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1. Introduction

This paper deals with an integral equation with advanced argument. The advanced ar-
gument makes necessary the use of two pseudometrics in the contraction condition. For
this reason we will apply the continuation principle established in Chiş and Precup [1]
involving contractions in Gheorghiu’s sense, with respect to a family of pseudometrics
rather than the existence principle from Frigon [2, 3].

In what follows we recall some notions and results from papers Chiş and Precup [1]
and Chiş [4].

First recall the notion of a contraction on a gauge space introduced by Gheorghiu [5].

Definition 1.1 (Gheorghiu [5]). Let (X ,�) be a gauge space with the family of pseudo-
metrics �= {pα}α∈A, where A is a set of indices. A map F :D ⊂ X → X is a contraction if
there exists a function ϕ : A→ A and a∈RA

+,a= {aα}α∈A such that

pα
(
F(x),F(y)

)≤ aαpϕ(α)(x, y), ∀α∈A, x, y ∈D,

∞∑

n=1
aαaϕ(α)aϕ2(α) ···aϕn−1(α)pϕn(α)(x, y) <∞,

(1.1)

for every α∈A and x, y ∈D. Here, ϕn is the nth iteration of ϕ.
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Theorem 1.2 (Chiş [4]). Let X be a set endowed with two separating gauge structures:
� = {pα}α∈A and � = {qβ}β∈B, let D0 and D be two subsets of X with D0 ⊂ D, and let
F :D→ X be a map. Assume that F(D0)⊂D0 and D is �-closed. In addition, assume that
the following conditions are satisfied:

(i) there is a function ψ :A→ B and c ∈ (0,∞)A, c = {cα}α∈A such that

pα(x, y)≤ cαqψ(α)(x, y), ∀α∈A, x, y ∈ X ; (1.2)

(ii) (X ,�) is a sequentially complete gauge space;
(iii) if x0 ∈ D, xn = F(xn−1), for n = 1,2, . . . , and �− limn→∞ xn = x for some x ∈ D,

then F(x)= x;
(iv) F is a �-contraction on D0.

Then F has at least one fixed point which can be obtained by successive approximations
starting from any element of D0.

For a map H :D× [0,1]→ X , where D ⊂ X , we will use the following notations:

Σ= {(x,λ)∈D× [0,1] :H(x,λ)= x
}
,

S= {x ∈D :H(x,λ)= x, for some λ∈ [0,1]
}
,

Λ= {λ∈ [0,1] :H(x,λ)= x, for some x ∈D
}
.

(1.3)

Theorem 1.3 (Chiş and Precup [1]). Let X be a set endowed with the separating gauge
structures � = {pα}α∈A and �λ = {qλβ}β∈B, for λ ∈ [0,1]. Let D ⊂ X be �-sequentially
closed, H :D× [0,1]→ X a map, and assume that the following conditions are satisfied:

(i) for each λ∈ [0,1], there exists a function ϕλ : B→ B and aλ ∈ [0,1)B, aλ = {aλβ}β∈B
such that

qλβ
(
H(x,λ),H(y,λ)

)≤ aλβq
λ
ϕλ(β)(x, y),

∞∑

n=1
aλβa

λ
ϕλ(β)a

λ
ϕ2
λ(β)
···aλϕn−1

λ (β) <∞,
(1.4)

for every β ∈ B and x, y ∈D;
(ii) there exists ρ > 0 such that for each (x,λ)∈ Σ, there is a β ∈ B with

inf
{
qλβ(x, y) : y ∈ X\D} > ρ; (1.5)

(iii) for each λ∈ [0,1], there is a function ψ : A→ B and c ∈ (0,∞)A, c = {cα}α∈A such
that

pα(x, y)≤ cαq
λ
ψ(α)(x, y), ∀α∈A, x, y ∈ X ; (1.6)

(iv) (X ,�) is a sequentially complete gauge space;
(v) if λ∈ [0,1], x0 ∈D, xn =H(xn−1,λ), for n= 1,2, . . . , and �− limn→∞ xn = x, then

H(x,λ)= x;
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(vi) for every ε > 0, there exists δ = δ(ε) > 0 with

qλϕn
λ(β)

(
x,H(x,λ)

)≤ (1− aλϕn
λ(β)

)
ε, (1.7)

for (x,μ)∈ Σ, |λ−μ| ≤ δ, all β ∈ B, and n∈N.
In addition, assume that H0 := H(·,0) has a fixed point. Then, for each λ ∈ [0,1], the

map Hλ :=H(·,λ) has at least a fixed point.

2. The main result

We consider the integral equation inspired from biomathematics (see O’Regan and Pre-
cup [6]):

x(t)=
∫ t

t−1
f
(
s,x(s+2)

)
, t ∈ [0,∞). (2.1)

Let I = [−1,∞) and for a function u∈ L1(a,b) we denote by |u|L1(a,b) the norm in L1(a,b).
We have the following existence principle for (2.1).

Theorem 2.1. Let (E,‖ · ‖) be a Banach space, and let f : I ×E→ E be a continuous func-
tion. Assume that the following conditions hold:

(a) there exists k : I → (0,∞), k ∈ L1loc(I) with |k|L1loc(I) < 1 such that

∥
∥ f (t,x)− f (t, y)

∥
∥≤ k(t)|x− y| (2.2)

for all x, y ∈ E, and t ∈ I ;
(b) for each n∈N there exists rn > 0 such that, any continuous solution x of the equa-

tion

x(t)= λ
(∫ t

t−1
f
(
s,x(s+1)

)
ds
)
, t ∈ [0,∞) (2.3)

with λ∈ [0,1], satisfies ‖x(t)‖ ≤ rn for any t ∈ [n,2n+1];
(c) there exists α∈ L1loc(I) şi β : [0,∞)→ (0,∞) nondecreasing such that

∥
∥ f (t,x)

∥
∥≤ α(t)β

(‖x‖) (2.4)

for all t ∈ I and x ∈ E;
(d) there exists C > 0 such that β(rk+1)/(1−Lk) ≤ C for any k ∈ N, where Ln =∫ 2n+1

n−1 k(s)ds.
Then there exists at least one solution x ∈ C(R+,E) of the integral equation (2.1).

Proof. For the proof we use Theorem 1.3. Let X = C(R+,E). For each n∈N we define the
map | · |n : X →R+ by |x|n =maxt∈[n,2n+1]‖x(t)‖. This map is a seminorm on X , and let
dn : X ×X →R+ be given by

dn(x, y)= |x− y|n = max
t∈[n,2n+1]

∥
∥x(t)− y(t)

∥
∥. (2.5)
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It is easy to show that dn is a pseudometric on X and the family {dn}n∈N defines on X a
gauge structure, separated and complete by sequences.

Here �=�λ = {dn}n∈N for each λ∈ [0,1]. Let D be the closure in X of the set

{
x ∈ X : there exists n∈N such that dn(x,0)≤ rn + δ

}
, (2.6)

where δ > 0 is a fixed number. We define H :D× [0,1]→ X by H(x,λ)= λA(x), where

A(x)(t)=
∫ t

t−1
f
(
s,x(s+2)

)
ds. (2.7)

First, we verify condition (i) from Theorem 1.3.
Let t ∈ [n,2n+1], where n≥ 0. We have

∥
∥H(x,λ)(t)−H(y,λ)(t)

∥
∥≤ λ

∫ t

t−1

∥
∥ f
(
s,x(s+2)

)− f
(
s, y(s+2)

)∥∥ds

≤
∫ 2n+1

n−1
k(s)

∥
∥x(s+2)− y(s+2)

∥
∥ds

≤ max
s∈[n−1,2n+1]

∥
∥x(s+2)− y(s+2)

∥
∥
∫ 2n+1

n−1
k(s)ds

≤ max
τ∈[n+1,2n+3]

∥
∥x(τ)− y(τ)

∥
∥
∫ 2n+1

n−1
k(s)ds

= Lndn+1(x, y).

(2.8)

If we take the maximum with respect to t, we obtain

dn
(
H(x,λ),H(y,λ)

)≤ Lndn+1(x, y) (2.9)

for all x, y ∈ D and all n ∈ N. Hence, condition (i) in Theorem 1.3 holds with ϕλ = ϕ
where ϕ :N→N is defined by ϕ(n)= n+1. In addition, the series

∑∞
n=1LnLn+1 ···L2n is

finite since from assumption (a) we know that |k|L1loc(I) < 1 so Ln ≤ |k|L1loc(I) < 1.
Condition (ii) in our case becomes: there exists ρ > 0 such that for any solution (x,λ)∈

D× [0,1], to x =H(x,λ), there exists n∈N with

inf
{
dn(x, y) : y ∈ X\D} > ρ. (2.10)

If y ∈ X\D, we have that dn(y,0) > rn + δ for each n ∈N. So there exists at least one
t ∈ [n,2n+1] with

∥
∥x(t)− y(t)

∥
∥≥ ∥∥y(t)∥∥−∥∥x(t)∥∥ > rn + δ− rn = δ. (2.11)

Hence dn(x, y) > δ and (2.10) holds for any ρ ∈ (0,δ).
Condition (iii) in Theorem 1.3 is trivial since �=�λ for any λ∈ [0,1].
Condition (iv) in Theorem 1.3 becomes: (X ,{dn}n∈N) is a gauge space sequatially com-

plete because E is a Banach space.
Condition (v): Let λ∈ [0,1], x0 ∈D, xn =H(xn−1,λ) for n= 1,2, . . ., and assume �−

limn→∞ xn = x. We will prove that H(x,λ)= x.
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Letm∈N and t ∈ [m,2m+1]. We have

∥
∥H(x,λ)(t)− x(t)

∥
∥= ∥∥H(x,λ)(t)− xn(t) + xn(t)− x(t)

∥
∥

≤ ∥∥H(x,λ)(t)− xn(t)
∥
∥+

∥
∥xn(t)− x(t)

∥
∥

= ∥∥H(x,λ)(t)−H
(
xn−1,λ

)
(t)
∥
∥+

∥
∥xn(t)− x(t)

∥
∥

≤
∫ t

t−1
k(s)

∥
∥x(s+2)− xn−1(s+2)

∥
∥ds+ max

t∈[m,2m+1]

∥
∥xn(t)− x(t)

∥
∥

≤ Lm max
s∈[m−1,2m+1]

∥
∥x(s+2)− xn−1(s+2)

∥
∥+dm(xn,x)

= Lm max
τ∈[m+1,2m+3]

∥
∥x(τ)− xn−1(τ)

∥
∥+dm(xn,x)

= Lmdm+1
(
x,xn−1

)
+dm

(
xn,x

)
.

(2.12)

Consequently, passing to maximum after t ∈ [m,2m+1] we have

dm
(
H(x,λ),x

)≤ Lmdm+1
(
x,xn−1

)
+dm

(
xn,x

)
(2.13)

for allm∈N. Letting n→∞, we deduce that dm(H(x,λ),x)= 0 for eachm∈N and since
the family {dm}m∈N is separated, we have H(x,λ)= x.

Condition (vi) becomes: for each ε > 0, there exists δ = δ(ε) > 0 such that

dϕn(m)
(
x,H(x,λ)

)≤ (1−Lϕn(m)
)
ε (2.14)

for each (x,μ)∈D× [0,1], H(x,μ)= x, |λ−μ| ≤ δ, and n,m∈N.
We have ϕn(m) = n+m. Let t ∈ [n+m,2(n+m) + 1], and using conditions (c) and

(d) we obtain

∥
∥x(t)−H(x,λ)(t)

∥
∥= ∥∥H(x,μ)(t)−H(x,λ)(t)

∥
∥

= |μ− λ|
∥
∥
∥
∥

∫ t

t−1
f
(
s,x(s+2)

)
ds
∥
∥
∥
∥

≤ |μ− λ|
∫ t

t−1
α(s)β

(∥∥x(s+2)
∥
∥)ds

≤ |μ− λ|β(rm+n+1
)
∫ 2(n+m)+1

n+m−1
α(s)ds

≤ |μ− λ||α|L1loc(I)C
(
1−Lm+n

)
.

(2.15)

So condition (vi) is true with δ(ε)= ε/C|α|L1loc(I).
In addition, H(·,0)= 0. So H(·,0) has a fixed point.
Therefore, all the assumptions of Theorem 1.3 are satisfied. Now the conclusion fol-

lows from Theorem 1.3. �

Other existence results for integral and differential equations established by the con-
tinuation method (see O’Regan and Precup [6]) are given in Chiş [4, 7].
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