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1. Introduction

We start with a short presentation of the notion of an iterated function system (IFS), one of the
most common and most general ways to generate fractals. This will serve as a framework for
our generalization of an iterated function system.

Then, we introduce the notion of a GIFS, which is a finite family of functions fk : Xm→X,
where (X, d) is a metric space and m ∈ N. In case that (X, d) is a compact metric space and the
functions fk are contractions, using some fixed point theorems for contractions from Xm to X,
we prove the existence of the attractor of such a GIFS and its continuous dependence in the
fk’s.

IFSs were introduced in their present form by Hutchinson (see [1]) and popularized
by Barnsley (see [2]). In the last period, IFSs have attracted much attention being used from
researchers who work on autoregressive time series, engineer sciences, physics, and so forth.
For applications of IFSs in image processing theory, in the theory of stochastic growth models,
and in the theory of random dynamical systems, one can consult [3–5].

There is a current effort to extend Hutchinson’s classical framework for fractals to more
general spaces and infinite IFSs.
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Let us mention some papers containing results on this direction.
Results concerning infinite iterated function systems have been obtained for the case

when the attractor is compact (see, e.g., [6] where the case of a countable iterated function
system on a compact metric space is considered). In [7], we provide a general framework
where attractors are nonempty closed and bounded subsets of topologically complete metric
spaces and where the IFSs may be infinite, in contrast with the classical theory (see [2]), where
only attractors that are compact metric spaces and IFSs that are finite are considered.

Gwóźdź-Łukawska and Jachymski [8] discuss the Hutchinson-Barnsley theory for
infinite iterated function systems.

Łoziński et al. [9] introduce the notion of quantum iterated function systems (QIFSs)
which is designed to describe certain problems of nonunitary quantum dynamics.

Käenmäki [10] constructs a thermodynamical formalism for very general iterated
function systems.

Leśniak [11] presents a multivalued approach of infinite iterated function systems.

2. Preliminaries

Notations. Let (X, dX) and (Y, dY ) be two metric spaces.
As usual, C(X,Y ) denotes the set of continuous functions from X to Y , and d : C(X,Y )×

C(X,Y )→R+ = R+ ∪ {∞}, defined by

d(f, g) = sup
x∈X

dY

(
f(x), g(x)

)
, (2.1)

is the generalized metric on C(X,Y ).
For a sequence (fn)n of elements of C(X,Y ) and f ∈ C(X,Y ), fn

s−→ f denotes the
pointwise convergence, fn

u·c−−→ f denotes the uniform convergence on compact sets, and fn
u−→ f

denotes the uniform convergence, that is, the convergence in the generalized metric d.

Definition 2.1. Let(X, d) be a complete metric space and let m ∈ N. For a function f : Xm =
×m
k=1X→X, the number

inf
{
c : d

(
f
(
x1, . . . , xm

)
, f

(
y1, . . . , ym

))

≤ cmax
{
d
(
x1, y1), . . . , d

(
xm, ym)

}
, ∀x1, . . . , xm, y1, . . . , ym ∈ X

} (2.2)

which is the same as

sup
{
d
(
f
(
x1, . . . , xm

)
, f

(
y1, . . . , ym

))
: max

(
d
(
x1, y1

)
, . . . , d

(
xm, ym

))}
, (2.3)

where the sup is taken over x1, . . . , xm, y1, . . . , ym ∈ X such that

max
{
d
(
x1, y1

)
, . . . , d

(
xm, ym

)}
> 0, (2.4)

is denoted by Lip(f) and is called the Lipschitz constant of f .
A function f : Xm→X is called a Lipschitz function if Lip(f) < ∞ and a Lipschitz

contraction if Lip(f) < 1.
A function f : Xm→X is said to be a contraction if

d
(
f
(
x1, . . . , xm

)
, f

(
y1, . . . , ym

))
< max

{
d
(
x1, y1

)
, . . . , d

(
xm, ym

)}
, (2.5)

for every x1, x2, . . . , xm, y1, y2, . . . , ym ∈ X, such that xi /=yi for some i ∈ {1, 2, . . . , n}.
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LConm(X) denotes the set

{
f : Xm −→ X : Lip(f) < 1

}
(2.6)

and Conm(X) denotes the set

{
f : Xm −→ X : f is a contraction

}
. (2.7)

Remark 2.2. It is obvious that

LConm(X) ⊆ Conm(X). (2.8)

Notations. P(X) denotes the family of all subsets of a given set X and P∗(X) denotes the set
P(X) \ {∅}.

For a subset A of P(X), by A∗ we mean A \ {∅} .
Given a metric space (X, d), K(X) denotes the set of compact subsets of X and B(X)

denotes the set of closed bounded subsets of X.

Remark 2.3. It is obvious that

K(X) ⊆ B(X) ⊆ P(X). (2.9)

Definition 2.4. For a metric space (X, d), one considers on P∗(X) the generalized Hausdorff-
Pompeiu pseudometric h : P∗(X) × P∗(X)→ [0,+∞] defined by

h(A,B) = max
(
d(A,B), d(B,A)

)

= inf
{
r ∈ [0,∞] : A ⊆ B(B, r), B ⊆ B(A, r)

}
,

(2.10)

where

B(A, r) =
{
x ∈ X : d(x,A) < r

}
,

d(A,B) = sup
x∈A

d(x, B) = sup
x∈A

(
inf
y∈B

d(x, y)
)
.

(2.11)

Remark 2.5. The Hausdorff-Pompeiu pseudometric is a metric on B∗(X) and, in particular, on
K∗(X).

Remark 2.6. The metric spaces (B∗(X), h) and (K∗(X), h) are complete, provided that (X, d) is
a complete metric space (see [2, 7, 12]). Moreover, (K∗(X), h) is compact, provided that (X, d)
is a compact metric space (see [2]).

The following proposition gives the important properties of the Hausdorff-Pompeiu
pseudometric (see [2, 13]).

Proposition 2.7. Let (X, dX) and (Y, dY ) be two metric spaces. Then

(i) ifH and K are two nonempty subsets of X, then

h(H,K) = h
(
H,K

)
; (2.12)
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(ii) if (Hi)i∈I and (Ki)i∈I are two families of nonempty subsets of X, then

h

(
⋃

i∈I
Hi,

⋃

i∈I
Ki

)

≤ sup
i∈I

h
(
Hi,Ki

)
; (2.13)

(iii) ifH and K are two nonempty subsets of X and f : X→X is a Lipschitz function, then

h
(
f(K), f(H)

) ≤ Lip(f)h(K,H). (2.14)

Definition 2.8. Let (X, d) be a complete metric space and let m ∈ N. A generalized iterated
function system (in short a GIFS) on X of order m, denoted by S = (X, (fk)k=1,n), consists of a
finite family of functions (fk)k=1,n, fk : Xm →X such that f1, . . . , fn ∈ Conm(X).

Definition 2.9. Let f : Xm→X be a continuous function. The function Ff : K∗(X)m→K∗(X)
defined by

Ff

(
K1, K2, . . . , Km

)
= f

(
K1 ×K2 × · · · ×Km

)

=
{
f
(
x1, x2, . . . , xm

)
: xj ∈ Kj, ∀ j ∈ {1, . . . , m}}

(2.15)

is called the set function associated to the function f .

Definition 2.10. Given S = (X, (fk)k=1,n) a generalized iterated function system on X of order
m, the function FS : K∗(X)m→K∗(X) defined by

FS
(
K1, K2, . . . , Km

)
=

n⋃

k=1

Ffk

(
K1, K2, . . . , Km

)
(2.16)

is called the set function associated to S.

Lemma 2.11. For a sequence (fn)n of elements of C(Xm,X) and f ∈ C(Xm,X) such that fn
u→ f and

for K1, K2, . . . , Km ∈ K∗(X), one has

fn
(
K1 ×K2 × · · · ×Km

) −→ f
(
K1 ×K2 × · · · ×Km

)
(2.17)

in (K∗(X), h).

Proof. Indeed, the conclusion follows from the below inequality:

h
(
fn
(
K1 × · · · ×Km

)
, f

(
K1 × · · · ×Km

))

≤ sup
x1∈K1,...,xm∈Km

d
(
fn
(
x1, . . . , xm

)
, f

(
x1, . . . , xm

))
,

(2.18)

which is valid for all n ∈ N.

Proposition 2.12. Let (X, dX) and (Y, dY ) be two metric spaces and let fn, f ∈ C(X,Y ) be such that
supn≥1Lip(fn) < +∞ and fn

s−→ f on a dense set in X.
Then

Lip(f) ≤ sup
n≥1

Lip
(
fn
)
, fn

u.c−−−→ f . (2.19)
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Proof. Set M := supn≥1Lip(fn).
Let us considerA = {x ∈ X | fm(x)→ f(x)}, which is a dense set inX, letK be a compact

set in X, and let ε > 0.
Since f is uniformly continuous onK, there exists δ ∈ (0, ε/3(M+1)) such that if x, y ∈ K

and dX(x, y) < δ, then

dY

(
f(x), f(y)

)
<

ε

3
. (2.20)

Since K is compact, there exist x1, x2, . . . , xn ∈ K such that

K ⊆
n⋃

i=1

B

(
xi,

δ

2

)
. (2.21)

Taking into account the fact that A is dense in X, we can choose y1, y2, . . . , yn ∈ A such
that y1 ∈ B(x1, δ/2), . . . , yn ∈ B(xn, δ/2).

Since, for all i ∈ {1, . . . , n}, limm→∞fm(yi) = f(yi), there exists mε ∈ N such that for
every m ∈ N, m ≥ mε, we have

dY

(
fm

(
yi

)
, f

(
yi

))
<

ε

3
, (2.22)

for every i ∈ {1, . . . , n}.
For x ∈ K, there exists i ∈ {1, . . . , n}, such that x ∈ B(xi, δ/2) and therefore

dX

(
x, yi

) ≤ dX

(
x, xi

)
+ dX

(
xi, yi

)
<
δ

2
+
δ

2
< δ, (2.23)

so

dY

(
f
(
yi

)
, f(x)

)
<

ε

3
. (2.24)

Hence, form ≥ mε, we have

dY

(
fm(x), f(x)

) ≤ dY

(
fm(x), fm

(
yi

))
+ dY

(
fm

(
yi

)
, f

(
yi

))
+ dY

(
f
(
yi

)
, f(x)

)

≤ MdX

(
x, yi

)
+
ε

3
+
ε

3

≤ M
ε

3(M + 1)
+
2ε
3

< ε.

(2.25)

Consequently, as x was arbitrarily chosen in K, we infer that fn
u→ f on K, so

fn
u·c−−→ f. (2.26)

The inequality Lip(f) ≤ supn≥1Lip(fn) is obvious.

From Lemma 2.11 and Proposition 2.12, using Proposition 2.7(ii) we obtain the follow-
ing lemma.

Lemma 2.13. Let (X, dX) be a complete metric space, letm ∈ N, let Sj = (X, (fj

k
)k=1,n), where j ∈ N

∗,
and let S = (X, (fk)k=1,n) be generalized iterated function systems of order m, such that, for all k ∈
{1, . . . , n}, f

j

k

s−→ fk on a dense subset of Xm.
Then, for every K1, K2, . . . , Km ∈ K∗(X),

FSj

(
K1, K2, . . . , Km

) −→ FS
(
K1, K2, . . . , Km

)
, (2.27)

in (K∗(X), h).
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3. The existence of the attractor of a GIFs for contractions

In this section, m is a natural number, (X, d) is a compact metric space, and S = (X, (fk)k=1,n)
is a generalized iterated function system on X of orderm.

First, we prove that FS : K∗(X)m→K∗(X) is a contraction (Proposition 3.1), then, using
some results concerning the fixed points of contractions fromXm toX (Theorem 3.4), we prove
the existence of the attractor of S (Theorem 3.5) and its continuous dependence in the fk’s
(Theorem 3.7).

The following proposition is crucial.

Proposition 3.1. FS : K∗(X)m →K∗(X) is a contraction.

Proof. By Proposition 2.7, we have

h
(
FS

(
K1, K2, . . . , Km

)
, FS

(
H1,H2, . . . ,Hm

))

= h

(
n⋃

k=1

fk
(
K1 ×K2 × · · · ×Km

)
,

n⋃

k=1

fk
(
H1 ×H2 × · · · ×Hm

)
)

= h

(
n⋃

k=1

Ffk

(
K1, K2, . . . , Km

)
,

n⋃

k=1

Ffk

(
H1,H2, . . . ,Hm

)
)

≤ max
{
h
(
f1
(
K1 × · · · ×Km

)
, f1

(
H1 × · · · ×Hm

))
, . . . , h

(
fn
(
K1 × · · · ×Km

)
,

fn
(
H1 × · · · ×Hm

))}

≤ max
{
h
(
H1, K1

)
, . . . , h

(
Hm,Km

)}
,

(3.1)

for all K1, . . . , Km,H1, . . . ,Hm ∈ K∗(X).
It remains to prove that the above inequality is strict.
Let K1, K2, . . . , Km,H1,H2, . . . ,Hm ∈ K∗(X) be fixed such that Ki /=Hi for some i ∈

{1, 2, . . . , m}.
Since

h
(
FS

(
K1, . . . , Km

)
, FS

(
H1, . . . ,Hm

))

= max
(
d
(
FS

(
K1, . . . , Km

)
, FS

(
H1, . . . ,Hm

))
, d

(
FS

(
H1, . . . ,Hm

)
, FS

(
K1, . . . , Km

)))
,
(3.2)

we can suppose, by using symmetry arguments, that

h
(
FS

(
K1, . . . , Km

)
, FS

(
H1, . . . ,Hm

))
= d

(
FS

(
K1, . . . , Km

)
, FS

(
H1, . . . ,Hm

))
, (3.3)

that is,

h

(
n⋃

k=1

fk
(
K1 × · · · ×Km

)
,

n⋃

k=1

fk
(
H1 × · · · ×Hm

)
)

= d

(
n⋃

k=1

fk
(
K1 × · · · ×Km

)
,

n⋃

k=1

fk
(
H1 × · · · ×Hm

)
)

.

(3.4)
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Let us note that for every K1, K2, . . . , Km ∈ K∗(X), since f1, . . . , fn are continuous
functions, FS(K1, K2, . . . , Km) =

⋃n
k=1fj(K1, K2, . . . , Km) is a compact set.

Since for all K1, K2, . . . , Km,H1,H2, . . . ,Hm ∈ K∗(X), the product topological space
{1, 2, . . . , n} × (×m

j=1Kj), where {1, 2, . . . , n} is endowed with the discrete topology, is compact
and the function t : {1, 2, . . . , n} × (×m

j=1Kj)→R, given by

t
(
k, x1, x2, . . . , xm

)
= d

(
fk
(
x1, x2, . . . , xm

)
, FS

(
H1,H2, . . . ,Hm

))
, (3.5)

is continuous and

d
(
FS

(
K1, K2, . . . , Km

)
, FS

(
H1,H2, . . . ,Hm

))

= d

(
n⋃

k=1

fj
(
K1, K2, . . . , Km

)
, FS

(
H1,H2, . . . ,Hm

)
)

= sup
(j,x1,x2,...,xm)∈{1,2,...,n}×(×m

j=1Kj)

{
d
(
fj
(
x1, x2, . . . , xm

)
, FS

(
H1,H2, . . . ,Hm

))}

= sup
(j,x1,x2,...,xm)∈{1,2,...,n}×(×m

j=1Kj)

{
t
(
k, x1, x2, . . . , xm

)
, FS

(
H1,H2, . . . ,Hm

))}
,

(3.6)

it follows that there exist k ∈ {1, 2, . . . , n}, x1 ∈ K1, x2 ∈ K2, . . . , and xm ∈ Km such that

d
(
fk(x1, . . . , xm

)
, FS

(
H1, . . . ,Hm

))
= d

(
FS

(
K1, . . . , Km

)
, FS

(
H1, . . . ,Hm

))

= h
(
FS

(
K1, . . . , Km

)
, FS

(
H1, . . . ,Hm

))
.

(3.7)

Let us also note that since for all k ∈ {1, . . . , n}, the function tk : Hk →R, given by

tk(y) = d
(
xk, y

)
, (3.8)

is continuous,Hk is a compact set, and d(xk,Hk) = inf{d(xk, y) : y ∈ Hk}, it follows that there
exists yk ∈ Hk such that

d
(
xk, yk

)
= d

(
xk,Hk

)
, (3.9)

thus

d
(
xk, yk

)
= d

(
xk,Hk

) ≤ d
(
Kk,Hk

) ≤ h
(
Kk,Hk

)
. (3.10)

Now we are able to prove that

h
(
FS

(
K1, K2, . . . , Km

)
, FS

(
H1,H2, . . . ,Hm

))
< max

{
h
(
H1, K1

)
, . . . , h

(
Hm,Km

)}
, (3.11)

for all K1, K2, . . . , Km,H1,H2, . . . ,Hm ∈ K∗(X) such that Ki /=Hi for some i ∈ {1, 2, . . . , m}.
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Indeed, we have

h
(
FS

(
K1, K2, . . . , Km

)
, FS

(
H1,H2, . . . ,Hm

))

= d
(
fk
(
x1, x2, . . . , xm

)
, FS

(
H1,H2, . . . ,Hm

))

= d

(

fk
(
x1, x2, . . . , xm

)
,

n⋃

k=1

fk
(
H1 ×H2 × · · · ×Hm

)
)

= inf
{
d
(
fk
(
x1, . . . , xm

)
, fk

(
y1, . . . , ym

))
: k ∈ {1, 2, . . . , n}, y1 ∈ H1, . . . , ym ∈ Hm

}

≤ d
(
fk
(
x1, . . . , xm

)
, fk

(
y1, . . . , ym

))
.

(3.12)

If xk = yk, for all k ∈ {1, 2, . . . , n}, then

h
(
FS

(
K1, K2, . . . , Km

)
, FS

(
H1,H2, . . . ,Hm

))
= 0, (3.13)

so the above claim is true.
Otherwise, we have

h
(
FS

(
K1, K2, . . . , Km

)
, FS

(
H1,H2, . . . ,Hm

)) ≤ d
(
fk
(
x1, . . . , xm

)
, fk

(
y1, . . . , ym

))

< max
{
d
(
x1, yk

)
, . . . , d

(
xm, ym

)}

= max
{
d
(
x1,H1

)
, . . . , d

(
xm,Hm

)}

≤ max
{
d
(
K1,H1

)
, . . . , d

(
Km,Hm

)}

≤ max
{
h
(
K1,H1

)
, . . . , h

(
Km,Hm

)}
,

(3.14)

for all K1, K2, . . . , Km,H1,H2, . . . ,Hm ∈ K∗(X) such that Ki /=Hi for some i ∈ {1, 2, . . . , m}.
Let us recall the following result.

Theorem 3.2. For a contraction f : X→X, there exists a unique α ∈ X such that f(α) = α.
For every x0 ∈ X, the sequence (xk)k≥0, defined by

xk+1 = f
(
xk

)
, (3.15)

for all k ∈ N, is convergent to α.
Moreover, if fj : X→X, where j ∈ N, are contractions having the fixed points αj , such that

fj
s−→ f on a dense subset of X, then

lim
j→∞

αj = α. (3.16)

Let us mention that the first part of Theorem 3.2 is due to Edelstein (see [14]).

Theorem 3.3. Let f : X→X be a function having the property that there exists p ∈ N
∗ such that f [p]

is a contraction.
Then there exists a unique α ∈ X such that f(α) = α and, for any x0 ∈ X, the sequence (xk)k≥0

defined by xk+1 = f(xk) is convergent to α.
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Proof. It is clear that f [p] has a unique fixed point α ∈ X and, for every y0 ∈ X, the sequence
(yk)k≥1 defined by yk+1 = f [p](yk) is convergent to α.

In particular for y
j

0 = f [j](x0), where x0 ∈ X and j ∈ {0, 1, . . . , p − 1}, the sequence
(y j

n = f [np+j](x0))n≥0 is convergent to α.
It follows that the sequence (xk)k≥0, defined by xk+1 = f(xk), is convergent to α.
Since every fixed point of f is a fixed point of f [p], it follows that α is the unique fixed

point of f .

Theorem 3.4. Given a contraction f : Xm→X, there exists a unique α ∈ X such that

f(α, α, . . . , α) = α. (3.17)

For every x0, x1, . . . , xm−1 ∈ X, the sequence (xk)k≥0 defined by

xk+m = f
(
xk+m−1, xk+m−2, . . . , xk

)
, (3.18)

for all k ∈ N, is convergent to α.
Moreover, if for every j ∈ N, fj : Xm→X is a contraction and αj is the unique point ofX having

the property that

fj
(
αj, αj , . . . , αj

)
= αj, (3.19)

then

lim
j→∞

αj = α, (3.20)

provided that fj
s−→ f on a dense subset of Xm.

Proof. Let g : X→X and gj : X→X be the functions defined by

g(x) = f(x, x, . . . , x),

gj(x) = fj(x, x, . . . , x),
(3.21)

for every x ∈ X.
Then g and gj are contractions.
It follows, using Theorem 3.2, that there exist unique α ∈ X and αj ∈ X such that

α = g(α) = f(α, α, . . . , α),

αj = g
(
αj

)
= f

(
αj, αj , . . . , αj

)
,

lim
j→∞

αj = α.

(3.22)
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The function h : Xm→Xm, given by

h
(
x0, x1, . . . , xm−1

)
=
(
x1, x2, . . . , xm−1, f

(
x0, x1, . . . , xm−1

))

=
(
x1, x2, . . . , xm−1, xm

)
,

(3.23)

for all x0, x1, . . . , xm−1 ∈ X, fulfills the conditions of Theorem 3.3 (taking p = m).
Therefore, there exists (β1, β2, . . . , βm) ∈ Xm such that

h
(
β1, β2, . . . , βm

)
=
(
β1, β2, . . . , βm

)
, (3.24)

so

β1 = β2 = · · · = βm = f
(
β1, β2, . . . , βm

)
. (3.25)

Hence,

β1 = β2 = · · · = βm = α. (3.26)

Then,

lim
l→∞

h[l](x0, x1, . . . , xm−1
)
= lim

l→∞
(
xl, xl+1, . . . , xl+m−1

)

= (α, α, . . . , α),
(3.27)

so we conclude our claim.

Using Proposition 3.1, Theorem 3.4, and Lemma 2.13, we obtain the following two
results.

Theorem 3.5. Given a generalized iterated function system of order mS = (X, (fk)k=1,n), there exists
a unique A(S) ∈ K∗(X) such that

FS
(
A(S), A(S), . . . , A(S)) = A(S). (3.28)

Moreover, for anyH0,H1, . . . ,Hm−1 ∈ K∗(X), the sequence (Hn)n≥0, defined by

Hn+m = FS
(
Hn+m−1,Hn+m−2, . . . ,Hn

)
, (3.29)

for all n ∈ N, is convergent to A(S).

Definition 3.6. Let m be a fixed natural number, let (X, d) be a compact metric space, and let
S = (X, (fk)k=1,n) be a generalized iterated function system on X of order m .

The unique set A(S) given by the previous theorem is called the attractor of the GIFS S.

Theorem 3.7. If S = (X, (fk)k=1,n) and Sj = (X, (fj

k
)k=1,n), where j ∈ N, are GIFS of order m such

that, for every k ∈ {1, 2, . . . , n}, fj

k

s−→ fk on a dense set in Xm, then

A
(Sj

) −→ A(S). (3.30)
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