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1. Introduction

Liapunov’s direct method has been successfully used to investigate stability properties of a
wide variety of differential equations. However, there are many difficulties encountered in
the study of stability by means of Liapunov’s direct method. Recently, Burton [1-4], Jung [5],
Luo [6], and Zhang [7] studied the stability by using the fixed point theory which solved the
difficulties encountered in the study of stability by means of Liapunov’s direct method.

Up till now, the fixed point theory is almost used to deal with the stability for
deterministic differential equations, not for stochastic differential equations. Very recently, Luo
[6] studied the mean square asymptotic stability for a class of linear scalar neutral stochastic
differential equations. For more details of the stability concerned with the stochastic differential
equations, we refer to [8, 9] and the references therein.

Motivated by previous papers, in this paper, we consider the mean square asymptotic
stability of a generalized linear neutral stochastic differential equation with variable delays by
using the fixed point theory. An asymptotic mean square stability theorem with a necessary
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and sufficient condition is proved. Two examples is also given to illustrate our results. The
results presented in this paper improve and generalize the main results in [1, 6, 7].
2. Main results

Let (, %, {¥t}i>0,P) be a complete filtered probability space and let W (t) denote a one-
dimensional standard Brownian motion defined on (Q, ¥, {¥:},5, P) such that {¥;}, is the
natural filtration of W (t). Let a(t), b(t),E(t), c(t),e(t),q(t) € C(R",R),and 7(t),6(t) € C(R",R")
with t — 7(t) > o0 and t — 6(t) — o0 as t — 0. Here C(S1,S,) denotes the set of all continuous
functions ¢ : S; — S, with the supremum norm ||-||.

In 2003, Burton [1] studied the equation

X' (t) = =b(t)x(t - 7(t)) (2.1)
and proved the following theorem.

Theorem A (Burton [1]). Suppose that T(t) = r and there exists a constant a < 1 such that
£ t_ — s _
f |b(s +1)|ds + f |b(s +71) |e‘fsb(”+’)"’”f |[b(u+7r)|duds <a (2.2)
t=r 0 s—r

forallt > 0and (7 b(s)ds = oo. Then, for every continuous initial function ¢ : [-r,0] =R, the
solution x(t) = x(t,0, ¢) of (2.1) is bounded and tends to zero as t — co.

Recently, Zhang [7] studied the generalization of (2.1) as follows:
X' (t) = =D bj(t)x(t - Tj(t)) (2.3)
j=1

and obtained the following theorem.

Theorem B (Zhang [7]). Suppose that 7; is differential, the inverse function g;(t) of t — T;(t) exists,
and there exists a constant a € (0,1) such that for t > 0, lim inft_mjéQ(s)ds > —oo and

n t _ t . _
> U |bj(gi(s))|ds + LBLQ(”M”U’]‘(S) || 7/(s)|ds
1 e (2.4)

t s _
+I e_fsQ(”)d”|Q(s)| |b]- (gj(v)) |dv ds| <a,
0 )

s—7j(s

where Q(t) = Z?:lgj( gj(t)). Then the zero solution of (2.3) is asymptotically stable if and only if

[3Q(s)ds — oo, as t— co.

Very recently, Luo [6] considered the following neutral stochastic differential equation:

d[x(t) — q(t)x(t - 7(t))] = [a@®)x(t) + b(t)x(t - T(F))]dt + [c(t)x(t) + e(t)x(t — 6(t)) ]| AW (¢)
(2.5)

and obtained the following theorem.
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Theorem C (Luo [6]). Let T(t) be derivable. Assume that there exists a constant a € (0,1) and a
continuous function h(t) : [0,00) — R such that for t > 0, lim inft_mféh(s)ds > —oo0 and

t

jato ]+ [

t-1(t

la(s)+h(s) |ds+J‘te‘f;h(”)d"| @(s=7(s))+h(s—1(s))) (1-7'(s)) +b(s)—q(s)h(s)|ds
) 0

1/2

+J:e‘ﬁh(”)du|h(5) |J;ST(S)|a(u) + h(u)|duds + <£e‘2fsth(”)du(|c(5)| + le(s) |)2d5> <a.
(2.6)

Then the zero solution of (2.5) is mean square asymptotically stable if and only if féh(s)ds — o0, as
t— oo.
Now, we consider the generalization of (2.5):
d [x(t) - Dlgi(Ox(t- Tj(t))] = D bi(t)x(t—T;(t))dt + D c;j()x(t - 6;(1))dW(t),  (2.7)
j=1 j=1 j=1
with the initial condition
x(s) = ¢(s) for s e [m(ty), to], (2.8)

where ¢ € C([m(to), to], R), b;j(t),c;(t),q;(t) € C(R*,R), Tj(t),6;(t) € C(R*,R"), t — 7j(t) = 0,
and t - 6;(t) — oo as t — co and for each ty > 0,

m;(to) = min { inf {s — 7j(s), s > to}, inf {s - 6j(s), s > to}}, 29)

2.9
m(ty) = min {m;(tp), 1 < j <n}.
Note that (2.7) becomes (2.5) for n = 2, 7i(t) = 0, 72(t) = 7(t), bi(t) = a(t), bo(t) = b(t), q1(t) =
0, g2(t) = q(t), 61(t) = 0, 62(t) = 6(t), c1(t) = c(t), and co(t) = e(t). Thus, we know that (2.7)
includes (2.1), (2.3), and (2.5) as special cases.
Our aim here is to generalize Theorems B and C to (2.7).

Theorem 2.1. Suppose that T; is differential, and there exist continuous functions hj(t) : [0,00) =R
forj=1---nand a constant a € (0,1) such that fort > 0

(i) Hminfy_o, [y H (s)ds > —oo,

(ii)

n n t n t
2lai)] +Zf |Rj(s)|ds +Zf e I (y (s = 3(9))(1 = 7j(5)) + bj (5) - 4j(s) H (5) | ds
j=1 j=1 Yt=7j(t) j=170

n et s t n 2 12
+ZJ;)6_LH(u)du|H(S)| |hj(u) |du ds+2 <J‘ e~2IsH (w)du <Z |C]- (s) |) ds> <a<l,
j=1

s—7j(s) 0 j=1
(2.10)

where H(t) = Z}Zl hj(t).
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Then the zero solution of (2.7) is mean square asymptotically stable if and only if
t
f H(s)ds — o ast— co. (2.11)
0

Proof. For each ty, denote by S the Banach space of all F-adapted processes ¢ (t, w) : [m(ty), o0)x
€ — R which are almost surely continuous in ¢ with norm

1/2
lglls = {E< su(p)lqr(s, w)|2>} : (2.12)
s>m(ty

Moreover, we set ¢s(t, w) = ¢(t) for t € [m(ty), to] and E|g (¢, w)|>* =0, as t— oo.
At first, we suppose that (2.11) holds. Define an operator P : S— S by (Px)(t) = ¢(t) for
t € [m(ty),to] and for t > ¢,

h; (s)¢(s)ds> ¢ o

to— Tj f(])

(Px)(t) =< (to) — Z%(fo)d’(fo—TJ fo)) = ZI

n n t
+ D (B)x(t-7;(t)) +Zf ()h]-(s)x(s)ds
j:] t—T]' t

j=1

t
* ( e ki Z<h (s =7j(s)) (1= 7i(s)) +bj(s) — gj(s)H(s))x(s — 7(s))ds

7ty j=1

_ [O oI H duH(S)<ZL

it

h; (u)x(u)du) ds

~7;(8)

+ re‘fiH(”)d” (Zn: cj(s)x(s - 6j(s))>dW(s) = zSIIi(t)
=1 i=1

Jto

(2.13)

Now, we show the mean square continuity of P on [fy, o). Let x € S, T1 > 0, and let |r|
be sufficiently small. Then

5
E|(Px)(T1 + 1) = (Px)(T1)|* <55 E|L(T1 + 1) = Li(Ty) |, (2.14)
i=1

It is easy to verify that

E|L(Ty+7) - L(T)|? —0, asr—0,i=1,2,3,4 (2.15)
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It follows from the last term I5 in (2.13) that

T 7 Ty+r n
f o H(u)du(e—fﬁ H(u)du_1)ch(s)x(s—6j(s))dW(S)
£

0 j=1

E|Is(Ty+7)- Is(Ty)|* = E

T1+1” Ty +r < 2
. J‘ e_jsl H(”)d”ZC]'(S)x<S - 6j(5))dW(S)
j=1

Ty

T] T T1+r 2 n ?
< 2E’[ e—2fs H(u)du(e*le H@u)du _ 1) <Z|C](S)||x(s —6](5))|> ds
t =1

0

Ty+r Tr n 2
+ ZEI g2l HGw)du <Z|c]-(s)|~|x(s - 6;(s)) |> ds — 0, asr—0.

Ty j=1
(2.16)
Therefore, P is mean square continuous on [ty, o).
Next, we verify that Px € S. Since E|x(t)| — 0, t - 6;(t) — oo as t — oo, for each € > 0, there
exists a T1 > tg such that s > T; implies E|x(s)]* < e and E|x(s - 6]-(5))|2 < €. Thus, fort > Ty,
the last term I5 in (2.13) satisfies

E|Is(t)|

T: ; n 2 t ; n 2
< Ef g 2 Hwdu (Zc]'(s)x(s - 6]'(8))) ds + Ef e 2 Hwdu (Zc]'(s)x(s - 5;(5))) ds
2 1 T j=1

0 j=

o, n 2 t n 2
< E( sup |x(s)|2>f 2l H wydu <Z|cj(s)|> ds + ef g 2l H wydu <Z|cj(s)|> ds.
s>m(to) to j=1 T, j=1

(2.17)
By condition (ii) and (2.11), there exists T, > T; such that t > T, implies
E|I5(#) < € + ae. (2.18)

Thus, E|I5(t)|2—>0, as t— oo. Similarly, we can show that E|Ii(t)|2—>0, i=1,2,3,4, as t— oco.
Thus, E|(Px)(£)]> — 0 as t — oo. This yields Px € S.

Now we show that P : S— S is a contraction mapping. From (ii), we can choose ¢ > 0
such that a? + ¢ < 1. Thus, for each ty > 0, we can find a constant L > 0 such that

S

1\/ & < (- Hwdu
(- D)(Bhaors S et imolaa

S—T]' S

5 nort o 2
+ Z J;_T-(t)|hj(5) |ds+ >’ e*LH(u)du|(hj(s—T]-(s))(l—T]'-(S))+ bi(s)- q;j(s)H(s) |ds>

]':1 to

t . n 2
+4(1+L)| e 2Hwdu <Z|cj(s) |> ds<a’+e<l.
1

to ]':
(2.19)
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For any x,y € S, it follows from (2.13), conditions (i) and (ii), and Doob’s LP-inequality (see
[10]) that

e sup )|(px) () = (py)(s)]°

36 (s =79 ~y(s =) + 3 [ mio) ) - y@)do

j=1 j=1 7s-7j(s)

‘)

= esup
Szto
:Oe_f;h(u)dujé(hj (U ~Tj (v)) (1 - T]'(v)) + bj (v) - q; (’U)h(v))

x (x(v-13(v)) -y (v -7(v)))dv
_ fse—ﬁh(u)duh(v) (i Jm hi(u) (x(u) - y(u))du> do
to j=17o-7j(v)

2

+ ’Jrse‘ﬁh@d”(icj(v)(x(v -6i()) -y(v- 6j(v)))>dw(v)

to j=1

< (147 )esup <Z"1|qj<s>|-|x<s ~7)(5) =¥ (s=7(9)]
=1

SZtO

+Zj |hj(©)|-|x(v) - y(v)|do
j=1 7s-Tj(s)

+ j e 1M i (0 - 71(0)) (1 - 7)(v)) + bj (v) - q;(0) k(D)

0 j=1
Jx(v-1i(v)) -y (v -1j(v)) |dv

S n 0 2
+ J; e hWdup ) <Z f )|hj(u) |-|x(u) — y(u) |du> dv>

j=17v-7; (v
2

+4(1+1)sup {ej e‘fvsh(”)d”<2|cj(v)|'|x(v -6j(v)) —y(v - 5j(U))|> dv}
to 1

s>ty j=

<e sup |x(s) - y(s)|’

s>m(to)

1 n n ps Chnds v
sup{ (1+7) (Sl + X[ eF )| [ iy lauds
s>ty j=1 j=1"to -7 (0)

vy f

j=1 s—Tj(s

noeso
+ZJ‘ e—fvh(u)du

j=17t

2
xKm@—nw»u—ﬁw»+mvo—%wmwnm9

)|hj(v)|dv

s ) n 2
+4(1+1)| e 2ohwau <Z|c]~(v)|> dv} < (a*+e)e sup |x(s) - y(s)|2.

to j=1 s>m(to)

(2.20)
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Therefore, P is contraction mapping with contraction constant a® + ¢. By the contraction
mapping principle, P has a fixed point x € S, which is a solution of (2.7) with x(s) = ¢(s)
on [m(t), to] and E|x(£)[* — 0 as t — oo.

To obtain the mean square asymptotic stability, we need to show that the zero solution
of (2.7) is mean square stable. Let € > 0 be given and choose 6 > 0 and 6 < e satisfying the
following condition:

A6K2(1+ L) HOdu 4 (42 4 e)e <, (2.21)

where K = supt>0{e‘f<§H(s)ds}. If x(t) = x(tt,¢) is a solution of (2.7) with ||p||*> < &, then
x(t) = (Px)(t) defined in (2.13). We assume that E|x(#)|* < e for all ¢ > t,. Notice that E|x(t)|* =
lp|I> < € for t € [m(ty),to]. If there exists t* > t such that E|x(#)]* = € and E|x(t)* < € for
t € [m(ty),t*), then (2.13) and (2.19) imply that

to

2
|hj(S)|ds> & HOO
)

E|lx(t)]* < 1+ L)||¢||2<1 + ilq; (to)[ + Zf
=1 j=1t

0—Tj(to

1 n n At
(1 1)(BlO1E[ e
=1 j=17t-7(t)

]

r* " n ps
+I o). H(u)du(Z.[ |h]-(u)|du>|H(s)|ds
ty j=175-Tj(s)

n

e 2
+ J: e s H(”)d"z |hj(s—Tj(s))(1- T]'.(s)) +bj(s) —gj(s)H(s) |ds>

j=1

po " 2
+ ef o2 Hwdu <Z|CJ(S)|> ds
1

to j:

n n to 2 o
< (1 + L)6<1 + Z|q1<to)| + Zj |h](S)|ds> e_2ft0H(u)du 4 (6!2 +£>€ <e,
j=1 j=17to=7;(to)
(2.22)

which contradicts the definition of t*. Thus, the zero solution of (2.7) is stable. It follows that
the zero solution of (2.7) is mean square asymptotically stable if (2.11) holds.

Conversely, we suppose that (2.11) fails. From (i), there exists a sequence {t,} with
t, — oo as n — oo such that 1imn_>oofé"H (u)du = B, where p € R. Then, we can choose a constant
J > 0 satisfying fé”H(u)du € [-],J] for all n > 1. Denote

w(s) = Z|(h]-(s -7i(s))(1- T]'-(s)) +bj(s) —qj(s)H(s)| + |H(s)| |hj(u)|du (2.23)
i1

5—T7j(s)

for all s > 0. From (ii), we have

b,
f e HWAu,(5)ds < a, (2.24)
0



8 Fixed Point Theory and Applications

which implies
b
j el H0du ) (5) ds < qeh HDdn < o] (2.25)
0

Therefore, the sequence {fé"eISH (w)du

generality, we can assume that

w(s)ds} has a convergent subsequence. Without loss of

b
lim eIOH(”)d”w(s)ds:y (2.26)

n—oo 0

for some y > 0. Let k be an integer such that

ty
5o
JpH@wd ds < — 2.27
J:k el “w(s)ds < 8K ( )
for all n > k, where &y > 0 satisfies 869 K?e* + (a® + ¢) < 1.

Now we consider the solution x(t) = x(¢t, t, ¢) of (2.7) with ||p(tc)||> = 6o and || (s)|* <
0o for s < ti. By the similar method in (2.22), we have E|x(t)|2 < 1for t > t;. We may choose ¢
so that

Glt) = (k) - Zq,<tk>¢<tk—q<tk>> Zf PEUCEE Y @2s)

te— T]

It follows from (2.13) and (2.28) with x(t) = (Px)(t) that forn > k,

n n tn 2
Elx(t) - X ait)x(t-6)) - X [ hi(e)x(ds
j=1 j=1 Y ta=7;(tn)
tn ty tn
> G2 (k) D HW _ oG (1) i H0d I o HO G 6) s (2.29)
tx

t, s 62
eIéH(”)d”w(s)ds> > goe_zf > 0.

73

6o ot Is)
>706 2jtkH(u)du<EO_2K

If the zero solution of (2.7) is mean square asymptotic stable, then Elx(t)* =
E|x(t, tk,¢)|2—>0 as t—0. Since t, — Tj(t;,) = oo, t, — 6;(t,) — o0 as n— oo and condition (ii)
and (2.11) hold,

2
— 0, asn-— oo, (2.30)

n n t,
Elx(tn) - Z gi(tn)x(tn — 7 (tn)) — Z hj(s)x(s)ds
=1 j

=1 Jtu —Tj (tn)

which contradicts (2.29). Therefore, (2.11) is necessary for Theorem 2.1. This completes the
proof. O

Remark 2.2. Theorem 2.1 still holds if condition (ii) is satisfied for ¢t > t, for some t, € R* .
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Remark 2.3. Theorem 2.1 improves Theorem C under different conditions.

Corollary 2.4. Suppose that T; is differential, the inverse function g;(t) of t — Tj(t) exists, and there
exists a constant a € (0, 1) such that for t > 0, lim inftqooféQ(s)ds > —o0 and

NAGIEDY I |bj(gj(s))]ds + >, f e QW |py(5)7(s) - g;(5)Q(s)|ds
j=1 j=1 7t=7;(t) j=170

n t s t n 2 12
+Zf e‘f!Q(u)du|Q(s)| |bj (gj(u))|duds+2 <I e~2,Qw)du (Z'Cf(s)|> ds> <a<l,
j=1 0 ) 0

s-Tj(s j=1
(2.31)
where Q(t) = Z;’zl —bj(gj(t)). Then the zero solution of (2.7) is mean square asymptotically stable if
and only ifng(s)ds — o0 as t— oo.

Remark 2.5. When h;(t) = -b;(g;(t)) for j = 1---n, Theorem 2.1 reduces to Corollary 2.4. On the

other hand, we choose g;(t) = ¢j(t) =0 and b; = —E]- for j = 1---n, then Corollary 2.4 reduces
to Theorem B.

3. Two examples

In this section, we give two examples to illustrate applications of Theorem 2.1 and
Corollary 2.4.

Example 3.1. Consider the following linear neutral stochastic delay differential equation:

d<x(t)—x(t - t/2)> _ <_ x(t-t/2) 3Sint+4x<t ~ E))dt+< O x(t_Sint)>dW(t).

1000 16+16t 48+48t 4 24/3 ¥ 4  12+/3+4t
(3.1)
Then the zero solution of (3.1) is mean square asymptotically stable.
Proof. Choosing hi(t) =1/(8 + 16t) and h(t) = 7/(48 + 64t) in Theorem 2.1, we have
1 7 11 13
= <H@#) < ———
HO =576 " mverrr Brom =1V Brar
2 t 1 t v
hi(s)|ds = I ——ds + j ———ds — 0.07479, ast— oo,
jZlJ;—Tj(t)l ] | t/28+ 165 3t/448 +64S
2 t " S t " 13
Zj e JHWd H (s))| |hj(u)|duds < f el A1/ st 2 007479 ds < 0.08839,
= s-mi(s o 48 + 64s

1/2

1/2
t 2 2 t
, : 1
-2[ H (u)du . < -1/ 24+B32u))du = d > <0.21320
2<f06 <]Z:1]|C](S)I> d5> —2<Le 8(24+32) ) ’

2 o
ZJ; e‘sz(”)d”|(h]-(s - 7j(s))(1 - T]'-(S)) +bj(s) —gj(s)H(s)|ds
<

t
< j e—f§<11/<48+64u>>du< 0.015 17 >ds <00 17 _ (51634,
0

18+ 64s | 144+ 1923 11 "33
3.2)
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It easy to check that fgoH(s)ds = oo. Let & = 0.001 + 0.07479 + 0.08839 + 0.21320 + 0.51634.
Then, a = 0.89372 < 1 and the zero solution of (3.1) is mean square asymptotically stable by
Theorem 2.1. O

Example 3.2. Consider the following delay differential equation:

L t 1 2
x(t) = 6+4tx<t 3> 12+4tx<t 3t>’ (33)

Then the zero solution of (3.3) is asymptotically stable.

Proof. Choosing hi(t) = hy(t) = 1/ (4 + 4t) in Theorem 2.1, we have H(t) = 1/(2 + 2t) and

2 t t t
Zj |h]~(s)|ds=J‘ ! ds+f 1 ds—>lln3—lln2=0.37602, as t — oo,
= iz /3t +4s 134 +4s 2 4
2 t ; s t ; 1
> f el (s)| |hj(w)|duds < f el W/ @2w)dn_—__ (37602 ds < 0.37602.
j=1 0 5-T7j(s) 0 2+12s
(3.4)
Notice that g;(t) = ¢;(t) =0 and
2
2l (ri(s = 7(9)) (1= 7(5)) + by (5) = q;(5)H (5]
= (3.5)

3 11 0
12+4s 3 12+4s|

13 2 1
" |12+8s 3 6+4s

+ '

It is easy to see that all the conditions of Theorem 2.1 hold for a = 0.37602 +0.37602 = 0.75204 <
1. Thus, Theorem 2.1 implies that the zero solution of (3.3) is asymptotically stable.
However, Theorem B cannot be used to verify that the zero solution of (3.3) is

asymptotically stable. In fact, by(t) = 1/(6 + 4t), by(t) = 1/(12 + 4t), bi(g1(t)) = 1/(6 + 6t),
by(g(t) =1/(12 +12t), and |Q(t)| = 1/ (4 + 4t). As t — oo,

2 t t
— 1 1 1 1
bi(gi(s) dsSJ‘ ds+f ————ds— -In3--1In2=0.15913.
Z; J;_T]-(t)l ](g] ) | (2/3)t 6 + 65 t/3 12 +12s 4 6

(3.6)
Notice that

1 1 1
+ < .
18+12s 18+ 6s ~ 4+4s

2 —
> [bi(s)7(s) — 4;(5)Q(s)| = (3.7)
j=1

It follows from (3.7) that

2 ot _ t
S [ et o)rits) - gi9)Q()|ds < [ e fwmn Las<1 Gy
~ }, 0 4 +4s
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From (3.6), we obtain

2 t s t

t — t 1
Zf e 2| O (s) II |bj(gj(w))|duds < f e H/ G~ .015913 ds < 0.15913.
i—1 /0

s—Tj(s) 0
(3.9)
Combining (3.6), (3.8), and (3.9), we see that the condition (2.4) of Theorem B does not hold
with a = 1.31825. O
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