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1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm ||-||, and let C be a closed
convex subset of H. Let F be a bifunction of C x C into R, where R is the set of real numbers.
The equilibrium problem for ¢ : C x C — R is to find x € C such that

p(x,y) >0 VyeC. (1.1)

The set of solutions of (1.1) is denoted by EP(¢). Given a mapping T : C — H, let ¢(x,y) =
(Tx,y — x) for all x,y € C. Then z € EP(¢) if and only if (Tz,y — z) > 0 for all y € C, that
is, z is a solution of the variational inequality. Numerous problems in physics, optimization,
and economics reduce to find a solution of (1.1). In 1997, Fldm and Antipin [1] introduced
an iterative scheme of finding the best approximation to initial data when EP(¢) is nonempty
and proved a strong convergence theorem.

Let A : C — H be amapping. The classical variational inequality, denoted by VI(A, C),
is to find x* € C such that

(Ax*,v-x*)>0 (1.2)
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for all v € C. The variational inequality has been extensively studied in the literature. See,
for example, [2, 3] and the references therein. A mapping A of C into H is called a-inverse-
strongly monotone [4, 5] if there exists a positive real number a such that

(Au - Av,u—v) > al|Au— Aol (1.3)

for all u,v € C. It is obvious that any a-inverse-strongly monotone mapping A is monotone
and Lipschitz continuous. A mapping S of C into itself is called nonexpansive if

[Su - Sv|| < |lu -2 (1.4)

for all u,v € C. We denote by F(S) the set of fixed points of S. For finding an element of
F(S) n VI(A, C), under the assumption that a set C C H is nonempty, closed, and convex,
a mapping S : C — C is nonexpansive and a mapping A : C — H is a-inverse-strongly
monotone, Takahashi and Toyoda [6] introduced the following iterative scheme:

Xni1 = 0nXpn + (1 — an) SPc(x, — Ly Axy) (1.5)

foreveryn=0,1,2,..., where xo = x € C, {a,} is asequencein (0, 1), and {1,} is a sequence
in (0, 2a). They proved that if F(S) N VI(A, C) # @, then the sequence {x,} generated by (1.5)
converges weakly to some z € F(S)NVI(A, C). Recently, motivated by the idea of Korpelevi¢’s
extragradient method [7], Nadezhkina and Takahashi [8] introduced an iterative scheme
for finding an element of F(S) N VI(A, C) and the weak convergence theorem is presented.
Moreover, Zeng and Yao [9] proposed some new iterative schemes for finding elements
in F(S) N VI(A,C) and obtained the weak convergence theorem for such schemes. Very
recently, Yao et al. [10] introduced the following iterative scheme for finding an element of
F(S)NVI(A,C) under some mild conditions. Let C be a closed convex subset of a real Hilbert
space H, A : C — H a monotone, L-Lipschitz continuous mapping, and S a nonexpansive
mapping of C into itself such that F(S)NVI(A, C) # @. Suppose that x; = u € Cand {x,}, {y.}
are given by

Yn = Pc (xn - -)LnAxn)/
(1.6)
X1 = Atk + PuXn + YuSPc (%, — MyAyn) VneN,

where {a,}, {n}, {yn} € [0,1] and {A,} C (0,1) satisfy some parameters controlling
conditions. They proved that the sequence {x,} defined by (1.6) converges strongly to a
common element of F(S) N VI(A, C).

On the other hand, S. Takahashi and W. Takahashi [11] introduced an iterative scheme
by the viscosity approximation method for finding a common element of the set of solution
(1.1) and the set of fixed points of a nonexpansive mapping in a real Hilbert space. Let S :
C — C be a nonexpansive mapping. Starting with arbitrary initial x; € C, define sequences
{xn} and {u,} recursively by

1
¢, y) + — (Y — tn, iy — x,) >0 Yy €C,
e > (1.7)

X1 = 0 f (xn) + (1= ay)Su, VneN.

They proved that under certain appropriate conditions imposed on {a,} and {r,}, the
sequences {x,} and {u,} converge strongly to z € F(S) N EP(¢), where z = Pr(s)nep(g) f (2)-
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Moreover, Aoyama et al. [12] introduced an iterative scheme for finding a common
fixed point of a countable family of nonexpansive mappings in Banach spaces and obtained
the strong convergence theorem for such scheme.

In this paper, motivated by Yao et al. [10], S. Takahashi and W. Takahashi [11] and
Aoyama et al. [12], we introduce a new extragradient method (4.2) which is mixed the
iterative schemes considered in [10-12] for finding a common element of the set of common
fixed points of nonexpansive mappings, the set of solutions of an equilibrium problem, and
the solution set of the classical variational inequality problem for a monotone L-Lipschitz
continuous mapping in a real Hilbert space. Then, the strong convergence theorem is proved
under some parameters controlling conditions. Further, we apply our result to the problem
of finding a common fixed point of a countable family of nonexpansive mappings, and the
problem of finding a zero of a monotone operator. The results obtained in this paper improve
and extend the recent ones announced by Yao et al. results [10] and many others.

2. Preliminaries

Let H be a real Hilbert space with norm |-|| and inner product (-,-) and let C be a closed
convex subset of H. For every point x € H, there exists a unique nearest point in C, denoted
by Pcx, such that

[|x - Pex|| < lx -yl VyeC. (2.1)

Pc is called the metric projection of H onto C. It is well known that Pc is a nonexpansive
mapping of H onto C and satisfies

(x -y, Pex - Pey) > || Pex - Pey|® 2.2)
for every x,y € H. Moreover, Pcx is characterized by the following properties: Pcx € C and
(x—Pex,y — Pcx) <0, (2.3)
e = yII> > [l = Pex||* + [ly = Pex|” (24)

for all x € H, y € C. For more details, see [13]. It is easy to see that the following is true:
ueVI(A,C) = u=DPc(u-\Au), L>0. (2.5)

A set-valued mapping T : H — 2! is called monotone if for all x,y € H, f € Tx, and
g € Ty imply (x -y, f — g) > 0. A monotone mapping T : H — 2H is maximal if the graph of
G(T) of T is not properly contained in the graph of any other monotone mapping. It is known
that a monotone mapping T is maximal if and only if for (x, f) e Hx H, (x-vy,f-g) >0
for every (y,g) € G(T) implies f € Tx. Let B be a monotone map of C into H, L-Lipschitz
continuous mapping and let Ncv be the normal cone to C at v € C, thatis, Ncv = {w € H :
(u—v,w) >0 for all u € C}. Define

Bv+ Ncou, veC;
To = (2.6)
&, vé¢C.

Then T is the maximal monotone and 0 € Tv if and only if v € VI(C, B); see [14].
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The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1 (see [15]). Let (E,(:,-)) be an inner product space. Then for all x,y,z € Eand a, B,y €
[0,1] with a + p +y = 1,0ne has

llax + By +yzI* = allx|l® + Byl + yllzl? - apllx - yI* - ayllx - zI* = pylly - zI>.  (2.7)
Lemma 2.2 (see [16]). Let {x,} and {z,} be bounded sequences in a Banach space E and let {p,} be
a sequence in [0,1] with 0 < liminf, ., f, <limsup,_, B, < 1. Suppose xn1 = (1 = Pn)Zn + Prxn

for all integers n > 1 and limsup,,_,__ ([1zns1 = Zull = [[Xns1 — xnll) < 0. Then, limy, .o ||z, — x4 = 0.

Lemma 2.3 (see [17]). Assume {a,} is a sequence of nonnegative real numbers such that
Ape1 < (1 - an)an +6,, n21, (2.8)

where {a,} is a sequence in (0,1) and {6,} is a sequence in R suchthat

(i) >pqan = coand

(i) imsup,_,_ (6n/an) <0o0r 3771164 < o0.
Then lim,,_a, = 0.
Lemma 2.4 (see [12, Lemma 3.2]). Let C be a nonempty closed subset of a Banach space and let
{Sn} be a sequence of mappings of C into itself. Suppose that 37", sup{||Sy+12—Snz|| : z € C} < co.

Then, for each y € C, {Sny} converges strongly to some point of C. Moreover, let S be a mapping of
C into itself defined by

Sy = &ii?osny Yy e C. (2.9)

Then lim,,_,, sup{||Sz — S,z|| : z€ C} =0.

For solving the equilibrium problem for a bifunction ¢ : C x C — R, let us assume that
¢ satisfies the following conditions:

(Al) ¢(x,x) =0forall x € C;
(A2) ¢ is monotone, thatis, ¢(x,v) + ¢(y,x) <0forall x,y € C;
(A3) foreach x,y,z € C, limy_op(tz+ (1 -t)x,y) < p(x,y);

(A4) for each x € C, y — ¢(x,y) is convex and lower semicontinuous.
The following lemma appears implicitly in [18].

Lemma 2.5 (see [18]). Let C be a nonempty closed convex subset of H and let ¢ be a bifunction of
C x C into R satisfying (A1)—(A4). Let r > 0 and x € H. Then, there exists z € C such that

¢(z,y)+%(y—z,z—x)20 Yy eC. (2.10)

The following lemma was also given in [1].
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Lemma 2.6 (see [1]). Assume that ¢ : C x C — R satisfies (A1)—(A4). For r > 0 and x € H, define
a mapping T, : H — C as follows:

Tr(x)={zeC:¢(z,y)+%(y—z,z—x)ZOVyeC} (2.11)

forall z € H. Then, the following hold:

(i) T, is single-valued;

(iii) F(T,) = EP(¢);

)
(ii) T, is firmly nonexpansive, that is, for any x,y € H, |T,x - T,y||* < (T,x - T,y,x — y);
)
(iv) EP(¢) is closed and convex.

3. Main results
In this section, we prove a strong convergence theorem.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let ¢ be a bifunction from C x
C to R satisfying (A1)-(A4), A : C — H a monotone L-Lipschitz continuous mapping and let {S,,}
be a sequence of nonexpansive mappings of C into itself such that 0% F(S,,) " VI(A, C)NEP(¢) # 2.
Let the sequences {x,}, {u,}, and {y,} be generated by

x1 = x € C chosen arbitrarily,

d(un,y) + %(y—un,un—xﬁ >0 VyeC,

(3.1)
Yn = Pc (un - )lnAun)/
Xn+l = anf(xn) + ﬂnxn + YnSnPC(un - /\nAyn) Vn>1,
where {a,}, {Bn}, {yn} € [0,1], {A,} € (0,1), and {r,} C (0, o0) satisfy the following conditions:

C) an+Pn+yn=1

(C2) limyeoaty, =0, D07ty = 0,

(C4) lim,, A, =0,

)
)

(C3) 0 < liminf, .. f, < limsup, | f, <1,
)

(C5) iminfoo7y > 0, 300 |rys1 — 7| < 0.

Suppose that > sup{||Sps1z — Snz|| : z € B} < oo for any bounded subset B of C. Let
S be a mapping of C into itself defined by Sy = lim,.,Syy forall y € C and suppose that
F(S) = 0% F(Sy). Then the sequences {x,}, {u,}, and {y,} converge strongly to the same point
qe ﬂ_ZO:lF(Sn) N VI(A, C) N EP((l)), where q= Pmi‘;lF(S,,)mVI(A,C)nEP(d:)f(Q)-

Proof. Let Q = Pre F(s,)nVI(A,C)nEP() - Since f is a contraction with a € [0, 1), we obtain

1Qf(x) - Qf W < [If(x) - fW)|| <allx -yl Vx,yeC. (3.2)

Therefore, Q f is a contraction of C into itself, which implies that there exists a unique element
q € C such that g = Qf(q). Then we divide the proof into several steps.
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Step 1 ({x,} is bounded). Indeed, put t, = Pc(u, — A, Ay,) foralln > 1. Let x* € N2, F(S,) N
VI(A, C) NEP(¢). From (2.5) we have x* = Pc(x* — 1,,Ax*). Also it follows from (2.4) that

£ =2 [1* < [Jtn = 1Ay = x|* = [[t = An Ay = ta]|*
= [lun = x*I* = 200 Ay, tn = x7) + 2| Ayall” = [0 = ta
+ 2 (Ao tn = t) = X3 Aya]|® 63
= [l =+ 20 Ay, x* = ) = ||t = ta |
= [ttn = x*||7 = [[ttn = ta||” + 200 ( Ay — Ax*, x* = y)
+ 240 (AX*, X" = Yn) + 20 (AY, Yn — ).

Since A is monotone and x* is a solution of the variational inequality problem VI(A, C), we
have

(Ayn — AX*, x* —y,) <0, (Ax*, x* = y,) 0. (3.4)
This together with (3.3) implies that
1t =17 < Mt = [ = fln = al” + 220 (Ao, s = )
= ”un - x*||2 - ” (un - yn) + (}/n - tn)”2 + 2/\n<Aynr:‘/n - tn>
= ot =2 |1” = Nt = yll” = 2(1t = Y, Y = tu) = Ny = tall” + 200 ( Ay, Y ~ )

= Mot =217 =l = yll* = My = tall” + 20000 = LAY = Y, b = ).

(3.5)
From (2.3), we have
(Un = AnAtty = Y, tn — Yn) <0, (3.6)
so that
(Un = M AYn = Y, tn — Yn) = (Un = My Al = Y, by — Yn) + (An Aty — Ly AY, by — Yn)
< (AnAuty = My AYn, bty — Yn) 37)

< Al At = Ay |82 = v
< M1t = a1t = vl

Hence it follows from (3.5) and (3.7) that
%12 *
16w =17 < Yot =2 |1* = Nt = vl = Ny = tull* + 200 L 02 = g [0 = |

<l =27 = Yt = yll” = Nl = Eall* + ML ([l =yl * + v = a]1%) — 3:8)

= llttn = x> + (AL = 1) ||t = v ||” + (AL = 1) ||y — ta]*-
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Since A, — 0 as n — oo, there exists a positive integer Ny such that A,L —1 < -1/3, when
n > Ny. Hence it follows from (3.8) that

e =1 < s = 7. 39)
Observe that
ltn = x*|| = || T 200 = Tr || < || — 7|, (3.10)
and hence
ltn = x*|| < ||2en — x*|- (3.11)
Thus, we can calculate
201 = x"[| = [lanf (xn) + Punn + YuSutn = x7||

< aullf(xn) - 21+ Bullta = )+ il - 2°]
<allf ) - S+ a7 -+ ullva o mllea < g1
< (1= an(1—a))|ocn — x*|| + an|| f (x*) = x*||

~ . IIf () =]
= (1-an(1-a))||xn—x*|| + an(1 - cx)W.
It follows from induction that
[ — x| Smax{”xl—x*”,W}, n > No. (3.13)

Therefore, {x,} is bounded. Hence, so are {t,}, {Sntn}, {Au,}, {Ayn}, and {f(x,)}.
Step 2 (limy—.e || Xpns1 — X4|| = 0). Indeed, we observe that for any x,y € C,
(1= 0) = (1= LAy = [l =) - LA - Ay
= [l = yII* = 24 (x - y, Ax - Ay) + 13| Ax - Ay|]®

(3.14)
<l =yl + ALL? lx - yIP?
= (1+ L7 lIx -y,
which implies that
[[(T- A1, A)x - (I -1, A)y| < (1 +1.L)|lx -yl (3.15)
Thus

[tn1 = ta|| < || Pe(tns1 = Ans1AYnin) = Pe(un — XnAyy) ||
< |t = M1 Ayt = (un — XnAy) ||
= || (tns1 = A1 Attnin) = (thn — A1 Atty) + At (Athpa1 = AYnin — Atty) + Ly Ay|
< || (st = Ans1 Attnar) = (= Ania Auy) ||
Xt (At + [ A | [ At} + 1, Ay

< (T A L) luner = s || + Xna (| Astnea || + | Ay || + [ Asta]]) + An[| Ay |-
(3.16)
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On the other hand, from u, = T, x, and ;.1 = T, X,+1, Wwe note that

Tn+1

1
¢ (uny) + (Y~ ttn ty = xn) 20 Wy €C, (3.17)
1
¢ (ni1,y) + r—1<y = Uns1, Uns1 = Xnr1) 20 Yy €C (3.18)
n+

Putting v = 1,41 in (3.17) and y = u,, in (3.18), we have

1
(i)(unr un+1) + r_<un+1 —Up, Up — xn> >0,
n

1 (3.19)
¢(un+1/ un) + _<un — Upy1, Upt1 — xn+1> > 0.
Tn+l
So, from (A2), we have
<un+1 —u, Un = Xn  Un+l — Xn+l > >0 (3.20)
Tn Tn+1
and hence
r
<un+1 —Up, Up — Ups1 + Upyl — Xp — r_n (”n+1 - xn+1)> > 0. (3.21)
n+1

Without loss of generality, let us assume that there exists a real number c such that r,, > ¢ >0
for all n € N. Then, we have

||un+1 - un”2 < <un+1 —Up, Xps1 — Xp + <1 - I )(unﬂ - xn+1)>

et (3.22)
< Yt = sl W =l [1= 2 s =
Tnsl
and hence
1
”um—l - un” < "xn+1 - xn” + T_|7'n+1 - rnl””rﬁ—l - xn+1”
1"“ (3.23)
< ”xn+1 - xn” + E |rn+1 - rn|M/
where M = sup{|ju, — x,| : n € N}. It follows from (3.16) and the last inequality that
1
||tn+1 - tn” < (1 + )ln+1L) ||xn+1 - xn” + (1 + /\n+1L)_ |rn+1 - TnlM
¢ (3.24)

+ bnst (At || + | Ay [| + [| Asen]]) + Xnll Ayall.
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Setting z, = (et f (xn) +YnSntn)/ (1— Bu), we obtain x,41 = (1 - )2y + fuxn for all n € N. Thus,
we have
o 2] = 221 ) St _ anf () * 1St
1- ﬁnﬂ 1— ﬁn
- ' At f(xn+1) T Yn+1 (5n+1tn+1 Sutn) - f(xn)
B (1 1 i{npn >S"t" * (1 -1 L_t';iﬂ Sntn> (3.25)
= 1 “r;l Il f (xns1) = Suta| tioo ”5 b= F ()|
Yn+1

1= ﬂn+1 ||Sn+1tn+1 - Sntn”o

It follows from (3.24) that

||Sn+1tn+1 - Sntn” < ”Sn+ltn+1 - Sn+1tn|| + ”Sn+1tn - Snt ”
< ||tn+l - tn” + ||Sn+1tn - Sntn”

1
< (1 + )ln+1L) ||xn+1 - xn” + (1 + /\n+1L)E |rn+1 - rnlM

s (A || + [| Ay | + | Autal]) + Aal| Ayal| + [|Snat = Sutll-

(3.26)
Combining (3.25) and (3.26), we have

|zrs1 =2z || = || 21 =2 || < an+1

=g, I Genen) = Sut ||+ ||5 tn = f (n) |

+ 1”‘; (1 Apa L) [ 1=+ 72 Y””

(1 +)tn+1L) [Fp1 =10 | M
Yn+1

T (s | + Ayl + [ Aml) + 725l Al
# L lSwat = Sutall = [l =l

< o (i) = Sutall + 7225 St = £ (|
T Ll - xn||+1”“1 (1+ A L) Llrn ~ 1ol M

# g dwa (At | + [ Ay | + | A

T Ll A+ T sup (St =St 1€ (1)),

(3.27)
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This together with (C1)—(C5) and lim,,—.o, sup{||Sp+1f — Sut|| : t € {t,}} = 0 implies that

limsup (|| zps1 = zn|| = || — x2||) <O. (3.28)

Hence, by Lemma 2.2, we obtain ||z, — x,,|| — 0 as n — oo. It then follows that
tim |01 = x| = Tim (1= ) 120 = .| = 0. (3:29
By (3.23) and (3.24), we also have
r{ij}c}o”thrl —ta| = ,lij?o”u”” —uy|| =0. (3.30)
Step 3 (limy, e ||St, — tall = 0). Indeed, pick any x* € N%, F(S,) N VI(A,C) N EP(¢), to obtain
it =21 = [Tyt = Ty I < (ot = Ty 0 = ) = (4 = 0~ 2°)

. . . . (3.31)
=§(|Iun—X*II + |xn = x7||7 = [[n = | )

Therefore, ||u, — x*||> < ||x, — x*||*> = ||x» — u,]|*. From Lemma 2.1 and (3.9), we obtain, when
n > Ny, that

s = 1* = [l f () + B+ uSutn = x°
<t f () = 2° | + Bulloen =" |I* + yull St — °

<anllf (o) =< + fulln -5+ pallts — x|

<l o) 1 Bl - T o
< anll £ () = |12+ Bl = |12+ (fle = |12 = [0 = 0a*)
< ay||f (xn) = x"[1* + (1= @) |20 = x| =yl 00 = 100 ||”
and hence
Youllen = ]| < atal £ (en) =217+ [l = 2| = [ = | 53
< | f (xn) = |2+ |20 = % || (|20 = ]| + 201 = x*]))-
It now follows from the last inequality, (C1), (C2), (C3) and (3.29), that
iij?o||xn —uy|| =0. (3.34)
Noting that
1~ 5l = 1Pt~ At = 5l < i = 5] + | At] — 0 25 m — e

l7n = tu|| = || Pc (un = MnAutn) = Pe(tty — AnAyn) || < An|| Aty — Ayu|| — 0 as n — oo.
(3.35)
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= ll <l = 9l + 1= 5al] — 0 a5 1 — o (3.36)
We note that

”Snyn — Xn+1 ” < ”Snyn - Sntn” + ”Sntn - xn+1||
< |y = tull + anl[Sutn = f (xa) | + Pull Sutn = x|

(3.37)
< lyn = tall + @nl|Sutn = £ (xn) || + Bu| Sutn = Suxul| + Bu | Snxn = 2|
< lyn = tull + anllSutn = £ Gen) | + Bulltn = xul| + Bul Snxn = xu]]-
Using (3.37), we have
[ISnxn = xul| < [|Snxn = Syl + |Snyn = xXnaa || + [| 201 = x|
< lxn =yl + llyn = tall + @nlSutn = £ Gen) | + Bl = ]l (3.38)

# BallSutn = | + [~ 3l

so that

(=P lISnxn=2all < xn=ynll+ yn—tall+anl| Sutn=f Con) |+ Pulltn=sul| + ]| s —xu|

(3.39)
This implies that
,13&”5""" - x,|| =0. (3.40)
It now follows from (3.36) and (3.40) that
1St = tall < (150t = Suxall = 15000 = | + [ = ] -
< 2|t = xu|| + ||Snxn — xu|| — 0 as n — co.
Applying Lemma 2.4 and (3.41), we have
Sty —ty|| < ||Stn — Sutn|| + ||Sntn — ta
| | Sl,|up{||5t—_|9|nt||“:te {tn}l}l + ||Suta = ta]] — 0. 042
It follows from the last inequality and (3.36) that
|xn = Sta|| < ||3n = ta|| + ||tn = Stu|| — 0 as n — co. (3.43)

Step 4 (limsup,_,_ (f(9) —q,x, —q) <0). Indeed, we choose a subsequence {t,,} of {t,} such
that

limsup(f(q) - g, Stn = q) = im(f(q) - 4, Sts, - q)- (3.44)

n—oo
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Without loss of generality, we may assume that {f,,} converges weakly to z € C. From ||St,, —
tq|| — 0, we obtain St,, — z. Now, we will show that z € F(5) N VI(A, C) N EP(¢). Firstly, we
will show z € EP(¢). Indeed, we observe that u,, = T}, x,, and

d(un,y) + %(y —Up,Up—Xy) 20 Yy eC. (3.45)
From (A2), we also have
%(y = Un, Un = Xn) > (Y, ttn), (3.46)
and hence
<y — U, u"ir;ix"i > > ¢y, up,). (3.47)

From ||u, —x,|| = 0, ||x,—Stu|| = 0, and ||St,, —t,|| — 0, we get u,,, — z. Since (uy, —Xp,) /¥n, —
0, it follows by (A4) that 0 > ¢(y,z) forall y € C. Fort with0 <t < 1land y € C, let
yr =ty +(1-t)z.Sincey € C and z € C, we have y; € C and hence ¢(y;, z) < 0. So, from (A1)
and (A4), we have

0=9(yey) <tp(yny) + A =P(y1,z) <tp(yr, y) (3.48)

and hence 0 < ¢(y;, y). From (A3), we have 0 < ¢(z, y) for all y € C, and hence z € EP(¢). By
the Opial’s condition, we can obtain that z € F(S). Next we will show that z € VI(A, C). Let

(3.49)

Av+ Ncov, veC
To =
Q/ ‘UéC

Then T is maximal monotone (see [14]). Let (v, w) € G(T). Since w— Av € N¢(v) and t,, € C,
we have (v —t,, w — Av) > 0. On the other hand, from ¢, = Pc(u, — 1, Ay,), we have

(v =ty tn = (Un — My Ayn)) >0, (3.50)
that is,
<v —tn, t”;—”” + Ayn> > 0. (3.51)

Therefore, we obtain

tn, — Uy,
(v —ty, w) > (v —ty, Av) > (v —t,,, Av) — <v — ty, — s Ayni>

t, — Uy,
- <v—tni,Av—Aynl. - "’>

tn, — Uy
= (v —ty, AV — Aty,) + (U — by, Aty — AYy,) — <v —tu,, "‘A Ui >
ni
b, — Uy
> (v —ty, Aty,) — <v — by, —— 4 Ayni>
Ap,
tn,‘ un

= (0 = ty, Aty, — AYp,) — <v —tn,, 1

)

(3.52)
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Noting that [|t,, = ¥, = 0, ||ty — unll — 0 as n — oo, A is Lipschitz continuous and (3.52),
we obtain

(v-z,w) >0. (3.53)

Since T is maximal monotone, we have z € T~!0, and hence z € VI(A,C). Hence z € F(S) N
VI(A,C) NEP(¢). The property of the metric projection implies that

limsup(f(q) - g, x» - q) = limsup(f(q) - q,St, - q)

n—oo n—oo

= lim(f(q) - q,Sts —q) = (f(9) -9,z 4) <0.

(3.54)

Step 5 (lim,—s||xn — gl| = 0). Indeed, we observe that

||xn+1 - q”z = <anf(xn) +,ann + Ynsntn/ Xn+l — 6]>
= an(f (xn) = 4, Xni1 = 4) + Bn(Xn = 4, Xns1 = @) + Yu(Sutn — 4, Xni1 — q)
1 2 2 1 2 2
< Eﬁn<llxn = ql* + llnes - qll*) + §Yn<||tn = ql* + llnes - qll*)
+ an(f(xn) _f(q)/xn+1 - q> +“n<f(q) —4q,Xn+1 — q)
1 2 2 1 2 2
< 2 (1= @) (o= all* + s - ql?) + 2au (£ e) = F@IP + s - )
+an(f(q) = q, Xn1 - q)
1 1
< 2=yt a) | gl + 2 (1 ) e gl

1
+ Ean”xnﬂ —q|1* + au(f(q) = 4, Xns1 — ),
(3.55)

which implies that

s = qll* < (1= an (1 = a®)) [ln = 4lI" + 200 (f () = 4 %1 = q)- (3.56)

Setting 6, = 2a,(f(q) — g, Xus1 — q), we have limsup, _ (6,/an(1 — a*)) < 0. Applying
Lemma 2.3 to (3.56), we conclude that {x,} converges strongly to q. Consequently, {u,} and
{yn} converge strongly to g. This completes the proof. O

As in [12, Theorem 4.1], we can generate a sequence {S,} of nonexpansive mappings
satisfying condition Y, sup{||S,+1z — Snz|| : z € B} < oo for any bounded subset B of C
by using convex combination of a general sequence {Tk} of nonexpansive mappings with a
common fixed point.

Corollary 3.2. Let C be a closed convex subset of a real Hilbert space H. Let ¢ be a bifunction from
C x C to R satisfying (A1)—(A4), A : C — H a monotone, L-Lipschitz continuous mapping and let
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{BX} be a family of nonnegative numbers with indices n,k € N with k < n such that

() Sppi=1forallneN;
(ii) lim, 0Bk > 0 for every k € N;

(i) Ypzq Xge 1|ﬂn+1 ﬂ’ﬁl < oo.

Let {Tx} be a sequence of nonexpansive mappings of C into itself with N2, F(Tx) NVI(A,C)N
EP(¢)# @. Let x1 = x € Cand {x,}, {yn} and {u,} be the sequences generated by

x1 = x € C chosen arbitrary,

¢ (un,y) + %(y— U, Up —Xn) >0 VyeC,

Yn = Pc (un - /\nAun)r (357)
Xntl = a"f(xn) + ﬁ”x" + YnZﬁrlngPC (un - )tnAyn) Vn>1,
k=1
where {an}, {Pn}, {yn} €[0,1], {As} €(0,1), and {r,} C (0, o0) satisfy the following conditions:

C) an+Pn+yn=1

(C2) limypoaxy, =0, D20, = 00,

(C4) lim,, oA, =0,

)
)

(C3) 0 < liminf, ., f, < limsup, ,_f, <1,
)

(C5) iminfoory > 0, 320 |rys1 — 7| < 0.

Then the sequences {x,}, {un}, and {y,} converge strongly to the same point g € NT F(Ty) N
VI(A, C) NEP(¢), where q = Prgz Fronviaoner) f(4)-

Setting S, = S and f := u in Theorem 3.1, we have the following result.

Corollary 3.3 (see [10, Theorem 3.1]). Let C be a closed convex subset of a real Hilbert space H. Let
A : C — H be a monotone, L-Lipschitz continuous mapping, and let S be a nonexpansive mapping of
C into itself such that F(S) N VI(A,C) # @. Suppose x1 = u € C and {x,}, {y,} are given by

w = Pc(x, — L, Axy),
v (o = dnAcn) (3.58)
Xn1 = AU + ﬁnxn + YnSPC (xn - -)LnAyn)/

where { A, AP}, {yn} are sequences in [0, 1] satisfying the following conditions:

A an+Putyn=1

(11) hmn—moan =0, Z:f:lan =0,

(iii) 0 < liminf, .3, < limsup, , f, <1,
)

(iv) limy,_ A, = 0.
Then {x,} converges strongly to Pr(s)nvi(a,c)U-

Proof. Put ¢(x,y) = 0 forall x,y € C and {r,} = 1 in Theorem 3.1. Thus, we have u, = x,.
Then the sequence {x,} generated in Corallary 3.3 converges strongly to Pr(s)nvi(a,c)u- O
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4. Applications

In this section, we consider the problem of finding a zero of a monotone operator. A
multivalued operator S : H — 2H with domain D(S) = {z € H : Sz#2} and range
R(S) = {Sz : z € D(T)} is said to be monotone if for each x; € D(S) and y; € Sx;, i = 1,2,
we have (x1 — x2,¥1 — y2) > 0. A monotone operator S is said to be maximal if its graph
G(S) = {(x,y) : y € Sx} is not properly contained in the graph of any other monotone
operator. Let I denote the identity operator on H and let S : H — 2H be a maximal
monotone operator. Then we can define, for each r > 0, a nonexpansive single-valued
mapping J,: H— Hby J, = (I +78) ! Itis called the resolvent (or the proximal mapping) of
S. We also define the Yosida approximation A, by A, = (I - J,)/r. We know that A,x € S],x
and ||A,x|| <inf{|ly| : y € Sx} for all x € H. We also know that S0 = F(J,) for all r > 0; see,
for instance, Rockafellar [19] or Takahashi [20].

Lemma 4.1 (the resolvent identity). For A, u > 0, there holds the identity

]Ax=]ﬂ<§+ (1—§>hx>, xeH. (4.1)

By using Theorem 3.1 and Lemma 4.1, we may obtain the following improvement.

Theorem 4.2. Let S : H — 2H be a maximal monotone operator. Let ¢ be a bifunction from C x C to
R satisfying (A1)-(A4), A : C — H a monotone L-Lipschitz continuous mapping of C into H such
that S1(0) NVI(A, C) NEP(}) # @ and f a contraction of C into itself with coefficient a € (0,1). Let
the sequences {x,}, {u,} and {y,} be generated by

x1 = x € C chosen arbitrary,

1
Up, V) + —(y —u,,u, —x,) >0 Yye(C,
¢Quny) + -y ) y 2)

Yn = Pc (un - -/\nAun)/
Xn+l = anf(xn) + ﬂnxn + Yn]rnPC (un - )LnAyn) Vn > 1,
where {an}, {Pn}, {yn} €[0,1], {An} C€(0,1), and {r,} C (0, o0) satisfy the following conditions:

C) an+Pn+yn=1

(C2) limypoaxy, =0, D20y = 00,

(C4) lim,,—x A, =0,

)
)

(C3) 0 < liminf, p, < limsup, ,_f, <1,
)

(C5) iminf, ooty >0, D07 |Fps1 — 1| < 00

Then {xy} converges strongly to q = Ps-1)nvi(a,c)nerg) f ()

Proof. We first verify that >.,°; sup{||J:...z — J».zll : z € B} < oo for any bounded subset B of
C. Let B be a bounded subset of C. Since S™1(0) = F(J,,) foreachn € N, {J, z:z € B,n € N}
is bounded. It follows from Lemma 4.1 that

Tz =] <rr—z T (1 -~ I ) ],mlz), zeH. (4.3)
n 1

+1
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Thus

|Tn+1 _rnl
Tnsl 17522l (4.4)

< ern+1 _Tnl

||]rn+‘lz_]rnz

| <

for each z € Band n € N, where M = sup{||/;,.,z— z|| : z € B,n € N}/ inf{r, : n € N}. Hence
we get

Zsup{”]rmz—]rnz” :z€B} < MZ|1’n+1 — Tn| < o0. (4.5)

n=1 n=1

By the assumption that >, ; |ry+1—74| < oo, we obtain r,, — r for some r > 0. Since || J,z—J;, z|| <
(Ir = ral/7)llz = J;z||, we obtain that lim,, .., J;,z = ],z for all z € C. Since F(J,) = S71(0) for
all u >0, wehave F(J;) =n3,F(J;,) = S71(0) # @. Therefore, by Theorem 3.1, {x,} converges
strongly to g = Ps-1(0)nvi(a,c)ner) f (9)- -
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