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1. Introduction

Variational inclusion problems are among the most interesting and intensively studied
classes of mathematical problems and have wide applications in the fields of optimiza-
tion and control, economics and transportation equilibrium, and engineering science.
For the past years, many existence results and iterative algorithms for various variational
inequality and variational inclusion problems have been studied. For details, please see
[1–50] and the references therein.

Recently, some new and interesting problems, which are called to be system of vari-
ational inequality problems were introduced and studied. Pang [28], Cohen and Chap-
lais [29], Bianchi [30] and Ansari and Yao [16] considered a system of scalar variational
inequalities and Pang showed that the traffic equilibrium problem, the spatial equilib-
rium problem, the Nash equilibrium, and the general equilibrium programming problem
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can be modeled as a system of variational inequalities. Ansari et al. [31] introduced and
studied a system of vector equilibrium problems and a system of vector variational in-
equalities by a fixed point theorem. Allevi et al. [32] considered a system of generalized
vector variational inequalities and established some existence results with relative pseu-
domonotonicity. Kassay and Kolumbán [17] introduced a system of variational inequal-
ities and proved an existence theorem by the Ky Fan lemma. Kassay et al. [18] studied
Minty and Stampacchia variational inequality systems with the help of the Kakutani-
Fan-Glicksberg fixed point theorem. Peng [19, 20] introduced a system of quasivaria-
tional inequality problems and proved its existence theorem by maximal element the-
orems. Verma [21–25] introduced and studied some systems of variational inequalities
and developed some iterative algorithms for approximating the solutions of system of
variational inequalities in Hilbert spaces. K. Kim and S. Kim [26] introduced a new sys-
tem of generalized nonlinear quasivariational inequalities and obtained some existence
and uniqueness results of solution for this system of generalized nonlinear quasivaria-
tional inequalities in Hilbert spaces. Cho et al. [27] introduced and studied a new sys-
tem of nonlinear variational inequalities in Hilbert spaces. They proved some existence
and uniqueness theorems of solutions for the system of nonlinear variational inequali-
ties.

As generalizations of the above systems of variational inequalities, Agarwal et al. [33]
introduced a system of generalized nonlinear mixed quasivariational inclusions and in-
vestigated the sensitivity analysis of solutions for this system of generalized nonlinear
mixed quasivariational inclusions in Hilbert spaces. Kazmi and Bhat [34] introduced a
system of nonlinear variational-like inclusions and gave an iterative algorithm for finding
its approximate solution. Fang and Huang [35] and Fang et al. [36] introduced and stud-
ied a new system of variational inclusions involving H-monotone operators and (H ,η)-
monotone, respectively. Peng and Huang [37] proved the existence and uniqueness of
solutions and the convergence of some new three-step iterative algorithms for a new sys-
tem of variational inclusions in Hilbert spaces.

On the other hand, Yu [10] introduced a new concept of (H ,η)-accretive operators
which provide unifying frameworks forH-monotone operators in [1],H-accretive oper-
ators in [9], (H ,η)-monotone operators in [35], maximal η-monotone operators in [5],
generalized m-accretive operators in [8], m-accretive operators in [12], and maximal
monotone operators [13, 14].

Inspired and motivated by the above results, the purpose of this paper is to introduce
a new mathematical model, which is called to be a system of variational inclusions with
(H ,η)-accretive operators, that is, a family of variational inclusions with (H ,η)-accretive
operators defined on a product set. This new mathematical model contains the system of
inequalities in [16, 21–30] and the system of inclusions in [35–37], the variational inclu-
sions in [1, 2, 9, 11], and some variational inequalities in the literature as special cases.
By using the resolvent technique for the (H ,η)-accretive operators, we prove the exis-
tence of solutions for this system of variational inclusions. We also prove the convergence
of a multistep iterative algorithm approximating the solution for this system of varia-
tional inclusions. The result in this paper unifies, extends, and improves some results in
[1, 2, 9, 11, 21–30, 35–37].



Jian-Wen Peng et al. 3

2. Preliminaries

We suppose that E is a real Banach space with dual space, norm, and the generalized
dual pair denoted by E∗, ‖·‖, and 〈·,·〉, respectively, 2E is the family of all the nonempty
subsets of E, CB(E) is the families of all nonempty closed bounded subsets of E, and the
generalized duality mapping Jq : E→ 2E

∗
is defined by

Jq(x)=
{
f ∗ ∈ E∗ :

〈
x, f ∗

〉= ∥∥ f ∗∥∥ · ‖x‖, ∥∥ f ∗∥∥= ‖x‖q−1}, ∀x ∈ E, (2.1)

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping. It is
known that, in general, Jq(x)= ‖x‖q−2J2(x), for all x 	= 0, and Jq is single valued if E∗ is
strictly convex.

The modulus of smoothness of E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(t)= sup
{
1
2

(‖x+ y‖+‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t
}
. (2.2)

A Banach space E is called uniformly smooth if

lim
t→0

ρE(t)

t
= 0. (2.3)

E is called q-uniformly smooth if there exists a constant c > 0, such that

ρE(t)≤ ctq, q > 1. (2.4)

Note that Jq is single valued if E is uniformly smooth. Xu and Roach [51] proved the
following result.

Lemma 2.1. Let E be a real uniformly smooth Banach space. Then, E is q-uniformly smooth
if and only if there exists a constants cq > 0, such that for all x, y ∈ E,

‖x+ y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ cq‖y‖q. (2.5)

We recall some definitions needed later, for more details, please see [3, 4, 9, 10] and
the references therein.

Definition 2.2. Let E be a real uniformly smooth Banach space, and let T ,H : E→ E be
two single-valued operators. T is said to be

(i) accretive if

〈
T(x)−T(y), Jq(x− y)

〉≥ 0, ∀x, y ∈ E; (2.6)

(ii) strictly accretive if T is accretive and

〈
T(x)−T(y), Jq(x− y)

〉= 0 iff x = y; (2.7)

(iii) r-strongly accretive if there exists a constant r > 0 such that

〈
T(x)−T(y), Jq(x− y)

〉≥ r‖x− y‖q, ∀x, y ∈ E; (2.8)
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(iv) r-strongly accretive with respect to H if there exists a constant r > 0 such that

〈
T(x)−T(y), Jq

(
H(x)−H(y)

)〉≥ r‖x− y‖q, ∀x, y ∈ E; (2.9)

(v) s-Lipschitz continuous if there exists a constant s > 0 such that

∥
∥T(x)−T(y)

∥
∥≤ s‖x− y‖, ∀x, y ∈ E. (2.10)

Definition 2.3. Let E be a real uniformly smooth Banach space, let T : E → E and
η : E×E→ E be two single-valued operators. T is said to be

(i) η-accretive if

〈
T(x)−T(y), Jq

(
η(x, y)

)〉≥ 0, ∀x, y ∈ E; (2.11)

(ii) strictly η-accretive if T is η-accretive and

〈
T(x)−T(y), Jq

(
η(x, y)

)〉= 0 iff x = y; (2.12)

(iii) r-strongly η-accretive if there exists a constant r > 0 such that

〈
T(x)−T(y), Jq

(
η(x, y)

)〉≥ r‖x− y‖q, ∀x, y ∈ E. (2.13)

Definition 2.4. Let η : E×E→ E, let T ,H : E→ E be single-valued operators andM : E→
2E be a multivalued operator.M is said to be

(i) accretive if

〈
u− v, Jq(x− y)

〉≥ 0, ∀x, y ∈ E, u∈M(x), v ∈M(y); (2.14)

(ii) η-accretive if

〈
u− v, Jq

(
η(x, y)

)〉≥ 0, ∀x, y ∈ E, u∈M(x), v ∈M(y); (2.15)

(iii) strictly η-accretive ifM is η-accretive, and equality holds if and only if x = y;
(iv) r-strongly η-accretive if there exists a constant r > 0 such that if

〈
u− v, Jq

(
η(x, y)

)〉≥ r‖x− y‖q, ∀x, y ∈ E, u∈M(x), v ∈M(y); (2.16)

(v)m-accretive ifM is accretive and (I + ρM)(E)= E holds for all ρ > 0, where I is the
identity map on E;

(vi) generalized η-accretive ifM is η-accretive and (I + ρM)(E)= E holds for all ρ > 0;
(vii) H-accretive ifM is accretive and (H + ρM)(E)= E holds for all ρ > 0;
(viii) (H ,η)-accretive ifM is η-accretive and (H + ρM)(E)= E holds for all ρ > 0.

Remark 2.5. (i) If η(x, y)= x− y, for all x, y ∈ E, then the definition of (H ,η)-accretive
operators becomes that of H-accretive operators in [9]. If E =� is a Hilbert space, the
definition of (H ,η)-accretive operator becomes that of (H ,η)-monotone operators in
[36], the definition of H-accretive operators becomes that of H-monotone operators
in [1, 35]. Hence, the definition of (H ,η)-accretive operators provides unifying frame-
works for classes of H-accretive operators, generalized η-accretive operators,m-accretive



Jian-Wen Peng et al. 5

operators, maximal monotone operators, maximal η-monotone operators,H-monotone
operators, and (H ,η)-monotone operators.

Definition 2.6 [5]. Let η : E×E→ E be a single-valued operator, then η(·,·) is said to be
τ-Lipschitz continuous if there exists a constant τ > 0 such that

∥
∥η(u,v)

∥
∥≤ τ‖u− v‖, ∀u,v ∈ E. (2.17)

Definition 2.7 [10]. Let η : E×E→ E be a single-valued operator, letH : E→ E be a strictly
η-accretive single-valued operator, and letM : E→ 2E be an (H ,η)-accretive operator, and

let λ > 0 be a constant. The resolvent operator R
H ,η
M,λ : E→ E associated with H , η, M, λ is

defined by

R
H ,η
M,λ(u)= (H + λM)−1(u), ∀u∈ E. (2.18)

Lemma 2.8 [10]. Let η : E× E→ E be a τ-Lipschitz continuous operator, H : E→ E be a
γ-strongly η-accretive operator, and let M : E→ 2E be an (H ,η)-accretive operator. Then,

the resolvent operator R
H ,η
M,λ : E→ E is τq−1/γ-Lipschitz continuous, that is,

∥
∥
∥R

H ,η
M,λ(x)−R

H ,η
M,λ(y)

∥
∥
∥≤ τq−1

γ
‖x− y‖, ∀x, y ∈ E. (2.19)

We extend some definitions in [6, 37, 46] to more general cases as follows.

Definition 2.9. Let E1,E2, . . . ,Ep be Banach spaces, let g1 : E1 → E1 and N1 :
∏p

j=1Ej → E1
be two single-valued mappings.

(i) N1 is said to be ξ-Lipschitz continuous in the first argument if there exists a
constant ξ > 0 such that

∥
∥N1

(
x1,x2, . . . ,xp

)−N1
(
y1,x2, . . . ,xp

)∥∥≤ ξ
∥
∥x1− y1

∥
∥,

∀x1, y1 ∈ E1, xj ∈ Ej ( j = 2,3, . . . , p).
(2.20)

(ii) N1 is said to be accretive in the first argument if

〈
N1
(
x1,x2, . . . ,xp

)−N1
(
y1,x2, . . . ,xp

)
, Jq
(
x1− y1

)〉≥ 0,

∀x1, y1 ∈ E1, xj ∈ Ej ( j = 2,3, . . . , p).
(2.21)

(iii) N1 is said to be α-strongly accretive in the first argument if there exists a constant
α > 0 such that

〈
N1
(
x1,x2, . . . ,xp

)−N1
(
y1,x2, . . . ,xp

)
, Jq
(
x1− y1

)〉≥ α
∥
∥x1− y1

∥
∥q,

∀x1, y1 ∈ E1, xj ∈ Ej ( j = 2,3, . . . , p).
(2.22)

(iv) N1 is said to be accretive with respect to g in the first argument if

〈
N1
(
x1,x2, . . . ,xp

)−N1
(
y1,x2, . . . ,xp

)
, Jq
(
g
(
x1
)− g

(
y1
))〉≥ 0,

∀x1, y1 ∈ E1, xj ∈ Ej ( j = 2,3, . . . , p).
(2.23)
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(v) N1 is said to be β-strongly accretive with respect to g in the first argument if there
exists a constant β > 0 such that

〈
N1
(
x1,x2, . . . ,xp

)−N1
(
y1,x2, . . . ,xp

)
, Jq
(
g
(
x1
)− g

(
y1
))≥ β

∥
∥x1− y1

∥
∥q,

∀x1, y1 ∈ E1, xj ∈ Ej ( j = 2,3, . . . , p).
(2.24)

In a similar way, we can define the Lipschitz continuity and the strong accretivity (ac-
cretivity) of Ni :

∏p
j=1Ej → Ei (with respect to gi : Ei → Ei) in the ith argument

(i= 2,3, . . . , p).

3. A system of variational inclusions

In this section, we will introduce a new system of variational inclusions with (H ,η)-
accretive operators. In what follows, unless other specified, for each i = 1,2, . . . , p, we
always suppose that Ei is a real q-uniformly smooth Banach space, Hi,gi : Ei → Ei, ηi :
Ei×Ei→ Ei, Fi,Gi :

∏p
j=1Ej → Ei are single-valued mappings, and thatMi : Ei→ 2Ei is an

(Hi,ηi)-accretive operator. We consider the following problem of finding (x1,x2, . . . ,xp)∈∏p
i=1Ei such that for each i= 1,2, . . . , p,

0∈ Fi
(
x1,x2, . . . ,xp

)
+Gi

(
x1,x2, . . . ,xp

)
+Mi

(
gi
(
xi
))
. (3.1)

The problem (3.1) is called a system of variational inclusions with (H ,η)-accretive
operators.

Below are some special cases of problem (3.1).
(i) For each j = 1,2, . . . , p, if Ej =� j is a Hilbert space, then problem (3.1) becomes

the following system of variational inclusions with (H ,η)-monotone operators, which is
to find (x1,x2, . . . ,xp)∈

∏p
i=1Ei such that for each i= 1,2, . . . , p,

0∈ Fi
(
x1,x2, . . . ,xp

)
+Gi

(
x1,x2, . . . ,xp

)
+Mi

(
gi
(
xi
))
. (3.2)

(ii) For each j = 1,2, . . . , p, if gj ≡ I j (the identity map on Ej) and Gj ≡ 0, then prob-
lem (3.1) reduces to the system of variational inclusions with (H ,η)-accretive operators,
which is to find (x1,x2, . . . ,xp)∈

∏p
j=1Ej such that for each i= 1,2, . . . , p,

0∈ Fi
(
x1,x2, . . . ,xp

)
+Mi

(
xi
)
. (3.3)

(iii) If p = 1, then problem (3.2) becomes the following variational inclusion with an
(H1,η1)-monotone operator, which is to find x1 ∈�1 such that

0∈ F1
(
x1
)
+G1

(
x1
)
+M1

(
g1
(
x1
))
. (3.4)

Moreover, if η1(x1, y1) = x1 − y1 for all x1, y1 ∈�1 and H1 = I1 (the identity map on
�1), then problem (3.4) becomes the variational inclusion introduced and researched by
Adly [11] which contains the variational inequality in [2] as a special case.

If p = 1, then problem (3.3) becomes the following variational inclusion with an (H1,
η1)-accretive operator, which is to find x1 ∈ E1 such that

0∈ F1
(
x1
)
+M1

(
x1
)
. (3.5)
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Problem (3.5) was introduced and studied by Yu [10] and contains the variational
inclusions in [1, 9] as special cases.

If p = 2, then problem (3.3) becomes the following system of variational inclusions
with (H ,η)-accretive operators, which is to find (x1,x2)∈ E1×E2 such that

0∈ F1
(
x1,x2

)
+M1

(
x1
)
,

0∈ F2
(
x1,x2

)
+M2

(
x2
)
.

(3.6)

Problem (3.6) contains the system of variational inclusions with H-monotone opera-
tors in [35], the system of variational inclusions with (H ,η)-monotone operators in [36]
as special cases.

If p = 3 and for each j = 1,2,3, Ej =� j is a Hilbert space and Gj = 0, then prob-
lem (3.1) becomes the system of variational inclusions with (H ,η)-monotone operators
in [37] with f j = 0 and ζj = 1.

(iv) For each j = 1,2, . . . , p, if Ej =� j is a Hilbert space, and Mj(xj) = Δηj ϕj for all
xj ∈� j , where ϕj : � j → R∪{+∞} is a proper, ηj-subdifferentiable functional andΔηj ϕj

denotes the ηj-subdifferential operator of ϕj , then problem (3.3) reduces to the following

system of variational-like inequalities, which is to find (x1,x2, . . . ,xp)∈
∏p

i=1�i such that
for each i= 1,2, . . . , p,

〈
Fi
(
x1,x2, . . . ,xp

)
,ηi
(
zi,xi

)〉
+ϕi

(
zi
)−ϕi

(
xi
)≥ 0, ∀zi ∈�i. (3.7)

(v) For each j = 1,2, . . . , p, if Ej =� j is a Hilbert space, and Mj(xj)= ∂ϕj(xj), for all
xj ∈� j , where ϕj : � j → R∪{+∞} is a proper, convex, lower semicontinuous functional
and ∂ϕj denotes the subdifferential operator of ϕj , then problem (3.3) reduces to the

following system of variational inequalities, which is to find (x1,x2, . . . ,xp)∈
∏p

i=1�i such
that for each i= 1,2, . . . , p,

〈
Fi
(
x1,x2, . . . ,xp

)
,zi− xi

〉
+ϕi

(
zi
)−ϕi

(
xi
)≥ 0, ∀zi ∈�i. (3.8)

(vi) For each j = 1,2, . . . , p, if Mj(xj) = ∂δKj (xj) for all xj ∈� j , where Kj ⊂� j is a
nonempty, closed, and convex subsets and δKj denotes the indicator of Kj , then prob-
lem (3.8) reduces to the following system of variational inequalities, which is to find
(x1,x2, . . . ,xp)∈

∏p
i=1�i such that for each i= 1,2, . . . , p,

〈
Fi
(
x1,x2, . . . ,xp

)
,zi− xi

〉≥ 0, ∀zi ∈ Ki. (3.9)

Problem (3.9) was introduced and researched in [16, 28–30]. If p = 2, then problems
(3.7), (3.8), and (3.9), respectively, become the problems (3.2), (3.3) and (3.4) in [36].
It is easy to see that problem (3.4) in [36] contains the models of system of variational
inequalities in [21–25] as special cases.

It is worthy noting that problem (3.1)–(3.8) are all new problems.

4. Existence and uniqueness of the solution

In this section, we will prove existence and uniqueness for solutions of problem (3.1). For
our main results, we give a characterization of the solution of problem (3.1) as follows.
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Lemma 4.1. For i= 1,2, . . . , p, let ηi : Ei×Ei → Ei be a single-valued operator, let Hi : Ei →
Ei be a strictly ηi-accretive operator, and let Mi : Ei → 2Ei be an (Hi,ηi)-accretive operator.
Then (x1,x2, . . . ,xp) ∈

∏p
i=1Ei is a solution of the problem (3.1) if and only if for each i =

1,2, . . . , p,

gi
(
xi
)= R

Hi,ηi
Mi,λi

(
Hi
(
gi
(
xi
))− λiFi

(
x1,x2, . . . ,xp

)− λiGi
(
x1,x2, . . . ,xp

))
, (4.1)

where R
Hi,ηi
Mi,λi = (Hi + λiMi)−1 and λi > 0 are constants.

Proof. The fact directly follows from Definition 2.9. �

Let Γ= {1,2, . . . , p}.
Theorem 4.2. For i = 1,2, . . . , p, let ηi : Ei × Ei → Ei be σi-Lipschitz continuous, let Hi :
Ei→ Ei be γi-strongly ηi-accretive and τi-Lipschitz continuous, let gi : Ei→ Ei be βi-strongly
accretive and θi-Lipschitz continuous, let Mi : Ei → 2Ei be an (Hi,ηi)-accretive operator, let
Fi :
∏p

j=1Ej → Ei be a single-valued mapping such that Fi is ri-strongly accretive with respect
to ĝi and si-Lipschitz continuous in the ith argument, where ĝi : Ei→ Ei is defined by ĝi(xi)=
Hi ◦ gi(xi)=Hi(gi(xi)), for all xi ∈ Ei, Fi is ti j-Lipschitz continuous in the jth arguments for

each j ∈ Γ, j 	= i, Gi :
∏p

j=1Ej → Ei be a single-valued mapping such that Gi is li j-Lipschitz
continuous in the jth argument for each j ∈ Γ. If there exist constants λi > 0 (i= 1,2, . . . , p)
such that

q
√
1− qβ1 + cqθ

q
1 +

σ
q−1
1

γ1
q
√
τ
q
1θ

q
1 − qλ1r1 + cqλ1

qs
q
1 +

l11λ1σ
q−1
1

γ1
+

p∑

k=2

λkσ
q−1
k

γk

(
tk1 + lk1

)
< 1,

q
√
1− qβ2 + cqθ

q
2 +

σ
q−1
2

γ2
q
√
τ
q
2θ

q
2 − qλ2r2+cqλ2

qs
q
2 +

l22λ2σ
q−1
2

γ2
+

∑

k∈Γ,k 	=2

λkσ
q−1
k

γk

(
tk2 + lk2

)
< 1,

···

q
√
1− qβp + cqθ

q
p+

σ
q−1
p

γp
q
√
τ
q
pθ

q
p−qλprp + cqλp

qs
q
p+

lppλpσ
q−1
p

γp
+

p−1∑

k=1

σ
q−1
k λk
γk

(
tk,p+lk,p

)
< 1.

(4.2)

Then, problem (3.1) admits a unique solution.

Proof. For i = 1,2, . . . , p and for any given λi > 0, define a single-valued mapping Ti,λi :∏p
j=1Ej → Ei by

Ti,λi

(
x1,x2, . . . ,xp

)

= xi− gi
(
xi
)
+R

Hi,ηi
Mi,λi

(
Higi

(
xi
)− λiFi

(
x1,x2, . . . ,xp

)− λiGi
(
x1,x2, . . . ,xp

))
,

(4.3)

for any (x1,x2, . . . ,xp)∈
∏p

i=1Ei.
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For any (x1,x2, . . . ,xp),(y1, y2, . . . , yp) ∈
∏p

i=1Ei, it follows from (4.3) that for i = 1,
2, . . . , p,

∥
∥Ti,λi

(
x1,x2, . . . ,xp

)−Ti,λi

(
y1, y2, . . . , yp

)∥∥
i

= ∥∥xi− gi
(
xi
)
+R

Hi,ηi
Mi,λi

(
Hi
(
gi
(
xi
))− λiFi

(
x1,x2, . . . ,xp

)− λiGi
(
x1,x2, . . . ,xp

))

− [yi− gi
(
yi
)
+R

Hi,ηi
Mi,λi

(
Hi
(
gi
(
yi
))− λiFi

(
y1, y2, . . . , yp

)− λiGi
(
y1, y2, . . . , yp

))]∥∥
i

≤ ∥∥xi− yi−
(
gi
(
xi
)− gi

(
yi
))∥∥

i

+
∥
∥R

Hi,ηi
Mi,λi

(
Hi
(
gi
(
xi
))− λiFi

(
x1,x2, . . . ,xp

)− λiGi
(
x1,x2, . . . ,xp

))

−R
Hi,ηi
Mi,λi,mi

(
Hi
(
gi
(
yi
))− λiFi

(
y1, y2, . . . , yp

)− λiGi
(
y1, y2, . . . , yp

))∥∥
i.

(4.4)

For i= 1,2, . . . , p, since gi is βi-strongly accretive and θi-Lipschitz continuous, we have

∥
∥xi− yi−

(
gi
(
xi
)− gi

(
yi
))∥∥q

i

= ∥∥xi− yi
∥
∥q
i − q

〈
gi
(
xi
)− gi

(
yi
)
, Jq
(
xi− yi

)〉
+ cq

∥
∥gi
(
xi
)− gi

(
yi
)∥∥q

i

≤ (1− qβi + cqθ
q
i

)∥∥xi− yi
∥
∥q
i .

(4.5)

It follows from Lemma 2.1 that for i= 1,2, . . . , p,

∥
∥
∥R

Hi,ηi
Mi,λi

(
Hi
(
gi
(
xi
))− λiFi

(
x1,x2, . . . ,xp

)− λiGi
(
x1,x2, . . . ,xp

))

−R
Hi,ηi
Mi,λi

(
Hi
(
gi
(
yi
))− λiFi

(
y1, y2, . . . , yp

)− λiGi
(
y1, y2, . . . , yp

))∥∥
∥
i

≤ σ
q−1
i

γi

∥
∥(Hi

(
gi
(
xi
))−Hi

(
gi
(
yi
)))− λi

(
Fi
(
x1,x2, . . . ,xp

)−Fi
(
y1, y2, . . . , yp

))∥∥
i

+
σ
q−1
i λi
γi

∥
∥Gi

(
x1,x2, . . . ,xp

)−Gi
(
y1, y2, . . . , yp

)∥∥
i

≤ σ
q−1
i

γi

∥
∥Hi

(
gi
(
xi
))−Hi

(
gi
(
yi
))− λi

(
Fi
(
x1,x2, . . . ,xi−1,xi,xi+1, . . . ,xp

)

−Fi
(
x1,x2, . . . ,xi−1, yi,xi+1, . . . ,xp

))∥∥
i

+
σ
q−1
i λi
γi

(
∑

j∈Γ, j 	=i

∥
∥Fi
(
x1,x2, . . . ,xj−1,xj ,xj+1, . . . ,xp

)

−Fi
(
x1,x2, . . . ,xj−1, yj ,xj+1, . . . ,xp

)∥∥
i

)

+
σ
q−1
i λi
γi

( p∑

j=1

∥
∥Gi

(
x1,x2, . . . ,xj−1,xj ,xj+1, . . . ,xp

)

−Gi
(
x1,x2, . . . ,xj−1, yj ,xj+1, . . . ,xp

)∥∥
i

)

.

(4.6)
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For i= 1,2, . . . , p, since Hi is τi-Lipschitz continuous, and gi is θi-Lipschitz continuous
and Fi is ri-ĝi-strongly accretive and si-Lipschitz continuous in the ith argument, we have

∥
∥Hi

(
gi
(
xi
))−Hi

(
gi
(
yi
))− λi

(
Fi
(
x1,x2, . . . ,xi−1,xi,xi+1, . . . ,xp

)

−Fi
(
x1,x2, . . . ,xi−1, yi,xi+1, . . . ,xp

))∥∥q
i

≤ ∥∥(Hi
(
gi
(
xi
))−Hi

(
gi
(
yi
)))∥∥q

i − qλi
〈
Fi
(
x1,x2, . . . ,xi−1,xi,xi+1, . . . ,xp

)

−Fi
(
x1,x2, . . . ,xi−1, yi,xi+1, . . . ,xp

)
,Hi
(
gi
(
xi
))−Hi

(
gi
(
yi
))〉

+ cqλi
q∥∥Fi

(
x1,x2, . . . ,xi−1,xi,xi+1, . . . ,xp

)−Fi
(
x1,x2, . . . ,xi−1, yi,xi+1, . . . ,xp

)∥∥q
i

≤ τ
q
i

∥
∥gi
(
xi
)− gi

(
yi
)∥∥q

i − qλiri
∥
∥xi− yi

∥
∥q
i + cqλi

qs
q
i

∥
∥xi− yi

∥
∥q
i

≤ (τqi θqi − qλiri + cqλi
qs

q
i

)∥∥xi− yi
∥
∥q
i .

(4.7)

For i= 1,2, . . . , p, since Fi is ti j-Lipschitz continuous in the jth arguments ( j ∈ Γ, j 	=
i), we have

∥
∥Fi
(
x1,x2, . . . ,xj−1,xj ,xj+1, . . . ,xp

)−Fi
(
x1,x2, . . . ,xj−1, yj ,xj+1, . . . ,xp

)∥∥
i ≤ ti j

∥
∥xj − yj

∥
∥
j .

(4.8)

For i = 1,2, . . . , p, since Gi is li j-Lipschitz continuous in the jth arguments ( j = 1,
2, . . . , p), we have

∥
∥Gi

(
x1,x2, . . . ,xj−1,xj ,xj+1, . . . ,xp

)−Gi
(
x1,x2, . . . ,xj−1, yj ,xj+1, . . . ,xp

)∥∥
i ≤ li j

∥
∥xj − yj

∥
∥
j .

(4.9)

It follows from (4.4)–(4.9) that for each i= 1,2, . . . , p

∥
∥Ti,λi

(
x1,x2, . . . ,xp

)−Ti,λi

(
y1, y2, . . . , yp

)∥∥
i

≤
(

q
√
1− qβi + cqθ

q
i +

σ
q−1
i

γi
q
√
τ
q
i θ

q
i − qλiri + cqλi

qs
q
i +

liiλiσ
q−1
i

γi

)
∥
∥xi− yi

∥
∥
i

+
λiσ

q−1
i

γi

[
∑

j∈Γ, j 	=i

(
ti j + li j

)∥∥xj − yj
∥
∥
j

]

.

(4.10)
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Hence,

p∑

i=1

∥
∥Ti,λi

(
x1,x2, . . . ,xp

)−Ti,λi

(
y1, y2, . . . , yp

)∥∥
i

≤
p∑

i=1

{(
q
√
1− qβi + cqθ

q
i +

σ
q−1
i

γi
q
√
τ
q
i θ

q
i − qλiri + cqλi

qs
q
i +

liiλiσ
q−1
i

γi

)
∥
∥xi− yi

∥
∥
i

+
λiσ

q−1
i

γi

[
∑

j∈Γ, j 	=i

(
ti j + li j

)∥∥xj − yj
∥
∥
j

]}

=
(

q
√
1− qβ1 + cqθ

q
1 +

σ
q−1
1

γ1
q
√
τ
q
1θ

q
1 − qλ1r1 + cqλ1

qs
q
1

+
l11λ1σ

q−1
1

γ1
+

p∑

k=2

λkσ
q−1
k

γk

(
tk1 + lk1

)
)
∥
∥x1− y1

∥
∥
1

+

(
q
√
1− qβ2 + cqθ

q
2 +

σ
q−1
2

γ2
q
√
τ
q
2θ

q
2 − qλ2r2 + cqλ2

qs
q
2

+
l22λ2σ

q−1
2

γ2
+

∑

k∈Γ,k 	=2

λkσ
q−1
k

γk

(
tk2 + lk2

)
)
∥
∥x2− y2

∥
∥
2

+ ···+
(

q
√
1− qβp + cqθ

q
p +

σ
q−1
p

γp
q
√
τ
q
pθ

q
p− qλprp + cqλp

qs
q
p

+
lppλpσ

q−1
p

γp
+

p−1∑

k=1

σ
q−1
k λk
γk

(
tk,p + lk,p

)
)
∥
∥xp− yp

∥
∥
p

≤ ξ

( p∑

k=1

∥
∥xk − yk

∥
∥
k

)

,

(4.11)

where

ξ =max

{
q
√
1− qβ1 + cqθ

q
1 +

σ
q−1
1

γ1
q
√
τ
q
1θ

q
1 − qλ1r1 + cqλ1

qs
q
1 +

l11λ1σ
q−1
1

γ1

+
p∑

k=2

λkσ
q−1
k

γk

(
tk1 + lk1

)
, q
√
1− qβ2 + cqθ

q
2 +

σ
q−1
2

γ2
q
√
τ
q
2θ

q
2 − qλ2r2 + cqλ2

qs
q
2

+
l22λ2σ

q−1
2

γ2
+

∑

k∈Γ,k 	=2

λkσ
q−1
k

γk

(
tk2 + lk2

)
, . . . , q

√
1− qβp + cqθ

q
p

+
σ
q−1
p

γp
q
√
τ
q
pθ

q
p− qλprp + cqλp

qs
q
p +

lppλpσ
q−1
p

γp
+

p−1∑

k=1

σ
q−1
k λk
γk

(
tk,p + lk,p

)
}

.

(4.12)
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Define ‖ · ‖Γ on
∏p

i=1Ei by ‖(x1,x2, . . . ,xp)‖Γ = ‖x1‖1 + ‖x2‖2 + ··· + ‖xp‖p, for all
(x1,x2, . . . ,xp) ∈

∏p
i=1Ei. It is easy to see that

∏p
i=1Ei is a Banach space. For any given

λi > 0 (i∈ Γ), defineWΓ,λ1,λ2,...,λp :
∏p

i=1Ei→
∏p

i=1Ei by

WΓ,λ1,λ2,...,λp

(
x1,x2, . . . ,xp

)

= (T1,λ1

(
x1,x2, . . . ,xp

)
,T2,λ2

(
x1,x2, . . . ,xp

))
, . . . ,Tp,λp

(
x1,x2, . . . ,xp

))
,

(4.13)

for all (x1,x2, . . . ,xp)∈
∏p

i=1Ei.
By (4.2), we know that 0 < ξ < 1, it follows from (4.11) that

∥
∥WΓ,λ1,λ2,...,λp

(
x1,x2, . . . ,xp

)−WΓ,λ1,λ2,...,λp

(
x1,x2, . . . ,xp

)∥∥
Γ

≤ ξ
∥
∥(x1,x2, . . . ,xp

)− (y1, y2, . . . , yp
)∥∥

Γ.
(4.14)

This shows that WΓ,λ1,λ2,...,λp is a contraction operator. Hence, there exists a unique

(x1,x2, . . . ,xp)∈
∏p

i=1Ei, such that

WΓ,λ1,λ2,...,λp

(
x1,x2, . . . ,xp

)= (x1,x2, . . . ,xp
)
, (4.15)

that is, for i= 1,2, . . . , p,

gi
(
xi
)= R

Hi,ηi
Mi,λi

(
Hi
(
gi
(
xi
))− λiFi

(
x1,x2, . . . ,xp

)− λiGi
(
x1,x2, . . . ,xp

))
. (4.16)

By Lemma 4.1, (x1,x2, . . . ,xp) is the unique solution of problem (3.1). This completes
this proof. �

5. Iterative algorithm and convergence

In this section, we will construct a new multistep iterative algorithm for approximating
the unique solution of problem (3.1) and discuss the convergence analysis of this algo-
rithm.

Lemma 5.1 [36]. Let {cn} and {kn} be two real sequences of nonnegative numbers that
satisfy the following conditions:

(1) 0≤ kn < 1, n= 0,1,2, . . . and limsupn kn < 1;
(2) cn+1 ≤ kncn, n= 0,1,2, . . . ;

then cn converges to 0 as n→∞.
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Algorithm 5.2. For i= 1,2, . . . , p, let Hi, Mi, Fi, gi, ηi be the same as in Theorem 4.2. For
any given (x01,x

0
2, . . . ,x

0
p)∈

∏p
j=1Ej , define a multistep iterative sequence {(xn1 ,xn2 , . . . ,xnp))}

by

xn+1i = αnx
n
i +
(
1−αn

)[
xni − gi

(
xni
)
+R

Hi,ηi
Mi,λi

(
Hi
(
gi
(
xni
))

− λiFi
(
xn1 ,x

n
2 , . . . ,x

n
p

)− λiGi
(
xn1 ,x

n
2 , . . . ,x

n
p

))]
,

(5.1)

where

0≤ αn < 1, limsup
n

αn < 1. (5.2)

Theorem 5.3. For i= 1,2, . . . , p, letHi,Mi, Fi, gi, ηi be the same as in Theorem 4.2. Assume
that all the conditions of Theorem 4.2 hold. Then {(xn1 ,xn2 , . . . ,xnp))} generated by Algorithm
5.2 converges strongly to the unique solution (x1,x2, . . . ,xp) of problem (3.1).

Proof. By Theorem 4.2, problem (3.1) admits a unique solution (x1,x2, . . . ,xp), it follows
from Lemma 4.1 that for each i= 1,2, . . . , p,

gi
(
xi
)= R

Hi,ηi
Mi,λi

(
Hi
(
gi
(
xi
))− λiFi

(
x1,x2, . . . ,xp

)− λiGi
(
x1,x2, . . . ,xp

))
. (5.3)

It follows from (5.1) and (5.3) that for each i= 1,2, . . . , p,

∥
∥xn+1i − xi

∥
∥
i =
∥
∥
∥αn

(
xni − xi

)
+
(
1−αn

)[
xni − gi

(
xni
)− (xi− gi

(
xi
))

+R
Hi,ηi
Mi,λi

(
Hi
(
gi
(
xni
))− λiFi

(
xn1 ,x

n
2 , . . . ,x

n
p

)− λiGi
(
xn1 ,x

n
2 , . . . ,x

n
p

))

−R
Hi,ηi
Mi,λi

(
Hi
(
gi
(
xi
))− λiFi

(
x1,x2, . . . ,xp

)− λiGi
(
x1,x2, . . . ,xp

))]∥∥
∥
i

≤ αn
∥
∥xni − xi

∥
∥
i +
(
1−αn

)∥∥xni − gi
(
xni
)− (xi− gi

(
xi
))∥∥

i

+
(
1−αn

)∥∥
∥R

Hi,ηi
Mi,λi

(
Hi
(
gi
(
xni
))− λiFi

(
xn1 ,x

n
2 , . . . ,x

n
p

)− λiGi
(
xn1 ,x

n
2 , . . . ,x

n
p

))

−R
Hi,ηi
Mi,λi

(
Hi(gi

(
xi
))− λiFi

(
x1,x2, . . . ,xp

)− λiGi
(
x1,x2, . . . ,xp

))∥∥
∥
i
.

(5.4)

For i= 1,2, . . . , p, since gi is βi-strongly accretive and θi-Lipschitz continuous, we have

∥
∥xni − gi

(
xni
)− (xi− gi

(
xi
))∥∥q

i ≤
(
1− qβi + cqθ

q
i

)∥∥xni − xi
∥
∥q
i . (5.5)
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It follows from Lemma 2.1 that for i= 1,2, . . . , p,

∥
∥
∥R

Hi,ηi
Mi,λi

(
Hi
(
gi
(
xni
))− λiFi

(
xn1 ,x

n
2 , . . . ,x

n
p

)− λiGi(xn1 ,x
n
2 , . . . ,x

n
p

))

−R
Hi,ηi
Mi,λi

(
Hi
(
gi
(
xi
))− λiFi

(
x1,x2, . . . ,xp

)− λiGi
(
x1,x2, . . . ,xp

))∥∥
∥
i

≤ σ
q−1
i

γi

∥
∥Hi

(
gi
(
xni
))−Hi

(
gi
(
xi
))

− λi
(
Fi
(
xn1 ,x

n
2 , . . . ,x

n
i−1,x

n
i ,x

n
i+1, . . . ,x

n
p

)

−Fi
(
xn1 ,x

n
2 , . . . ,x

n
i−1,xi,x

n
i+1, . . . ,x

n
p

))∥∥
i

+
λiσ

q−1
i

γi

(
∑

j∈Γ, j 	=i

∥
∥Fi
(
xn1 ,x

n
2 , . . . ,x

n
j−1,x

n
j ,x

n
j+1, . . . ,x

n
p

)

−Fi
(
xn1 ,x

n
2 , . . . ,x

n
j−1,xj ,x

n
j+1, . . . ,x

n
p

)∥∥
i

)

+
λiσ

q−1
i

γi

( p∑

j=1

∥
∥Gi

(
xn1 ,x

n
2 , . . . ,x

n
j−1,x

n
j ,x

n
j+1, . . . ,x

n
p

)

−Gi
(
xn1 ,x

n
2 , . . . ,x

n
j−1,xj ,x

n
j+1, . . . ,x

n
p

)∥∥
i

)

.

(5.6)

For i= 1,2, . . . , p, since Hi is τi-Lipschitz continuous, and gi is θi-Lipschitz continuous
and Fi is ri-ĝi-strongly accretive and si-Lipschitz continuous in the ith argument, we have

∥
∥Hi

(
gi
(
xni
))−Hi

(
gi
(
xi
))− λi

(
Fi
(
xn1 ,x

n
2 , . . . ,x

n
i−1,x

n
i ,x

n
i+1, . . . ,x

n
p

)

−Fi
(
xn1 ,x

n
2 , . . . ,x

n
i−1,xi,x

n
i+1, . . . ,x

n
p

))∥∥q
i

≤ (τqi θqi − qλiri + cqλ
q
i s

q
i

)∥∥xni − xi
∥
∥q.

(5.7)

For i = 1,2, . . . , p, since Fi is ti j-Lipschitz continuous in the jth arguments ( j ∈ Γ,
j 	= i), we have

∥
∥Fi
(
xn1 ,x

n
2 , . . . ,x

n
j−1,x

n
j ,x

n
j+1, . . . ,x

n
p

)−Fi
(
xn1 ,x

n
2 , . . . ,x

n
j−1,xj ,x

n
j+1, . . . ,x

n
p

)∥∥
i ≤ ti j

∥
∥xnj − xj

∥
∥
j .

(5.8)

For i = 1,2, . . . , p, since Gi is li j-Lipschitz continuous in the jth arguments ( j = 1,2,
. . . , p), we have

∥
∥Gi

(
xn1 ,x

n
2 , . . . ,x

n
j−1,x

n
j ,x

n
j+1, . . . ,x

n
p

)−Gi
(
xn1 ,x

n
2 , . . . ,x

n
j−1,xj ,x

n
j+1, . . . ,x

n
p

)∥∥
i ≤ li j

∥
∥xnj − xj

∥
∥
j .

(5.9)
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It follows from (5.4)–(5.9) that for i= 1,2, . . . , p,
∥
∥xn+1i − xi

∥
∥
i

≤ αn
∥
∥xni − xi

∥
∥
i +
(
1−αn

)
q
√
1− qβi + cqθ

q
i

∥
∥xni − xi

∥
∥
i

+
(
1−αn

)σ
q−1
i

γi
q
√
τ
q
i θ

q
i − qλiri + cqλ

q
i s

q
i

∥
∥xni − xi

∥
∥
i

+
(
1−αn

)λiσ
q−1
i

γi

(
∑

j∈Γ, j 	=i
ti j
∥
∥xnj − xj

∥
∥
j

)

+
(
1−αn

)λiσ
q−1
i

γi

( p∑

j=1
li j
∥
∥xnj − xj

∥
∥
j

)

= αn
∥
∥xni − xi

∥
∥
i +
(
1−αn

)
(

q
√
1− qβi + cqθ

q
i

+
σ
q−1
i

γi
q
√
τ
q
i θ

q
i − qλiri + cqλ

q
i s

q
i +

liiλiσ
q−1
i

γi

)
∥
∥xni − xi

∥
∥
i

+
(
1−αn

)σ
q−1
i

γi

(
∑

j∈Γ, j 	=i

(
ti j + li j

)∥∥xnj − xj
∥
∥
j

)

.

(5.10)

It follows from (5.10) that

p∑

i=1

∥
∥xn+1i − xi

∥
∥
i

≤
p∑

i=1

[

αn
∥
∥xni − xi

∥
∥
i

+
(
1−αn

)
(

q
√
1− qβi + cqθ

q
i +

σ
q−1
i

γi
q
√
τ
q
i θ

q
i −qλiri + cqλ

q
i s

q
i +

liiλiσ
q−1
i

γi

)
∥
∥xni − xi

∥
∥
i

+
(
1−αn

)σ
q−1
i

γi

(
∑

j∈Γ, j 	=i

(
ti j + li j

)∥∥xnj − xj
∥
∥
j

)]

≤ αn

( p∑

i=1

∥
∥xni − xi

∥
∥
i

)

+
(
1−αn

)
ξ

( p∑

i=1

∥
∥xni − xi

∥
∥
i

)

= (ξ + (1− ξ)αn
)
( p∑

i=1

∥
∥xni − xi

∥
∥
i

)

,

(5.11)
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where ξ is defined by

ξ =max

{
q
√
1− qβ1 + cqθ

q
1 +

σ
q−1
1

γ1
q
√
τ
q
1θ

q
1 − qλ1r1 + cqλ1

qs
q
1

+
l11λ1σ

q−1
1

γ1
+

p∑

k=2

λkσ
q−1
k

γk

(
tk1 + lk1

)
, q
√
1− qβ2 + cqθ

q
2

+
σ
q−1
2

γ2
q
√
τ
q
2θ

q
2 − qλ2r2 + cqλ2

qs
q
2 +

l22λ2σ
q−1
2

γ2

+
∑

k∈Γ,k 	=2

λkσ
q−1
k

γk

(
tk2 + lk2

)
, . . . , q

√
1− qβp + cqθ

q
p +

σ
q−1
p

γp
q
√
τ
q
pθ

q
p− qλprp + cqλp

qs
q
p

+
lppλpσ

q−1
p

γp
+

p−1∑

k=1

σ
q−1
k λk
γk

(
tk,p + lk,p

)
}

.

(5.12)

It follows from hypothesis (4.2) that 0 < ξ < 1.
Let an =

∑p
i=1‖xni − xi‖i,ξn = ξ + (1− ξ)αn. Then, (5.11) can be rewritten as an+1 ≤

ξnan, n= 0,1,2, . . . . By (5.2), we know that limsupn ξn < 1, it follows from Lemma 5.1 that

an =
p∑

i=1

∥
∥xni − xi

∥
∥
i converges to 0 as n−→∞. (5.13)

Therefore, {(xn1 ,xn2 , . . . ,xnp)} converges to the unique solution (x1,x2, . . . ,xp) of problem
(3.1). This completes the proof. �

Remark 5.4. If E is a 2-uniformly smooth Banach space and there exist constants λi > 0
(i= 1,2, . . . , p) such that

√
1− 2β1 + c2θ

2
1 +

σ1
γ1

√
τ21θ

2
1 − 2λ1r1 + c2λ1

2s21 +
l11λ1σ1
γ1

+
p∑

k=2

λkσk
γk

(
tk1 + lk1

)
< 1,

√
1− 2β2 + c2θ

2
2 +

σ2
γ2

√
τ22θ

2
2 − 2λ2r2 + c2λ2

2s22 +
l22λ2σ2
γ2

+
∑

k∈Γ,k 	=2

λkσk
γk

(
tk2 + lk2

)
< 1,

···
√
1− 2β2 + c2θ

2
p +

σp
γp

√
τ2pθ2p− 2λprp + c2λp

2s2p +
lppλpσp

γp
+

p−1∑

k=1

σkλk
γk

(
tk,p + lk,p

)
< 1,

(5.14)
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then (4.2) holds. It is worth noting that the Hilbert space and LP (or lp) spaces (2≤q≤∞)
are 2 unifomly smooth Banach spaces.

Remark 5.5. Theorems 4.2 and 5.3 unify, improve, and extend those results in [1, 2, 9, 11,
21–30, 35–37] in several aspects.

Remark 5.6. By the results in Sections 4 and 5, it is easy to obtain the existence of solutions
and the convergence results of iterative algorithms for the special cases of problem (3.1).
And we omit them here.
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