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The purpose of this article is to prove strong convergence theorems for fixed points of closed hemi-
relatively nonexpansive mappings. In order to get these convergence theorems, the monotone hy-
brid iteration method is presented and is used to approximate those fixed points. Note that the
hybrid iteration method presented by S. Matsushita and W. Takahashi can be used for relatively
nonexpansive mapping, but it cannot be used for hemi-relatively nonexpansive mapping. The re-
sults of this paper modify and improve the results of S. Matsushita and W. Takahashi (2005), and
some others.
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1. Introduction

In 2005, Shin-ya Matsushita andWataru Takahashi [1] proposed the following hybrid iteration
method (it is also called the CQ method) with generalized projection for relatively nonexpan-
sive mapping T in a Banach space E:

x0 ∈ C chosen arbitrarily,

yn = J−1
(
αnJxn +

(
1 − αn

)
JTxn

)
,

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ
(
z, xn

)}
,

Qn =
{
z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0

}
,

xn+1 = Π
Cn∩Qn

(
x0
)
.

(1.1)

They proved the following convergence theorem.
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Theorem 1.1 (MT). Let E be a uniformly convex and uniformly smooth real Banach space, let C be a
nonempty, closed, and convex subset of E, let T be a relatively nonexpansive mapping from C into itself,
and let {αn} be a sequence of real numbers such that 0 ≤ αn < 1 and lim sup n→∞αn < 1. Suppose
that {xn} is given by (1.1), where J is the duality mapping on E. If the set F(T) of fixed points of T is
nonempty, then {xn} converges strongly to ΠF(T)x0, where ΠF(T)(·) is the generalized projection from
C onto F(T).

The purpose of this article is to prove strong convergence theorems for fixed points of
closed hemi-relatively nonexpansive mappings. In order to get these convergence theorems,
the monotone hybrid iteration method is presented and is used to approximate those fixed
points. Note that the hybrid iteration method presented by S.Matsushita andW. Takahashi can
be used for relatively nonexpansive mapping, but it cannot be used for hemi-relatively non-
expansive mapping. The results of this paper modify and improve the results of S.Matsushita
and W. Takahashi [1], and some others.

2. Preliminaries

Let E be a real Banach space with dual E∗ . We denote by J the normalized duality mapping
from E to 2E

∗
defined by

Jx =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, (2.1)

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E∗ is uniformly
convex, then J is uniformly continuous on bounded subsets of E. In this case, J is singe valued
and also one to one.

Recall that if C is a nonempty, closed, and convex subset of a Hilbert space H and PC :
H → C is the metric projection of H onto C, then PC is nonexpansive. This is true only when
H is a real Hilbert space. In this connection, Alber [2] has recently introduced a generalized
projection operator ΠC in a Banach space E which is an analogue of the metric projection in
Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional defined as
[2, 3] by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 for x, y ∈ E. (2.2)

Observe that, in a Hilbert space H, (2.2) reduces to φ(x, y) = ‖x − y‖2, x, y ∈ H.
The generalized projection ΠC : E → C is a map that assigns to an arbitrary point x ∈ E

the minimum point of the functional φ(y, x), that is, ΠCx = x, where x is the solution to the
minimization problem

φ(x, x) = min
y∈C

φ(y, x), (2.3)

existence and uniqueness of the operator ΠC follow from the properties of the functional
φ(y, x) and strict monotonicity of the mapping J (see, e.g., [2–4]). In Hilbert space,ΠC = PC. It
is obvious from the definition of the function φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖ + ‖x‖)2 ∀x, y ∈ E. (2.4)
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Remark 2.1. IfE is a reflexive strict convex and smooth Banach space, then for x, y ∈ E, φ(x, y) =
0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From (2.4), we have
‖x‖ = ‖y‖. This implies 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J, we have Jx = Jy, that
is, x = y; see [5] for more details.

We refer the interested reader to the [6], where additional information on the duality
mapping may be found.

Let C be a closed convex subset of E, and Let T be a mapping from C into itself.
We denote by F(T) the set of fixed points of T . T is called hemi-relatively nonexpansive if
φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T).

A point p inC is said to be an asymptotic fixed point of T [7] ifC contains a sequence {xn}
which converges weakly to p such that the strong lim n→∞(Txn − xn) = 0. The set of asymptotic
fixed points of T will be denoted by F̂(T). A hemi-relatively nonexpansive mapping T from C
into itself is called relatively nonexpansive [1, 7, 8] if F̂(T) = F(T).

We need the following lemmas for the proof of our main results.

Lemma 2.2 (Kamimura and Takahashi [4], [1, Proposition 2.1]). Let E be a uniformly convex and
smooth real Banach space and let {xn}, {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn}
or {yn} is bounded, then ‖xn − yn‖ → 0.

Lemma 2.3 (Alber [2], [1, Proposition 2.2]). Let C be a nonempty closed convex subset of a smooth
real Banach space E and x ∈ E. Then, x0 = ΠCx if and only if

〈
x0 − y, Jx − Jx0

〉 ≥ 0 ∀y ∈ C. (2.5)

Lemma 2.4 (Alber [2], [1, Proposition 2.3]). Let E be a reflexive, strict convex, and smooth real
Banach space, let C be a nonempty closed convex subset of E and let x ∈ E. Then

φ
(
y,Π

c
x
)
+ φ

(
Π
c
x, x

)
≤ φ(y, x) ∀y ∈ C. (2.6)

By using the similar method as [1, Proposition 2.4], the following lemma is not hard to
prove.

Lemma 2.5. Let E be a strictly convex and smooth real Banach space, let C be a closed convex subset
of E, and let T be a hemi-relatively nonexpansive mapping from C into itself. Then F(T) is closed and
convex.

Recall that an operator T in a Banach space is called closed, if xn → x, Txn → y, then
Tx = y.

3. Strong convergence for hemi-relatively nonexpansive mappings

Theorem 3.1. Theorem 3.1 Let E be a uniformly convex and uniformly smooth real Banach space, let
C be a nonempty closed convex subset of E, let T : C → C be a closed hemi-relatively nonexpansive
mapping such that F(T)/=∅. Assume that {αn} is a sequence in [0, 1] such that lim sup n→∞αn < 1.
Define a sequence {xn} in C by the following algorithm:
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x0 ∈ C chosen arbitrarily,

yn = J−1
(
αnJxn +

(
1 − αn

)
JTxn

)
,

Cn =
{
z ∈ Cn−1 ∩Qn−1 : φ

(
z, yn

) ≤ φ
(
z, xn

)}
,

C0 =
{
z ∈ C : φ

(
z, y0

) ≤ φ
(
z, x0

)}
,

Qn =
{
z ∈ Cn−1 ∩Qn−1 :

〈
xn − z, Jx0 − Jxn

〉 ≥ 0
}
,

Q0 = C,

xn+1 = Π
Cn∩Qn

(
x0
)
,

(3.1)

where J is the duality mapping on E. Then {xn} converges strongly to ΠF(T)x0, where ΠF(T) is the
generalized projection from C onto F(T).

Proof. We first show that Cn and Qn are closed and convex for each n ≥ 0. From the definition
of Cn and Qn, it is obvious that Cn is closed and Qn is closed and convex for each n ≥ 0. We
show that Cn is convex for any n ≥ 0. Since

φ
(
z, yn

) ≤ φ
(
z, xn

)
(3.2)

is equivalent to

2
〈
z, Jxn − Jyn

〉 ≤ ∥∥xn

∥∥2 − ∥∥yn

∥∥2
, (3.3)

it follows that Cn is convex.
Next, we show that F(T) ⊂ Cn for all n ≥ 0. Indeed, we have for all p ∈ F(T) that

φ
(
p, yn

)
= φ

(
p, j−1

(
αnjxn +

(
1 − αn

)
jtxn

))

≤ ‖p‖2 − 2
〈
p, αnjxn +

(
1 − αn

)
jtxn

〉
+ αn

∥∥xn

∥∥2 +
(
1 − αn

)∥∥txn

∥∥2

= αnφ
(
p, xn

)
+
(
1 − αn

)
φ
(
p, txn

)

≤ αnφ
(
p, xn

)
+
(
1 − αn

)
φ
(
p, xn

)

= φ
(
p, xn

)
.

(3.4)

That is, p ∈ Cn for all n ≥ 0.
Next, we show that F(T) ⊂ Qn for all n ≥ 0, we prove this by induction. For n = 0, we

have F(T) ⊂ C = Q0. Assume that F(T) ⊂ Qn. Since xn+1 is the projection of x0 onto Cn ∩Qn, by
Lemma 2.3, we have

〈
xn+1 − z, Jx0 − Jxn+1

〉 ≥ 0, ∀z ∈ Cn ∩Qn. (3.5)

As F(T) ⊂ Cn ∩Qn by the induction assumptions, the last inequality holds, in particular, for all
z ∈ F(T). This together with the definition of Qn+1 implies that F(T) ⊂ Qn+1.

Since xn+1 = ΠCn∩Qn
x0 and Cn∩Qn ⊂ Cn−1∩Qn−1 for all n ≥ 1, we have

φ
(
xn, x0

) ≤ φ
(
xn+1, x0

)
(3.6)

for all n ≥ 0. Therefore, {φ(xn, x0)} is nondecreasing. In addition, it follows from the definition
of Qn and Lemma 2.3 that xn = ΠQn

x0. Therefore, by Lemma 2.4, we have

φ
(
xn, x0

)
= φ

(
Π
Qn

x0, x0

)
≤ φ

(
p, x0

) − φ
(
p, xn

) ≤ φ
(
p, x0

)
, (3.7)
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for each p ∈ F(T) ⊂ Qn for all n ≥ 0. Therefore, φ(xn, x0) is bounded, this together with (3.6)
implies that the limit of {φ(xn, x0)} exists. Put

lim
n→∞

φ
(
xn, x0

)
= d. (3.8)

From Lemma 2.4, we have, for any positive integerm, that

φ
(
xn+m, xn

)
= φ

(
xn+m,Π

Cn

x0

)

≤ φ
(
xn+m, x0

) − φ
(
Π
Cn

x0, x0

)
= φ

(
xn+m, x0

) − φ
(
xn, x0

)
,

(3.9)

for all n ≥ 0. Therefore,

lim
n→∞

φ
(
xn+m, xn

)
= 0. (3.10)

We claim that {xn} is a Cauchy sequence. If not, there exists a positive real number ε0 > 0
and subsequence {nk}, {mk} ⊂ {n} such that

∥∥xnk+mk
− xnk

∥∥ ≥ ε0, (3.11)

for all k ≥ 1.
On the other hand, from (3.8) and (3.9) we have

φ
(
xnk+mk

, xnk

) ≤ φ
(
xnk+mk

, x0
) − φ

(
xnk

, x0
)

≤ ∣∣φ
(
xnk+mk

, x0
) − d

∣∣ + |d − φ
(
xnk

, x0
)| −→ 0, k −→ ∞.

(3.12)

Because from (3.8) we know that φ(xn, x0) is bounded, this and (2.4) imply that {xn} is also
bounded, so by Lemma 2.2 we obtain

lim
k→∞

∥∥xnk+mk
− xnk

∥∥ = 0. (3.13)

This is a contradiction, so that {xn} is a Cauchy sequence, therefore there exists a point p ∈ C
such that {xn} converges strongly to p.

Since xn+1 = ΠCn∩Qn
x0 ∈ Cn, from the definition of Cn, we have

φ
(
xn+1, yn

) ≤ φ
(
xn+1, xn

)
. (3.14)

It follows from (3.10), (3.14) that

φ
(
xn+1, yn

) −→ 0. (3.15)

By using Lemma 2.2, we have

lim
n→∞

∥
∥xn+1 − yn

∥
∥ = lim

n→∞
∥
∥xn+1 − xn

∥
∥ = 0. (3.16)



6 Fixed Point Theory and Applications

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥∥Jxn+1 − Jyn

∥∥ = lim
n→∞

∥∥Jxn+1 − Jxn

∥∥ = 0. (3.17)

Noticing that

∥
∥Jxn+1 − Jyn

∥
∥ =

∥
∥Jxn+1 −

(
αnJxn +

(
1 − αn

)
JTxn

)∥∥

=
∥∥αn

(
Jxn+1 − Jxn

)
+
(
1 − αn

)(
Jxn+1 − JTxn

)∥∥

=
∥
∥(1 − αn

)(
Jxn+1 − Jtxn

) − αn

(
Jxn − Jxn+1

)∥∥

≥ (
1 − αn

)∥∥Jxn+1 − Jtxn

∥
∥ − αn

∥
∥Jxn − Jxn+1

∥
∥,

(3.18)

which implies that

∥∥Jxn+1 − JTxn

∥∥ ≤ 1
1 − αn

(∥∥Jxn+1 − Jyn

∥∥ + αn‖Jxn − Jxn+1
∥∥). (3.19)

This together with (3.17) and lim sup n→∞αn < 1 implies that

lim
n→∞

∥∥Jxn+1 − JTxn

∥∥ = 0. (3.20)

Since J−1 is also uniformly norm-to-norm continuous on any bounded sets, we have

lim
n→∞

∥∥xn+1 − Txn

∥∥ = 0. (3.21)

Observe that

∥∥xn − Txn

∥∥ ≤ ∥∥xn − xn+1
∥∥ +

∥∥xn+1 − Txn

∥∥. (3.22)

It follows from (3.16) and (3.21) that

lim
n→∞

∥∥xn − Txn

∥∥ = 0. (3.23)

Since T is a closed operator and xn → p, then p is a fixed point of T .
Finally, we prove that p = ΠF(T)x0. From Lemma 2.4, we have

φ
(
p, Π

F(T)
x0

)
+ φ

(
Π
F(T)

x0, x0

)
≤ φ

(
p, x0

)
. (3.24)

On the other hand, since xn+1 = ΠCn∩Qn
and Cn∩Qn ⊃ F(T), for all n, we get from Lemma 2.4

that

φ
(
Π
F(T)

x0, xn+1

)
+ φ

(
xn+1, x0

) ≤ φ
(
Π
F(T)

x0, x0

)
. (3.25)

By the definition of φ(x, y), it follows that both φ(p, x0) ≤ φ(ΠF(T)x0, x0) and φ(p, x0) ≥
φ(ΠF(T)x0, x0), whence φ(p, x0) = φ(ΠF(T)x0, x0). Therefore, it follows from the uniqueness of
ΠF(T)x0 that p = ΠF(T)x0. This completes the proof.
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Theorem 3.2. Let E be a uniformly convex and uniformly smooth real Banach space, let C be a
nonempty, closed, and convex subset of E, and let T : C → C be a closed relative nonexpansive
mapping such that F(T)/=∅. Assume that {αn} is a sequences in [0, 1] such that lim sup n→∞αn < 1.
Define a sequence {xn} in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

yn = J−1
(
αnJxn +

(
1 − αn

)
JTxn

)
,

Cn =
{
z ∈ Cn−1 ∩Qn−1 : φ

(
z, yn

) ≤ φ
(
z, xn

)}
,

C0 =
{
z ∈ C : φ

(
z, y0

) ≤ φ
(
z, x0

)}
,

Qn =
{
z ∈ Cn−1 ∩Qn−1 :

〈
xn − z, Jx0 − Jxn

〉 ≥ 0
}
,

Q0 = C,

xn+1 = Π
Cn∩Qn

(
x0
)
,

(3.26)

where J is the duality mapping on E. Then {xn} converges strongly to ΠF(T)x0, where ΠF(T) is the
generalized projection from C onto F(T).

Proof. Since every relatively nonexpansive mapping is a hemi-relatively one, Theorem 3.2 is
implied by Theorem 3.1.

Remark 3.3. In recent years, the hybrid iteration methods for approximating fixed points of
nonlinear mappings have been introduced and studied by various authors [1, 8–11]. In fact, all
hybrid iterationmethods can be replaced (ormodified) bymonotone hybrid iterationmethods,
respectively. In addition, by using the monotone hybrid method we can easily show that the
iteration sequence {xn} is a Cauchy sequence, without the use of the Kadec-Klee property,
demiclosedness principle, and Opial’s condition or other methods which make use of the weak
topology.
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