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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that a mapping
f : C — Cis called contractive if there exists a constant a € (0,1) such that || f(x) - f(y)|| <
allx—yl forall x,y € C. Amapping T : C — C is said to be nonexpansive if [|[Tx-Ty|| < ||x-y||
for all x, y € C. Denote the set of fixed points of T by F(T).

Let ¢ : C — R be a real-valued function and © : C x C — R be an equilibrium bifunction,
that is, ©(u, u) = 0 for each u € C. The mixed equilibrium problem (for short, MEP) is to find
x* € C such that

MEP: O(x*,y) +p(y) —p(x*) >0 VyeC. (1.1)

In particular, if ¢ = 0, this problem reduces to the equilibrium problem (for short, EP), which
is to find x* € C such that

EP: ©(x*,y) >0 VyeC. (1.2)
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Denote the set of solutions of MEP by Q. The mixed equilibrium problems include fixed-
point problems, optimization problems, variational inequality problems, Nash equilibrium
problems, and the equilibrium problems as special cases (see, e.g., [1-5]). Some methods
have been proposed to solve the MEP and EP (see, e.g., [5-14]). In 1997, Combettes and
Hirstoaga [13] introduced an iterative method of finding the best approximation to the initial
data and proved a strong convergence theorem. Subsequently, S. Takahashi and W. Takahashi
[8] introduced another iterative scheme for finding a common element of the set of solutions
of EP and the set of fixed-point points of a nonexpansive mapping. Yao et al. [12] considered
an iterative scheme for finding a common element of the set of solutions of EP and the set
of common fixed points of an infinite nonexpansive mappings. Very recently, Zeng and Yao
[14] considered a new iterative scheme for finding a common element of the set of solutions
of MEP and the set of common fixed points of finitely many nonexpansive mappings. Their
results extend and improve many results in the literature.

Let A of C into H be a nonlinear mapping. It is well known that the variational inequality
problem is to find u € C such that

(Au,v-u)>0 VoveC (1.3)

The set of solutions of the variational inequality problem is denoted by VI(C, A). A mapping
A : C — H is called p-inverse-strongly monotone if there exists a positive real number ff such
that

(Au—- Av,u—-v) ZﬂllAu—Avll2 Yu,v e C. (1.4)

Recently, some authors have proposed new iterative algorithms to approximate a common
element of the set of fixed points of a nonxpansive mapping and the set of solutions of the
variational inequality. For the details, see [15, 16] and the references therein.

Motivated by the recent works, in this paper we introduce a new hybrid iterative
algorithm for finding a common element of the set of fixed points of an infinite family of
nonexpansive mappings, the set of solutions of the variational inequality of a monotone
mapping, and the set of solutions of a mixed equilibrium problem. We prove a strong
convergence theorem by the proposed hybrid iterative algorithm which solves fixed-point
problems, variational inequality problems, and mixed equilibrium problems.

2. Preliminaries

Let H be a real Hilbert space with inner product (-, -) and norm |[|-||. Let C be a nonempty closed
convex subset of H. Then for any x € H, there exists a unique nearest point in C, denoted by
Pc(x) such that

[|[x - Pc()|| < llx -yl Yy eC. 2.1)

Such a Pc is called the metric projection of H onto C. It is well known that P¢ is a nonexpansive
mapping and satisfies

(x -y, Pcx - Pcy) > ||Pex - Pey||” Vx,y € H. (2.2)
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Moreover, Pc is characterized by the following properties:

(x = Pcx,y - Pcx) <0,
) i 2.3)
lx - y|* > |x = Pex||” + ||y - Pex||” VxeH, yeC.
It is clear that
ueVI(C A) — u=Pc(u-1Au) VA>0. (2.4)

In this paper, for solving the mixed equilibrium problems for an equilibrium bifunction
©:C x C — R, we assume that O satisfies the following conditions:

(H1) © is monotone, that is, O(x,y) + ©(y,x) <0 forall x,y € C;
(H2) for each fixed y € C, x — O(x, y) is concave and upper semicontinuous;

(H3) for each x € C, y — O(x, y) is convex.

A mapping 17 : C x C — H is called Lipschitz continuous if there exists a constant A > 0
such that

ln(x, || < Mlx-yll Vx,yeC. (2.5)

A differentiable function K : C — R on a convex set C is called:

(i) -convex if
K(y) - K(x) > (K'(x),7(y,%)) VYx,y€C, (2.6)

where K’ is the Fréchet derivative of K at x;

(ii) n-strongly convex if there exists a constant o > 0 such that
) o
K(y) - K(x) - (K'(x),n(y,x)) > <§> lx-vy|* Vx,yeC. (2.7)

Let C be a nonempty closed convex subset of a real Hilbert space H, ¢ : C — R be a real-
valued function, and © : C x C — R be an equilibrium bifunction. Let r be a positive number.
For a given point x € C, the auxiliary problem for MEP consists of finding v € C such that

Oy, z) + 9(z) —p(y) + %(K'(y) -K'(x),n(z,y)) 20 VzeC (2.8)

Let S, : C — C be the mapping such that for each x € C, S,(x) is the solution set of the auxiliary
problem MEP, that is,

S, (x) = {y €C:0(y,z)+¢(z)—p(y) + %(K'(y) -K'(x),n(z,y)) >20Vz € C} Vx € C.
(2.9)

We first need the following important and interesting result.
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Lemma 2.1 (see [14]). Let C be a nonempty closed convex subset of a real Hilbert space H and let
¢ : C — R be a lower semicontinuous and convex functional. Let © : C x C — R be an equilibrium
bifunction satisfying conditions (H1)—(H3). Assume that

(i) n : C x C — H is Lipschitz continuous with constant A > 0 such that

(@) n(x,y) +n(y,x) =0forall x,y € C,

(b) n(-,-) is affine in the first variable,

(c) for each fixed y € C, x — n(y, x) is sequentially continuous from the weak topology to
the weak topology;

(ii) K : C — R is n-strongly convex with constant o > 0 and its derivative K' is sequentially
continuous from the weak topology to the strong topology;

(iii) for each x € C, there exist a bounded subset D, C C and z, € C such that for any y € C\ Dy,
1 ! !
Oy, zx) + ¢(zx) = 9(y) + —(K'(y) = K'(x),n(zx, y)) <0. (2.10)

Then there hold the following:
(i) Sy is single-valued;
(ii) Sy is nonexpansive if K' is Lipschitz continuous with constant v > 0 such that o > \v and
(K'(x1) = K'(x2),m(u1,1u2) ) 2 (K'(u1) = K'(12), (11, u2))  V(x1,x2) € CxC, (2.11)
where u; = S, (x;) fori=1,2;
(iii) F(S,) = @
(vi) Q is closed and convex.
We also need the following lemmas for proving our main results.

Lemma 2.2 (see [17]). Let {x,} and {z,} be bounded sequences in a Banach space X and let {f,} be
a sequence in [0,1] with 0 < liminf, ., p, < limsup,  _f, < 1. Suppose xp1 = (1 = Bn)zyn + PrXy
for all integers n > 0 and limsup,_,_ (|zn+1 — Zall = [|Xns1 — X4l[) < 0. Then lim,,_, ||z, — x4 = 0.

Lemma 2.3 (see [18]). Assume {a,} is a sequence of nonnegative real numbers such that a,.; <
(1 —yn)an + 64, where {y,} is a sequence in (0,1) and {6, } is a sequence such that

(1) Xola¥n = 0o
(2) limsup,,_, 6,/Yn <00r 3721|64| < oo.

Then lim,,_,.a, = 0.

3. Iterative algorithm and strong convergence theorems

In this section, we first introduce a new iterative algorithm. Consequently, we will establish a
strong convergence theorem for this iteration algorithm. To be more specific, let T1, T3, ... be
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infinite mappings of C into itself and let ¢;, &, . . . be real numbers such that 0 < ¢; <1 for every
i € N. For any n € N, define a mapping W,, of C into itself as follows:

un,n+1 = I/
un,n = gnTnun,rﬁl + (1 - én)I/
un,n—l = gn—lTnflun,n + (1 - §n71)1,

Ui = &Tily e + (1 - &)1, (3.1)
Uy -1 = &1 T + (1 - &)1,

Uyp=&TUus+ (1-8H)I,
Wy =Uy1 =&Tilh,p + (1-&1)1

Such W, is called the W-mapping generated by T, T),_1, ..., T», T1 and &, é,-1, . . ., &2, &1 For the
iterative algorithm for a finite family of nonexpansive mappings, we refer the reader to [19].

We have the following crucial Lemmas 3.1 and 3.2 concerning W,, which can be found in
[20]. Now we only need the following similar version in Hilbert spaces.

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T1,T>, ... be
nonexpansive mappings of C into itself such that (\,_,F(T,) is nonempty, and let &, &, ... be real
numbers such that 0 < & < b < 1 for any i € N. Then for every x € C and k € N, the limit
lim,, o U kX exists.

Lemma 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T1,T>, ... be
nonexpansive mappings of C into itself such that (\,_,F(T,) is nonempty, and let &, ¢&, ... be real
numbers such that 0 < ¢&; <b <1 foranyi € N. Then F(W) = ;2 F(Ty).

The following remark [12] is important to prove our main results.

Remark 3.3. Using Lemma 3.1, one can define a mapping W of C into itself as Wx =
lim, s Wyx = lim,_U,1x for every x € C. If {x,} is a bounded sequence in C, then we
have

lim ||[Wx, - W,x,|| = 0. (3.2)
n—aoo

Throughout this paper, we will assume that 0 < ¢; <b < 1 for every i € N.
Now we introduce the following iteration algorithm.

Algorithm 3.4. Let r > 0 be a constant. Let ¢ : C — R be a lower semicontinuous and convex
functional and let © : C x C — R be an equilibrium bifunction. Let A : C — H be a f-
inverse-strongly monotone mapping and W, be the W-mapping defined by (3.1). Let f be a
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contraction of C into itself with coefficient a € (0,1) and given x, € C arbitrarily. Suppose that
the sequences {x,} and {y,} are generated iteratively by

1
O(zn, x) +(x) — p(zn) + ;(K'(zn) - K'(xn),m(x,24)) >0 VxeC,
Yn = PC(Zn - /\nAZn>/ (33)
Xn+l = “nf(ann) + ﬂnxn + YanPC (yn - -)LnAyn> Vn >0,
where {a,}, {B.}, and {y,} are three sequences in (0, 1), and {1, } is a sequence in [0, 2].
Now we study the strong convergence of the hybrid iterative algorithm (3.3).

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H and let ¢ : C — R
be a lower semicontinuous and convex functional. Let © : C x C — R be an equilibrium bifunction
satisfying conditions (H1)—(H3) and let Ty, T, . . . be an infinite family of nonexpansive mappings of C
into itself. Let A : C — H be a p-inverse-strongly monotone mapping such that N | F(T,)NVI(A,C)N
Q # @. Suppose {a,}, {Pn}, and {y,} are three sequences in (0, 1) with a, + ﬂn+yn =1,n>0. Assume
that

(i) n1: C x C — H is Lipschitz continuous with constant A > 0 such that

(@) n(x,y) +n(y,x) =0 forall x,y € C,

(b) n(-,-) is affine in the first variable,

(c) for each fixed y € C, x — n(y, x) is sequentially continuous from the weak topology to
the weak topology;

(ii) K : C — R is n-strongly convex with constant o > 0 and its derivative K' is not only
sequentially continuous from the weak topology to the strong topology but also Lipschitz
continuous with constant v > 0 such that o > \v;

(iii) for each x € C; there exist a bounded subset D, C C and z, € C such that for any y € C\ Dy,
]‘ ! !
Oy, zx) +¢(2x) —9(y) + (K'(y) - K'(x), 1(z2,y)) < 0; (3.4)

(iv) lim, o, = 0, X720, = o0, 0 < liminf, ., f, < limsup, B, <1, A, € [a,b] C
(0,2p), and limy, o, (Ay+1 — Ay) = 0.

Let f be a contraction of C into itself and given xo € C arbitrarily. Then the sequence {x,} generated
by (3.3) converges strongly to x* = Prf (x*), where I' = 072 F(T,) N VI(A, C) N Q provided that S, is
firmly nonexpansive.

Proof. We first note that f is a contraction with coefficient « € (0,1). Then ||Prf(x) — Prf(y)|| <
If(x) = f(y)| < allx —y|| for all x,y € C. Therefore Prf is a contraction of C into itself which
implies that there exists a unique element x* € C such that x* = Pr f (x*).

Next we divide the following proofs into several steps.

Step 1 ({x,}, {y.}, and {z,} are bounded). Let x* € I'. From the definition of S,, we know that
Zn = SpXy. It follows that

2= 2] = (18000~ 5" < [l - 1. 35
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Forall x,y € C and A, € [0,2p], we note that

(I = 2aA)x = (I = L A)y|* = [|(x = ) - a(Ax - Ay
= [l - yI* - 20, (Ax - Ay, x - y) + \2|| Ax - Ay|?
<l = I + dn (o = 26) [ Ax - Ay,

which implies that I — A, A is nonexpansive.

(3.6)

Set u, = Pc(Yn — AnAyy) for all n > 0. From (2.4), we have that x* = Pc(x* — A, Ax™). It

follows from (3.6) that
v =l = [P (20— 1nAz,) - Pe(x” - Ly Ax) |

7

< [1(zn = AnAzn) = (x7 = L AX) | < |20 = 27| < flxn ="

it =21l = 1P (v~ dnyn) = Pe(x” = 1) |
< 1y = tnyn) = (= LAY | < flyn =] < =
Hence we obtain that
e = =l (F (Wan) = %) + o (= ) + (Wt — ) |
< L f W) =)+ Bull s =" | + Wt ~ ']
< L f W) = £ + @l £ = |+ ull =[]+ il =

< |20 = x"|| + anl| £ (%) = 7| + Ballen =[]+ yalen = 27|

e —ﬂ)anw - (- P -]
o ILF ) =] o IF ) = x|
Smax{”xn—x ,W}Smax{”xo—x ,W}

Therefore {x,} is bounded, so are {y,} and {z,}.
Step 2 (||xp1 — xu|| = 0). Setting x,.1 = Puxn + (1 = Pn) Vy, for all n > 0. 1t follows that
Xn42 — ﬂn+1xn+1 _ Xn+1 — ,ﬁnxn
1- ﬁn+1 1- ﬁn
an+lf(Wn+1xn+l) + Yn+1Wn+1un+1 _ anf(wnxn) + Yanun
1- ﬂn+l 1- ﬁ”
_ an+lf(Wn+1xn+l) _ anf(wnxn) Yn+1

Vn+1 - Vn =

(Wn+1 Uns1 — Wn+1 un)

1- ﬁn+1 1- ﬂn 1- ﬁn+l
Yn+1 _ Yn Yn _
+ <1 — ﬂn+1 1= ﬂn>Wn+lun + 1- ﬂn (Wn+lun Wnun)/

(3.7)

(3.8)

(3.9)
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which implies that

Ay
Vot = Vall € 12 (1 (W) [+ Wil

1-pn
+ 1  ( Waa) |+ [ Wit (3.10)

Yn+1

Yn
+
1- ﬁn+1

1-pn

||un+1 - un” + ”Wn+1un - Wnun”-

Now we estimate ||uys1 — Uyl and |Wyirty — Wity ||.
From (3.1), since T; and U ,,; are nonexpansive, we have

||Wn+1un - Wnun” = ||§1T1un+1,2un - nglun,Zun ”
<& lUni12un — un,Zun”
= &1|| 2Tl a1 3un — ETolly sty ||

< §1§2||un+1,3un - un,?)un”

(3.11)
<l
<& dn ||un+1,n+1un = U ne1tin ”
n
< MHéi,
i=1
where M is a constant such that sup{||Uy+1,n+1Un — Unni1ttnl||, n >0} < M.
At the same time, we observe that
||]/n+1 - yn” = ”PC (Zn+1 - ~’\n+1AZn+1) - PC(Zn - )tnAZn) ”
< ” (Zn+1 - -)‘n+1AZn+1) - (Zn - )‘nAZn) ||
= ” (Zn+1 - /\n+1AZn+1) - (Zn - -)Ln+1AZn> + (-)Ln - /\n+1>Azn”
< ” (zn+1 - /\n+1Azn+1) - (Zn - )Ln+1AZn> ” + |)Ln - )Ln+1|”Azn||
< ||Zn+1 - Zn” + |~)Ln - J\n+1| ”Azn s
(3.12)

[[ttni1 = snll = | Pe(Yn1 = Ans1 Aynir) = Pe(yn = AnAyn) ||
<N (Wne1 = A1 AYnar) = (Y — AnAy) ||
= | (Y1 = M1 Aynsr) = (Y = dns1 Ayn) + (An = Aost) Aya|
< lymer = yall + 40 = Ana ||| Ay

< [z = zall + [An = Lna [ (| Ayl + [ Aza])-
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Since z,, = Syxp and z,41 = SyXni1, from the nonexpansivity of S,, we get
||Zn+1 - Zn” < ||xn+l - xn”- (3.13)

Substituting (3.11)—(3.13) into (3.10), we have

Vit = Vall = st = 2l € 7225 (1 Waazwe) | + [ Wil
1_ﬁn+1
n
g (I Wam)| + [Wanwal) + MT J& - G19
n i=1

+ A = A | ([[ Ay || + || Aza][)-
Since ayy — 0, A1 — Ay — 0, and ¢&; € [a, b], we have

lim sup (|| Vi1 = Va|| = ||xns1 — x4]|) < 0. (3.15)

n—oo

Hence by Lemma 2.2, we have

lim || V,, — x,|| = 0. (3.16)
n—oo
Consequently,
&El;lo”xnﬂ — x| = 0. (3.17)

Step 3 (||un, — Wuy,|| — 0). Note that x,.1 — xy = an(f (Whxy) — Xn) + Yn(Watty — xy,). Then we have
1

I = Wt < = (I~ 5l + 3l (o) = 321} . (.18)
n

For x* € T, noting that S, is firmly nonexpansive, we have
2 =" [I* = || S0 = 5,7

<(Spxp — Spx*, X — X*)

3.19
= <Zn_x*/xn_x*> ( )
1 ]2 12 2
= 5 lzn = x|+ [loen = 7| = [|2n = 2a]["),
and hence
2= 1 <l =2 = [~ 2l (320)
So, we have
s = %1 < @l f (Woka) =51+ Bl = I + pull Wt - 27|
< || f (Waxn) =" |* + Bullx = x| + vl 0 = x|
< || f (Wan) = x|+ Bullx = || + yul | 20 = x°||” (3.21)

< atull f (Waea) =" |I* + Bl = 271"+ (= 27| = |0 = za|)

2

4

< et f (Wt =" |I*+ [l = 21" = yi [l = 20
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that is,
1
[ Y—{“nllf(ann) =" |17 ot = x| = [laeman - 27|
n

1
Yu

X * * 3.22
(@all fWaxa) =[P+ w1 = xall (1o = 27 # e =)} G2

— 0.
From (3.6), we obtain that
lner = |1* < atul f (Waea) = 2 |I*+ Bl = 27"+ yllym = 7|
< atull f (W) =" |I*+ Bullzn = 21"+ v [l (20 = nAzn) = (2" = Ay Ax") ||’
<t f (W) =" [P+ Bl ="+ 10 { 2= +-00 (A = 28) [| Az — Ax°[[)

< || f (Waxn) = x°||* + [| 200 = °|| + yua(b — 26) | Az, — Ax|”.
(3.23)

Then we have
—ua(b = 2p)]| Aza — AX|P < @l f (W) = [ + [ - 2 = [t - 52 — 0, (3:24)
which implies that
nli_r)gHAzn - Ax*|| = 0. (3.25)
We note that
=21 = [P (20 - A Az) = Pe(x” by |

<{((zn — MAzp) — (x* = 1, AXY), Yy — X¥)
1 * * 2 %112
= - haAz) - (o 24 P + - )

1z~ daAz) - (¢ - duAx") = (g - x|}

1 * * *
< {2 = P+l 2 1 2o~ ) = (Ao~ Ax) )
1 w2 w2 2 . #112
= oz Pl P Nzl P+ 200 Az Ax*, 20my) 22 Az A ).
(3.26)
Then we derive
=1 < 2= 21 = 20 =yl + 200 (A2 - Ax*, 20 - y,) - 12| Az, - Ax°|
(3.27)

< ||xn - x*||2 = ||zn - yn||2 + 20 (Azy — AX*, 24 — Yn)-
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Hence
lener ="

< L f (W)~ [P+l [P e I 2l 20, Az A 20 ),
(3.28)

which implies that

2=yl - £ (W) = P4 = == P25l Az A =l | .
(3.29)
Since lyn = tall = 1Pc(Zn = AnAzy) = Pe(n — AnAya)ll < 120 - yall, we have
Wit = ] < [ Wit = Wty | + [ Wty =
< (Wt = Wit || + Wt = xul| + [l = zal| + |20 = yull + |y = wa] - (3.30)
< [ Wats = Wty | + [ Wt = ] + 0 = 2] + 2120 - v
Combining the above inequality, (3.18)—(3.29), and Remark 3.3, we have
7%iﬁr?o”Wun —uy|| =0. (3.31)

Step 4 (limy, o ( f(x*) — x*, x, — x*), where x* = Prf(x*)). To show the above inequality, we can
choose a subsequence {uy,} of {u,} such that

lim (f (x*) = x*, up; — x*) = limsup(f (x*) - x*, u, — x¥). (3.32)

] n—oo

Since {uy, } is bounded, there exists a subsequence {un, } of {un, } which converges weakly to w. Without
loss of generality, we can assume that u,, — w. From |Wu, — u,|| — 0, we obtain Wu,,;, — w.

First, we show w € F(W) = N F(T,). Assume that w ¢ F(W). Since u,;, — w and
w # Ww, by Opial’s condition, we have

liminf||u,, — w|| <liminf||u, - Wuw||
—0o0 —0o0

<lim inf([|utn, = Wiy, || + Wiy, = Wao]) (3.33)

< liminf”um —w|,
which is a contradiction. Hence we get w € F(W). By the same argument as that in the proof of [21,
Theorem 3.1], we can prove that w € VI(A, C); and by the same argument as that in the proof of [14,
Theorem 4.1], we also can prove that w € Q. Hence w € T.
Since x* = Prf (x*) € I and ||u,, — x,,|| — 0, we have
limsup(f(x*) = x*, x, = x*) = im (f (x") = x*, x,, = x*)
n—oo J—®

—

(3.34)
= lim (f (x') ~ "y, — ') = (f(x") ~x",w - x") <0

]
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Step 5 (x, — x*, where x* = Pr f(x*)). From (3.3), we have

it =1 < 1B G = ) + i (Wt = x) [+ 20 f (W) = 2 %001~ °)
< [Ball2en = x| + Yol |2t = X°||]7 + 200 f (W) = £ (x7), X1 = x7)
+ 20, (f (x*) = X%, Xpaq — x¥)
< (1) [~ 2P+ 24 f (W) — () s ']
2, (f(x) = X", a1 — )
< (1= )| = x° |12 + 20 || — x| [|0me1 = x°[| + 2600 (F (x*) = x*, 21 — x*)

< (=) loew=2c" [Pt ([l =" [+ o =" |F) #2000 f (67) =27, xman ="),

(3.35)
that is,
2(1- 2(1-
a1 < 1= T2 =14 2 = e ) )
(3.36)
It is easy to see that 37> (2(1 - a) /(1 — aa,))a, = oo and
. 1 * * *
hmsup{z(1 )|| n—x|| + _a(f(x)—x,xn+1—x>}§0. (3.37)

Applying Lemma 2.3 and (3.34) to (3.36), we conclude that x, — x* as n — oo. This completes the
proof 0

Concerning S,, we give the following remark.

Remark 3.6. For each x1,x, € C, we denote u; = S,(x1) and u; = S,(x2). Then for all y € C, we
have

r[©(u1,y) + o) — ()] + (K' (1) = K'(x1),1(y, 1)) 20, (3.38)
r[©(uz,y) +o(y) — p(u2)] + (K'(u2) - K'(x2),1(y, u2)) > 0. (3.39)
Taking i = 1, in (3.38) and = 1 in (3.39), and adding up these two inequalities, we obtain
r[O(u1, u2) + ¢(u2) = p(wr)] + (K' (1) = K'(x1), 7 (w2, 1) )

+7[Ouz, 1) + () 9 (u2)] + (K'(u2) = K'(x2),m (w1, u2) ) 2 0

Note that 77(u1, up) + n(u2, u1) = 0 and ©(uy, uz) + O(uy, u1) < 0. Hence from (3.40), we deduce

(3.40)

(K'(x1) = K'(u1),m (1, u2) ) + (K' (u2) = K'(x2), 7 (w1, u2) ) 2 0, (341)
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which implies that

(K'(x1) = K'(x2), (w1, u2) ) 2 (K' (1) = K' (u2), 1 (w1, 12) ). (3.42)

Since K' : C — H is n-strongly monotone with constant y > 0, then from (3.42), we conclude
that

(K'(x1) = K'(x2), (ur,2) ) 2 g = | (3.43)

Take K (x) = ||x||*/2, (y,x) = y — x, and p = 1. Then from (3.43), we have
<.X'1 — X2, U1 — u2> > ||u1 - u2||2. (344)

This indicates that S, is firmly nonexpansive.

Corollary 3.7. Let C be a nonempty closed convex subset of a real Hilbert space H and let ¢ : C — R
be a lower semicontinuous and convex functional. Let © : C x C — R be an equilibrium bifunction
satisfying conditions (H1)-(H3). Let A : C — H be a p-inverse-strongly monotone mapping such that
VI(A,C) N Q # @. Suppose {an}, {Pn}, and {y,} are three sequences in (0,1) with ay, + Pu + yn =
1,n > 0. Assume that

(i) n : C x C — H is Lipschitz continuous with constant A > 0 such that

(@) n(x,y) +n(y,x) =0forall x,y € C,
(b) n(-,-) is affine in the first variable,

(c) for each fixed y € C, x — n(y, x) is sequentially continuous from the weak topology to
the weak topology;

(ii)) K : C — R is n-strongly convex with constant o > 0 and its derivative K' is not only
sequentially continuous from the weak topology to the strong topology but also Lipschitz
continuous with constant v > 0 such that o > \v;

(iii) for each x € C, there exist a bounded subset Dy C C and z, € C such that, forany y € C\ Dy,

O(y, zx) + p(zx) —(y) + %(K'(y) - K'(x),1n(zx,y)) <0; (3.45)
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(iv) limyeay = 0, 3720 ay = o0, 0 < liminf, ., B, < limsup, , f, <1, A, € [a,b] C
(0,2P), and lim,,_, (Aps1 — A) = 0.

Let f be a contraction of C into itself and given xo € C arbitrarily. Let the sequences {x,}, {y,}, and
{2, } be generated iteratively by

O(zn, x) +(x) = (2n) + %(K'(zn) - K'(x),1(x,24)) >0 VxeC,
Y = Pe (20 - \nAzy), (3.46)

X1 = Onf (Xn) + PuXn + YuPc (Yn — AnAyn) Vn 2 0.

Then the sequence {x,} generated by (3.46) converges strongly to x* = Pr f (x*), whereT = VI(A,C)N
Q provided that S, is firmly nonexpansive.

Proof. Take T,x = x foralln =1,2,..., and for all x € C in (3.1). Then W, x = x for all x € C.
The conclusion follows immediately from Theorem 3.5. This completes the proof. O

Corollary 3.8. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T1, T, ... be
an infinite family of nonexpansive mappings of C into itself. Let A : C — H be a p-inverse-strongly
monotone mapping such that 072, F(T,) N VI(A,C) # @. Suppose {a,}, {fn}, and {y,} are three
sequences in (0,1) with ay + B + ¥, =1, n > 0. Assume that

(i) im0 aty = 0 and X7 aty = 00;
(ii) 0 < liminf, .o B, <limsup,_,  fn <1,
(iii) A, € [a,b] C (0,2B) and limy,_e (A1 — Ay) = 0.

Let f be a contraction of C into itself and given xy € C arbitrarily. Then the sequence
{x,}, generated iteratively by

Yn = Pc (xn - )tnAxn)/
(3.47)
Xn+l1 = anf(wnxn) + ﬁnxn + YanPC (yn - -)LnAyn) Vn >0,

converges strongly to x* = Prf (x*), where I' =n* F(T,,) N VI(A,C).

Proof. Set p(x) = 0 and ©(x,y) = 0 for all x,y € C and put r = 1. Take K(x) = ||x||*/2 and
n(y,x) = y — x for all x,y € C. Then we have z, = Pcx, = x,. Hence the conclusion follows.
This completes the proof. O
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