Lemma 2.8 that
limn→∞xn = q and so x∗ = q. This completes the proof.

Remark 3.3. Theorem 3.2 improves and extends the main results of S. Takahashi and W.
Takahashi [12].

We now give some applications of Theorem 3.2. If the set-valued mapping T in
Theorem 3.2 is single-valued, then we have the following corollary.

Corollary 3.4. Let C be a nonempty closed convex bounded subset of a real Hilbert spaceH, T : C →
H a Lipschitz continuous mapping with constant L > 0, f : C → C a contraction mapping with
constant α ∈ [0, 1). Let ϕ : C ×C → R be a real-valued function satisfying the conditions (ϕ1)–(ϕ3)
and letΦ : H ×C ×C → R be an equilibrium-like function satisfying the conditions (Φ1)–(Φ3) and
(Φ4)′:

(Φ4)′ Φ(T(x), Tr(x), Ts(y))+Φ(T(y), Ts(y), Tr(x)) ≤ −γ‖Tr(x)−Ts(y)‖2 for all x, y ∈ C and
r, s ∈ (0,∞).
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Assume that η : C ×C → H is a Lipschitz function with Lipschitz constant λ > 0 which satisfies the
conditions (η1)∼(η3). Let κ : C → R be an η-strongly convex function with constant μ > 0 which
satisfies the conditions (κ1) and (κ2) with λν/μ ≤ 1. Let Sn : C → C be an S-mapping generated
by T1, T2, . . . and λ1, λ2, . . . and

⋂∞
n=1F(Tn) ∩Ω/=∅, where sequence {Tn} is nonexpansive. Let {xn},

{un}, and {wn} be sequences generated by

Φ
(
T
(
xn

)
, un, v

)
+ ϕ

(
v, un

) − ϕ
(
un, un

)
+

1
rn

〈
κ′(un

) − κ′(xn

)
, η
(
v, un

)〉 ≥ 0, ∀v ∈ C,

xn+1 = αnf
(
xn

)
+
(
1 − αn

)
Sn

(
un

)
, n = 1, 2, . . . ,

(3.35)

where {αn} is a sequence in (0, 1) and {rn} in (0,∞) satisfying conditions (C1)–(C3). Then the
sequences {xn} and {un} converge strongly to x∗ ∈ ⋂∞

n=1F(Tn) ∩Ω, where x∗ = P∩∞
n=1F(Tn)∩Ωf(x

∗).

Corollary 3.5. Let C be a nonempty closed convex bounded subset of a real Hilbert space H, T :
C → CB(H) a multivalued H-Lipschitz continuous mapping with constant L > 0, f : C → C a
contraction mapping with constant α ∈ [0, 1). Let ϕ : C×C → R be a real-valued function satisfying
the conditions (ϕ1)–(ϕ3) and let Φ : H × C × C → R be an equilibrium-like function satisfying the
conditions (Φ1)–(Φ4) andΩ/=∅. Assume that η : C×C → H is a Lipschitz function with Lipschitz
constant λ > 0 which satisfies the conditions (η1)∼(η3). Let κ : C → R be an η-strongly convex
function with constant μ > 0 which satisfies the conditions (κ1) and (κ2) with λν/μ ≤ 1. Let {xn},
{un}, and {wn} be sequences generated by

wn ∈ T
(
xn

)
, ‖wn −wn+1‖ ≤

(
1 +

1
n

)
H(

T
(
xn

)
, T

(
xn+1

))
,

Φ
(
wn, un, v

)
+ ϕ

(
v, un

) − ϕ
(
un, un

)
+

1
rn

〈
κ′(un

) − κ′(xn

)
, η
(
v, un

)〉 ≥ 0, ∀v ∈ C,

xn+1 = αnf
(
xn

)
+
(
1 − αn

)
un, n = 1, 2, . . . ,

(3.36)

where {αn} is a sequence in (0, 1) and {rn} in (0,∞) satisfying conditions (C1) and (C2). Then the
sequences {xn} and {un} converge strongly to x∗ ∈ Ω, and {wn} converges strongly to w∗ ∈ T(x∗),
where x∗ = PΩf(x∗).

Proof. Let Tn = I in Theorem 3.2 for n = 1, 2, . . ., where I is an identity mapping. Then
Sn = I for n = 1, 2, . . . . Thus, the condition (C3) is satisfied. Now Corollary 3.5 follows from
Theorem 3.2. This completes the proof.
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