
Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2007, Article ID 76040, 15 pages
doi:10.1155/2007/76040

Research Article
An Algorithm Based on Resolvant Operators for Solving
Positively Semidefinite Variational Inequalities

Juhe Sun, Shaowu Zhang, and Liwei Zhang

Received 16 June 2007; Accepted 19 September 2007

Recommended by Nan-Jing Huang

A new monotonicity, M-monotonicity, is introduced, and the resolvant operator of an
M-monotone operator is proved to be single-valued and Lipschitz continuous. With the
help of the resolvant operator, the positively semidefinite general variational inequality
(VI) problem VI (Sn+,F +G) is transformed into a fixed point problem of a nonexpan-
sive mapping. And a proximal point algorithm is constructed to solve the fixed point
problem, which is proved to have a global convergence under the condition that F in the
VI problem is strongly monotone and Lipschitz continuous. Furthermore, a convergent
path Newton method is given for calculating ε-solutions to the sequence of fixed point
problems, enabling the proximal point algorithm to be implementable.

Copyright © 2007 Juhe Sun et al. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In recent years, the variational inequality has been addressed in a large variety of prob-
lems arising in elasticity, structural analysis, economics, transportation equilibrium, op-
timization, oceanography, and engineering sciences [1, 2]. Inspired by its wide applica-
tions, many researchers have studied the classical variational inequality and generalized it
in various directions. Also, many computational methods for solving variational inequal-
ities have been proposed (see [3–8] and the references therein). Among these methods,
resolvant operator technique is an important one, which was studied in the 1990s by
many researchers (such as [4, 6, 9]), and further studies developed recently [3, 10, 11].

As monotonicity plays an important role in the theory of variational inequality and
its generalizations, in this paper, we introduce a new class of monotone operator: M-
monotone operator. The resolvant operator associated with anM-monotone operator is
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proved to be Lipschitz-continuous. Applying the resolvant operator technique, we trans-
form the positively semidefinite variational inequality (VI) problem VI(Sn+,F +G) into
a fixed point problem of a nonexpansive mapping and suggest a proximal point algo-
rithm to solve the fixed point problem. Under the condition that F in the VI problem is
strongly monotone and Lipschitz-continuous, we prove that the algorithm has a global
convergence. To ensure the proposed proximal point algorithm is implementable, we in-
troduce a path Newton algorithm whose step size is calculated by Armijo rule.

In the next section, we recall some results and concepts that will be used in this paper.
In Section 3, we introduce the definition of anM-monotone operator, and discuss prop-
erties of this kind of operators, especially the Lipschitz continuity of the resolvant opera-
tor of an M-monotone operator. In Section 4, we construct a proximal point algorithm,
based on the results in Section 3, for VI(Sn+,F +G), and prove its global convergence. To
ensure that the proposed proximal point algorithm in Section 4 is implementable, we in-
troduce a path Newton algorithm, in Section 5, in which the step size is calculated by
Armijo rule.

2. Preliminaries

Throughout this paper, we assume that Sn denotes the space of n×n symmetric matrices
and Sn+ denote the cone of n×n symmetric positive semidefinite matrices. For A,B ∈ Sn,
we define an inner product 〈A,B〉 = tr(AB) which induces the norm ‖A‖ = √〈A,A〉. Let
2S

n
denote the family of all the nonempty subsets of Sn. We recall the following concepts,

which will be used in the sequel.

Definition 2.1. Let A,B,C : Sn→ Sn be single-valued operators and letM : Sn× Sn→ Sn be
mapping.

(i) M(A,·) is said to be α-strongly monotone with respect to A if there exists a con-
stant α > 0 satisfying

〈
M(Ax,u)−M(Ay,u),x− y

〉≥ α‖x− y‖2, ∀x, y,u∈ Sn; (2.1)

(ii) M(·,B) is said to be β-relaxedmonotone with respect to B if there exists a constant
β > 0 satisfying

〈
M(u,Bx)−M(u,By),x− y

〉≥−β‖x− y‖2, ∀x, y,u∈ Sn; (2.2)

(iii) M(·,·) is said to be αβ-symmetric monotone with respect to A and B ifM(A,·) is
α-strongly monotone with respect to A; and M(·,B) is β-relaxed monotone with
respect to B with α≥ β and α= β if and only if x = y, for all x, y,u∈ Sn;

(iv) M(·,·) is said to be ξ-Lipschitz-continuous with respect to the first argument if
there exists a constant ξ > 0 satisfying

∥
∥M(x,u)−M(y,u)

∥
∥≤ ξ‖x− y‖, ∀x, y,u∈ Sn; (2.3)
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(iv) A is said to be t-Lipschitz-continuous if there exists a constant t > 0 satisfying

‖Ax−Ay‖ ≤ t‖x− y‖, ∀x, y ∈ Sn; (2.4)

(vi) B is said to be l-cocoercive if there exists a constant l > 0 satisfying

〈Bx−By,x− y〉 ≥ l‖Bx−By‖2, ∀x, y ∈ Sn; (2.5)

(vii) C is said to be r-strongly monotone with respect toM(A,B) if there exists a con-
stant r > 0 satisfying

〈
Cx−Cy,M(Ax,Bx)−M(Ay,By)

〉≥ r‖x− y‖2, ∀x, y ∈ Sn. (2.6)

In a similar way to (v), we can define the Lipschitz continuity of the mapping M with
respect to the second argument.

Definition 2.2. Let A,B : Sn → Sn, M : Sn× Sn → Sn be mappings. M is said to be coercive
with respect to A and B if

lim
‖x‖→∞

〈
M(Ax,Bx),x

〉

‖x‖ = +∞. (2.7)

Definition 2.3. Let A,B : Sn→ Sn,M : Sn× Sn→ Sn be mappings.M is said to be bounded
with respect to A and B if M(A(P),B(P)) is bounded for every bounded subset P of Sn.
M is said to be semicontinuous with respect to A and B if for any fixed x, y,z ∈ Sn, the
function t �→ 〈M(A(x+ ty),B(x+ ty)),z〉 is continuous at 0+.
Definition 2.4. T : Sn→ 2S

n
is said to be monotone if

〈x− y,u− v〉 ≥ 0, ∀u,v ∈ Sn, x ∈ Tu, y ∈ Tv; (2.8)

and it is said to be maximal monotone if T is monotone and (I + cT)(Sn) = Sn for all
c > 0, where I denotes the identity mapping on Sn.

3.M-Monotone operators

In this section, we introduceM-monotonicity of operators and discuss its properties.

Definition 3.1. Let A,B : Sn→ Sn be single-valued operators,M : Sn× Sn→ Sn a mapping,
and T : Sn→ 2S

n
a multivalue operator. T is said to beM-monotone with respect toA and

B if T is monotone and (M(A,B) + cT)(Sn)= Sn holds for every c > 0.

Remark 3.2. IfM(A,B)=H , then the above definition reduces toH-monotonicity, which
was studied in [5]. IfM(A,B)= I , then the definition of I-monotonicity is just the maxi-
mal monotonicity.

Remark 3.3. Let T be a monotone operator and let c be a positive constant. If T : Sn→ 2S
n

is anM-monotone operator with respect to A and B, every matrix z ∈ Sn can be written
in exactly one way asM(Ax,Bx) + cu, where u∈ T(x).
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Proposition 3.4. Let M be αβ-symmetric monotone with respect to A and B and let T :
Sn→ 2S

n
be anM-monotone operator with respect to A and B, then T is maximal monotone.

Proof. Since T is monotone, it is sufficient to prove the following property; inequality
〈x− y,u− v〉 ≥ 0 for (v, y)∈Graph(T) implies that

x ∈ Tu. (3.1)

Suppose, by contradiction, that there exists some (u0,x0)∈Graph(T) such that

〈
x0− y,u0− v

〉≥ 0, ∀(v, y)∈Graph(T). (3.2)

Since T isM-monotone with respect to A and B, (M(A,B) + cT)(Sn)= Sn holds for every
c > 0, there exists (u1,x1)∈Graph(T) such that

M
(
Au1,Bu1

)
+ cx1 =M

(
Au0,Bu0

)
+ cx0 ∈ Sn. (3.3)

It follows form (3.2) and (3.3) that

0≤ c
〈
x0− x1,u0−u1

〉

=−〈M(
Au0,Bu0

)−M
(
Au1,Bu1

)
,u0−u1

〉

=−〈M(
Au0,Bu0

)−M
(
Au1,Bu0

)
,u0−u1

〉

− 〈M(
Au1,Bu0

)−M
(
Au1,Bu1

)
,u0−u1

〉

≤−(α−β)
∥
∥u0−u1

∥
∥

≤ 0,

(3.4)

which yields u1 = u0. By (3.3), we have that x1 = x0. Hence (u0,x0)∈Graph(T), which is
a contradiction. Therefore (3.1) holds and T is maximal monotone. This completes the
proof. �

The following example shows that a maximal monotone operator may not be M-
monotone for some A and B.

Example 3.5. Let Sn = S2, T = I , andM(Ax,Bx)= x2 + 2E− x for all x ∈ S2, where E is an
identity matrix. Then it is easy to see that I is maximal monotone. For all x ∈ S2, we have
that

∥
∥(M(A,B) + I

)
(x)

∥
∥2 = ∥

∥x2 + 2E− x+ x
∥
∥2 = ∥

∥x2 + 2E
∥
∥2 = tr

[(
x2 + 2E

)2]≥ 8, (3.5)

which means that 0∈̄(M(A,B) + I)(S2) and I is not M-monotone with respect to A and
B.

Proposition 3.6. Let T : Sn→ 2S
n
be a maximal monotone operator and letM : Sn× Sn→

Sn be a bounded, coercive, semicontinuous, and αβ-symmetric monotone operator with re-
spect to A and B. Then T isM-monotone with respect to A and B.

Proof. For every c > 0, cT is maximal monotone since T is maximal monotone. SinceM is
bounded, coercive, semicontinuous, and αβ-symmetric monotone operator with respect
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to A and B, it follows from [9, Corollary 32.26] that M(A,B) + cT is surjective, that is,
(M(A,B) + cT)(Sn)= Sn holds for every c > 0. Thus, T is anM-monotone operator with
respect to A and B. The proof is complete. �

Theorem 3.7. Let M be an αβ-symmetric monotone with respect to A and B and let T be
an M-monotone operator with respect to A and B. Then the operator (M(A,B) + cT)−1 is
single-valued.

Proof. For any given u∈ Sn, let x, y ∈ (M(A,B) + cT)−1(u). It follows that −M(Ax,Bx) +
u∈ Tx and −M(Ay,By) +u∈ Ty. The monotonicity of T andM implies that

0≤ 〈−M(Ax,Bx) +u− (−M(Ay,By) +u
)
,x− y

〉

=−〈M(Ay,By)−M(Ax,Bx),x− y
〉

≤−(α−β)
∥
∥u0−u1

∥
∥

≤ 0.

(3.6)

From the symmetric monotonicity of M, we get that x = y. Thus (M(A,B) + cT)−1 is
single-valued. This completes the proof. �

Definition 3.8. LetM be an αβ-symmetric monotone with respect toA and B and let T be
anM-monotone operator with respect to A and B. The resolvant operator JMcT : Sn→ Sn is
defined by

JMcT(u)=
(
M(A,B) + cT

)−1
(u), ∀u∈ Sn. (3.7)

Theorem 3.9. LetM(A,B) be α-strongly monotone with respect to A and β-relaxed mono-
tone with respect to B with α > β. Suppose that T : Sn → 2S

n
is an M-monotone operator.

Then the resolvant operator JMcT : Sn → Sn is Lipschitz-continuous with constant 1/(α− β),
that is,

∥
∥JMcT(u)− JMcT(v)

∥
∥≤ 1

α−β
‖u− v‖, ∀u,v ∈ Sn. (3.8)

Since the proof of Theorem 3.9 is similar as that of [5, Theorem 2.2], we here omit it.

4. An algorithm for variational inequalities

Let F,G : Sn+ → Sn be operators. Consider the general variational inequality problem
VI(Sn+,F +G), defined by finding u∈ Sn+ such that

〈
F(u) +G(u),v−u

〉≥ 0, ∀v ∈ Sn+. (4.1)

We can rewrite it as the problem of finding u∈ Sn+ such that

0∈G(u) +T(u), (4.2)

where T ≡ F +�(·;Sn+). Let Sol(Sn+,F +G) be the set of solutions of VI(Sn+,F +G).
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Proposition 4.1. Let F,G : Sn+→ Sn be continuous and letM : Sn× Sn→ Sn be a bounded,
coercive, semicontinuous, and αβ-symmetric monotone operator with respect to A : Sn → Sn

and B : Sn→ Sn. Then the following two properties hold for the map T ≡ F +�(·;Sn+):
(a) JMcT(M(Ax,Bx)− cG(x))=Sol(Sn+,Fcx), where Fcx(y) =M(Ay,By)−M(Ax,Bx) +

c(F(y) +G(x));
(b) If F is monotone, then T isM-monotone with respect to A and B.

Proof. We have that the inclusion

y ∈ JMcT
(
M(Ax,Bx)− cG(x)

)= (
M(A,B) + cT

)−1(
M(Ax,Bx)− cG(x)

)
(4.3)

is equivalent to

M(Ax,Bx)∈ (
M(A,B) + cF + c�

(·;Sn+
))
(y) + cG(x), (4.4)

or in other words,

0∈M(Ay,By)−M(Ax,Bx) + c
(
F(y) +G(x)

)
+�

(
y;Sn+

)
. (4.5)

This establishes (a).
By [10, Proposition 12.3.6], we can deduce that T is maximal monotone, it follows

from Proposition 3.6, we get that T is M-monotone with respect to A and B. This com-
pletes the proof. �

Lemma 4.2. Let M be an αβ-symmetric monotone with respect to A and B and let T be an
M-monotone operator with respect toA and B. Then u∈ Sn+ is a solution of 0∈G(u) +T(u)
if and only if

u= JMcT
(
M(Au,Bu)− cG(u)

)
, (4.6)

where JMcT = (M(A,B) + cT)−1 and c > 0 is a constant.

In order to obtain our results, we need the following assumption.

Assumption 4.3. The mappings F, G,M, A, B satisfy the following conditions.
(1) F is L-Lipschitz-continuous andm-strongly monotone.
(2) M(A,·) is α-strongly monotone with respect toA; andM(·,B) is β-relaxed monotone

with respect to B with α > β.
(3) M(·,·) is ξ-Lipschitz-continuous with respect to the first argument and ζ-Lipschitz-

continuous with respect to the second argument.
(4) A is τ-Lipschitz-continuous and B is t-Lipschitz-continuous.
(5) G is γ-Lipschitz-continuous and s-strongly monotone with respect toM(A,B).

Remark 4.4. Let Assumption 4.3 hold and

∣
∣
∣
∣c−

s

γ2

∣
∣
∣
∣≤

√
s2− γ2

[
(ξτ + ζt)2− (α−β)2

]

γ2
, s2 > γ2

[
(ξτ + ζt)2− (α−β)2

]
. (4.7)
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We can deduce that
∥
∥JMcT

(
M(Ax,Bx)− cG(x)

)− JMcT
(
M(Ay,By)− cG(y)

)∥∥

≤ 1
α−β

∥
∥M(Ax,Bx)−M(Ay,By)− c

(
G(x)−G(y)

)∥∥

≤
√
(ξτ + ζt)2− 2cs+ c2γ2

α−β
‖x− y‖

≤ ‖x− y‖,

(4.8)

which implies that JMcT(M(A,B)− cG) is nonexpansive. Then, it is natural to consider the
recursion

xk+1 ≡ JMcT
(
M
(
Axk,Bxk

)− cG
(
xk
))
, (4.9)

which is desired to converge to a zero of G+T . Actually, this can be proved to be true.
However, based on Lemma 4.2, we construct the following proximal point algorithm for
VI(Sn+,F +G).

Algorithm 4.5

Data. x0 ∈ Sn, c0 > 0, ε0 ≥ 0, and ρ0 > 0.

Step 1. Set k = 0.

Step 2. If xk ∈ Sol(Sn+,F +G), stop.

Step 3. Find wk such that ‖wk − JMckT(M(Axk,Bxk)− ckG(xk))‖ ≤ εk.

Step 4. Set xk+1 ≡ (1− ρk)xk + ρkwk and select ck+1, εk+1 and ρk+1. Set k← k +1 and go to
Step 1.

The following theorem fully describes the convergence of Algorithm 4.5 for finding a
solution to VI(Sn+,F +G).

Theorem 4.6. Suppose that Algorithm 4.5 holds. Let M be bounded, coercive, semicon-
tinuous, and αβ-symmetric monotone with respect to A and B; and let F be monotone
and Lipschitz-continuous. Let x0 ∈ Sn be given, let {εk} ⊂ [0,∞) satisfy E ≡∑∞

k=1 εk <∞,
{ck} ⊂ (cm,∞), where cm > 0 and

∣
∣
∣
∣ck −

s

γ2

∣
∣
∣
∣ <

√
s2− γ2

[
(ξτ + ζt)2− (α−β)2

]

γ2
, s2 > γ2

[
(ξτ + ζt)2− (α−β)2

]
, (4.10)

which implies that

L̃=
[
α−β−

√
(ξτ + ζt)2− 2cks+ c2kγ

2
]

[
α−β+3

√
(ξτ + ζt)2− 2cks+ c2kγ

2
]2 > 0. (4.11)

If {ρk} ⊆ [Rm,RM], where 0 < Rm ≤ RM ≤ pL̃, for all p ∈ [2,+∞), then the sequence {xk}
generated by Algorithm 4.5 converges to a solution of VI(Sn+,F +G).
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Proof. We introduce a new map

Qk ≡ I − JMckT
(
M(A,B)− ckG

)
. (4.12)

Clearly, any zero of G+ F +�(·;Sn+), being a fixed point of JMckT(M(A,B)− ckG), is also a

zero of Qk. Now, let us prove that Qk is L̃-cocoercive.
For x, y ∈ Sn we know that

〈
Qk(x)−Qk(y),x− y

〉

= 〈
x− y− (JMckT

(
M(Ax,Bx)− ckG(x)

)− JMckT
(
M(Ay,By)− ckG(y)

))
,x− y

〉

= ‖x− y‖2− 〈JMckT
(
M(Ax,Bx)

)− JMckT
(
M(Ay,By)− ck

(
G(x)−G(y)

))
,x− y

〉

≥ ‖x− y‖2− 1
α−β

∥
∥M(Ax,Bx)−M(Ay,By)− ck

(
G(x)−G(y)

)∥∥‖x− y‖

≥ ‖x− y‖2− 1
α−β

√
(ξτ + ζt)2− 2cks+ c2kγ

2‖x− y‖2

=
(

1−
√
(ξτ + ζt)2− 2cks+ c2kγ

2

α−β

)

‖x− y‖2,

(4.13)
∥
∥Qk(x)−Qk(y)

∥
∥2

= ∥
∥x− y− (JMckT

(
M(Ax,Bx)− ckG(x)

)− JMckT
(
M(Ay,By)− ckG(y)

))∥∥2

= ‖x− y‖2− 2
〈
x− y, JMckT

(
M(Ax,Bx)− ckG(x)

)− JMckT
(
M(Ay,By)− ckG(y)

)〉

+
∥
∥JMckT

(
M(Ax,Bx)− ckG(x)

)− JMckT
(
M(Ay,By)− ckG(y)

)∥∥2

≤ ‖x− y‖2 + 2

√
(ξτ + ζt)2− 2cks+ c2kγ

2

α−β
‖x− y‖2

+

√
(ξτ + ζt)2− 2cks+ c2kγ

2

α−β
‖x− y‖2

=
⎛

⎝1+3

√
(ξτ + ζt)2− 2cks+ c2kγ

2

α−β

⎞

⎠‖x− y‖2.
(4.14)

Inequalities (4.13) and (4.14) imply that

〈
Qk(x)−Qk(y),x− y

〉

≥
⎡

⎣1−
√
(ξτ + ζt)2− 2cks+ c2kγ

2

α−β

⎤

⎦

⎡

⎣1+3

√
(ξτ + ζt)2− 2cks+ c2kγ

2

α−β

⎤

⎦

−1
∥
∥Qk(x)−Qk(y)

∥
∥2

= L̃
∥
∥Qk(x)−Qk(y)

∥
∥2.

(4.15)
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For all k, we denote by xk the point computed exactly by the resolvent. That is,

xk+1 ≡ (
1− ρk

)
xk + ρkJ

M
ckT

(
M
(
Axk,Bxk

)− ckG
(
xk
))
. (4.16)

For every zero x∗ of T , we obtain

∥
∥xk+1− x∗

∥
∥2 = ∥

∥xk − ρkQ
k
(
xk
)− x∗

∥
∥2

= ∥
∥xk − x∗

∥
∥2− 2ρk

〈
Qk
(
xk
)−Qk

(
x∗
)
,xk − x∗

〉
+ ρ2k

∥
∥Qk

(
xk
)∥∥2

≤ ∥
∥xk − x∗

∥
∥2− 2ρkL̃

∥
∥Qk

(
xk
)∥∥2 + ρ2k

∥
∥Qk

(
xk
)∥∥2

≤ ∥
∥xk − x∗

∥
∥2− ρk

(
2L̃− ρk

)∥∥Qk
(
xk
)∥∥2

≤ ∥
∥xk − x∗

∥
∥2−Rm

(
2L̃−RM

)∥∥Qk
(
xk
)∥∥2

≤ ∥
∥xk − x∗

∥
∥2.

(4.17)

Since ‖xk − xk‖ ≤ ρkεk, we get that

∥
∥xk+1− x∗

∥
∥≤ ∥

∥xk+1− x∗
∥
∥+

∥
∥xk+1− xk+1

∥
∥

≤ ∥
∥xk − x∗

∥
∥+ ρkεk

≤ ∥
∥x0− x∗

∥
∥+

k∑

i=0
ρiεi

≤ ∥
∥x0− x∗

∥
∥+ pL̃E.

(4.18)

Therefore, the sequence {xk} is bounded. On the other hand, we have that

∥
∥xk+1− x∗

∥
∥2 = ∥

∥xk+1− x∗ +
(
xk+1− xk+1

)∥∥2

= ∥
∥xk+1− x∗

∥
∥2 + 2

〈
xk+1− x∗,xk+1− xk+1

〉
+
∥
∥xk+1− xk+1

∥
∥2

≤ ∥
∥xk+1− x∗

∥
∥2 + 2

∥
∥xk+1− x∗

∥
∥
∥
∥xk+1− xk+1

∥
∥+

∥
∥xk+1− xk+1

∥
∥2

≤ ∥
∥xk − x∗

∥
∥2 + 2ρkεk

(∥∥x0− x∗
∥
∥+ pL̃E

)
+ ρ2kε

2
k

−Rm
(
2L̃−RM

)∥∥Qk
(
xk
)∥∥2.

(4.19)

Letting E2 =
∑∞

i=0 ε
2
k <∞, we have for every k,

∥
∥xk+1− x∗

∥
∥2 ≤ ∥

∥x0− x∗
∥
∥2 + 2pL̃E

(∥∥x0− x∗
∥
∥+ pL̃E

)

+ p2L̃2E2−Rm
(
2L̃−RM

) k∑

i=0

∥
∥Qk

(
xk
)∥∥2.

(4.20)

Passing to the limit k→∞, one has that
∑∞

i=0‖Qk(xk)‖2 <∞, implying that

lim
k→∞

Qk
(
xk
)= 0. (4.21)
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According to Remark 3.3, for every k, there exists a unique pair (yk,vk) in gphT
such that zk =M(Axk,Bxk)− ckG(xk) =M(Ayk,Byk) + ckvk. Then JMckT(M(Axk,Bxk)−
ckG(xk))= yk. So that Qk(xk)→ 0 implies that (xk − yk)→ 0, vk → 0.

Since ck is bounded away from zero, it follows that c−1k Qk(xk)→ 0. Since xk is bounded,
it has at least a limit point. Let x∞ be such a limit point and assume that the subse-
quence {xki : ki ∈ k} converges to x∞. It follows that {yki : ki ∈ k} also converges to x∞.
For every (y,v) in gphT by the monotonicity of T , we have that 〈y− yk,v− vk〉 ≥ 0. Let-
ting ki(∈ k)→∞, we get that 〈y− y∞,v− vk〉 ≥ 0. We see that T is M-monotone due to
Proposition 4.1, this implies that (x∞,−G(x∞)) ∈ gphT , that is, −G(x∞) ∈ T(x∞). This
completes the proof. �

5. Solving an approximate fixed point to JMckT

How to calculate wk at Step 3 is the key in Algorithm 4.5. If εk = 0, this amounts to the
exact solution of VI(Sn+,Fk), where

Fk(x)=M(Ax,Bx)−M
(
Axk,Bxk

)
+ ck

(
F(x) +G(xk

))
. (5.1)

Now, we consider the case of εk > 0. We can prove that JMckT(M(Axk,Bxk)− ckG(xk)) is
the unique solution of the VI(Sn+,Fk). Hence, w

k is an inexact solution of the VI(Sn+,Fk)
satisfying dist(wk,Sol(Sn+,Fk))≤ εk.

Lemma 5.1. Let F, G,M, A, B satisfy all the conditions of Assumption 4.3. Then a constant
c(k) > 0 exists such that

dist
(
wk,Sol

(
Sn+,Fk

))≤ c(k)
∥
∥(Fk

)nat
Sn+

(
wk
)∥∥. (5.2)

Proof. By Assumption 4.3, we can easily get that Fk is L′(k)-Lipschitz-continuous and
η(k)-strongly monotone, where L′(k)= ξτ + ζt+ ckL and η(k)= α−β+ ckm, that is,

∥
∥Fk(x)−Fk(y)

∥
∥≤ L′(k)

∥
∥x− y

∥
∥,

〈
Fk(x)−Fk(y),x− y

〉≥ η(k)‖x− y‖2, ∀x, y ∈ Sn+.
(5.3)

Let r = (Fk)natSn+
(wk), where (Fk)natSn+

is the natural map associated with the VI(Sn+,Fk). We
have that wk − r =ΠSn+(w

k −Fk(wk)), that is,

〈
y−wk + r,Fk

(
wk
)− r

〉≥ 0, ∀y ∈ Sn+. (5.4)

For all x∗ ∈ Sol(Sn+,Fk) and wk − r ∈ Sn+, we also have that

〈
wk − r− x∗,Fk

(
x∗
)〉≥ 0. (5.5)

From (5.4) and (5.5), we get that

〈
x∗ −wk,Fk

(
wk
)− r

〉
+
〈
r,Fk

(
wk
)− r

〉

= 〈
x∗ −wk,Fk

(
wk
)〉− 〈x∗ −wk,r

〉
+
〈
r,Fk

(
wk
)〉

+
∥
∥r
∥
∥2 ≥ 0,

(5.6)

〈
x∗ −wk,Fk

(
x∗
)〉− 〈r,Fk

(
x∗
)〉≥ 0. (5.7)
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Adding (5.6) and (5.7), we deduce that

η(k)
∥
∥wk − x∗

∥
∥2 ≤ 〈

x∗ −wk,Fk
(
wk
)−Fk

(
x∗
)〉

≤−〈wk − x∗,r
〉−‖r‖2 + 〈r,Fk

(
x∗
)−Fk

(
wk
)〉

≤ ‖r‖∥∥wk − x∗
∥
∥+‖r‖L′(k)∥∥wk − x∗

∥
∥

= (
1+L′(k)

)∥∥wk − x∗
∥
∥‖r‖.

(5.8)

Hence, ‖wk − x∗‖ ≤ η(k)−1(1+L′(k))‖r‖. This implies that

dist
(
wk,Sol

(
Sn+,Fk

))≤ c(k)
∥
∥(Fk

)nat
Sn+

(
wk
)∥∥, (5.9)

where c(k)= η(k)−1(1+L′(k)). This completes the proof. �

Consequently, the computation of wk can be accomplished by obtaining an inexact
solution of VI(Sn+,Fk) satisfying the residual condition

∥
∥(Fk

)nat
Sn+

(
wk
)∥∥≤ 1

c(k)
εk. (5.10)

We note that the operator
∏

Sn+(·) is directionally differentiable and strongly semismooth
everywhere (see, e.g., [12]). If Fk(·) is continuously differentiable, then we get that

(
Fk
)nat
Sn+
(w)=w−

∏

Sn+

(
w−Fk(w)

)
(5.11)

is directionally differentiable.
In what follows, we present the following path Newton method for solving the equa-

tion (Fk)natSn+
(wk)= 0.

Algorithm 5.2

Data. w0 ∈ Sn, γ ∈ (0,1), and ρ∈ (0,1).

Step 1. Set j = 0.

Step 2. If (Fk)natSn+
(wj)= 0, stop.

Step 3. Select an element Vj ∈ ∂[(Fk)natSn+
(wj)] and consider the corresponding path p j(·)=

wj − (·)V−1
j (Fk)natSn+

(wj)with domain I j = [0, τ̄ j) for some τ̄ j ∈ (0,1]. Find the smallest non-
negative integer i j such that with i= i j , ρiτ̄ j ∈ I j and

∥
∥(Fk

)nat
Sn+

(
p j
(
ρiτ̄ j

))∥∥≤ (
1− γρiτ̄ j

)∥∥(Fk
)nat
Sn+

(
wj
)∥∥. (5.12)

Step 4. Set τj = ρij τ̄ j , wj+1 = p j(τj), and j ← j +1; go to Step 2.

Theorem 5.3. Let F, G, M, A, and B satisfy all the conditions of Assumption 4.3. If for
all w ∈ Sn+ every matrix in ∂[(Fk)natSn+

(w)] is nonsingular, then the sequence {wj} generated
by Algorithm 5.2 has at least one accumulation point and every accumulation point of the
sequence {wj} is the zero point of (Fk)natSn+

.
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Proof. The nonnegative sequence {‖(Fk)natSn+
(wj)‖} is monotonically decreasing; thus it is

bounded. It follows from Lemma 5.1 that the sequence {wj} is bounded. That implies
that {wj} has at least one accumulation point.

Assume that there exists a subsequence {wjm} of {wj} converging to w∗ such that

(
Fk
)nat
Sn+

(
w∗

) �= 0, (5.13)

that is, there exist positive constants δ and η satisfying

∥
∥(Fk

)nat
Sn+

(
wjm

)∥∥≥ η, ∀wjm ∈ B
(
w∗,δ

)
. (5.14)

By the strong semismoothness of (Fk)natSn+
, we have that

(
Fk
)nat
Sn+
(w+h)− (Fk

)nat
Sn+
(w)−V(h)=O

(‖h‖2), ∀w ∈ B
(
w∗,δ

)
, h∈ Sn+, (5.15)

where V ∈ ∂(Fk)natSn+
(w) is nonsingular and there is a positive constant ĉ such that

sup
w∈B(w∗,δ)

V∈∂(Fk)natSn+
(w)

max
{‖V‖,∥∥V−1∥∥}≤ ĉ. (5.16)

Letting τ ∈ (0, τ̄ jm), h= p jm(τ)−wjm , and Vjm ∈ ∂[(Fk)natSn+
(wjm)], we have that

Vjm

(
p jm(τ)−wjm

)= (
Fk
)nat
Sn+

(
p jm(τ)

)− (Fk
)nat
Sn+

(
wjm

)−O
(∥∥p jm(τ)−wjm

∥
∥2). (5.17)

It follows that
∥
∥(Fk

)nat
Sn+

(
p jm(τ)

)−Vjm

(
p jm(τ)−wjm

)− (Fk
)nat
Sn+

(
wjm

)∥∥
∥
∥p jm(τ)−wjm

∥
∥ = O

(∥∥p jm(τ)−wjm
∥
∥2)

∥
∥p jm(τ)−wjm

∥
∥ .

(5.18)

So we can choose a positive t∗ small enough so that

o(t)
t
≤ 1− γ

ĉ
, ∀t ∈ (

0, t∗
]
. (5.19)

From the definition of p jm , we know that there exists a constant τ∗ ∈ (0, τ̄ jm] small enough
so that ‖p jm(τ)−wjm‖ ≤ t∗, for all τ ∈ (0,τ∗], which implies that

o
(∥∥p jm(τ)−wjm

∥
∥)

∥
∥p jm(τ)−wjm

∥
∥ ≤ 1− γ

ĉ
, ∀τ ∈ (

0,τ∗
]
. (5.20)

It follows from (5.16), (5.18), (5.19), and (5.20) that
∥
∥(Fk

)nat
Sn+

(
p jm(τ)

)∥∥≤∥∥Vjm

(
p jm(τ)−wjm

)
+
(
Fk
)nat
Sn+

(
wjm

)∥∥

+
∥
∥p jm(τ)−wjm

∥
∥o
(∥∥p jm(τ)−wjm

∥
∥)

∥
∥p jm(τ)−wjm

∥
∥

≤(1− τ)
∥
∥(Fk

)nat
Sn+

(
wjm

)∥∥+ τ
∥
∥V−1

jm

∥
∥
∥
∥(Fk

)nat
Sn+

(
wjm

)∥∥1− γ

ĉ

≤ (1− τγ)
∥
∥(Fk

)nat
Sn+

(
wjm

)∥∥, ∀τ ∈ (0,τ∗].

(5.21)
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Consequently,

∥
∥(Fk

)nat
Sn+

(
p jm(τ)

)∥∥≤ (1− τγ)
∥
∥(Fk

)nat
Sn+

(
wjm

)∥∥, ∀τ ∈ (0,τ∗]. (5.22)

By the definition of the step-size τjm , it follows that there exists ξ ∈ (0,τ∗) such that τjm ≥
ξ for all jm. Indeed, if no such ξ exists, then {τjm} converges to zero. This implies that the
sequence of integers {i jm} is unbounded. Consequently, by the definition of i jm , we have,
for all jm sufficiently large,

∥
∥(Fk

)nat
Sn+

(
pk
(
ρijm−1τ̄k

))∥∥ >
(
1− γρijm−1τ̄k

)∥∥(Fk
)nat
Sn+

(
wk
)∥∥; (5.23)

but this contradicts (5.22) with τ ≡ ρijm−1τ̄ jm . Consequently, the desired ξ exists. The in-
equality (5.22) implies that

∥
∥(Fk

)nat
Sn+

(
wjm+1

)∥∥≤ (
1− τjmγ

)∥∥(Fk
)nat
Sn+

(
wjm

)∥∥. (5.24)

Passing to the limitm→∞, we deduce a contradiction because limm→∞‖(Fk)natSn+
(wjm)‖ ≥

η > 0 and the sequence {τjm} is bounded away from zero. This yields that (Fk)natSn+
(w∗)= 0.

This completes the proof. �

Remark 5.4. As stated above, Algorithm 5.2 generates a sequence converging to the zero
point of (Fk)natSn+

, Step 3 in Algorithm 4.5 is implementable. Obviously, Algorithm 5.2 stops
within a finite number of iterations at a wk such that (5.10) holds.

Example 5.5. Assume that there exists a positive constant c̄ such that

sup
w∈Sn+

sup
V∈∂∏Sn+

(xk−ck(F(w)+G(xk)))

∥
∥VJF(w)

∥
∥≤ c̄. (5.25)

Let ck ∈ (0,1/c̄). Suppose thatM(Aw,Bw)=w, for all w ∈ Sn+ and F is Lipschitz-continu-
ous and strongly monotone. We have (Fk)natSn+

(w) = w−∏Sn+(x
k − ck(F(w) +G(xk))), for

all w ∈ Sn+. Then ∂[(Fk)natSn+
(w)] ⊂ {I − ckVJF(w) | V ∈ ∂

∏
Sn+(x

k − ck(F(w) + G(xk)))},
for all w ∈ Sn+. We easily get that every matrix in ∂[(Fk)natSn+

(w)] is nonsingular for all
w ∈ Sn+. It follows from Theorem 5.3 that every accumulation point of {wk} generated
by Algorithm 5.2 is the zero point of (Fk)natSn+

.
At first sight, the M-monotonicity of T = F + �(·,Sn+) seems having little use be-

cause the algorithm based on maximal monotonicity can also solve the VI(Sn+,F +G)
directly. However, we will see that in some practical cases the variational inequality us-
ing Algorithm 4.5, which is based onM-monotone operator, is actually much simpler to
solve and easier to analyze than using algorithm based on maximal monotone map. We
illustrate this by the following example.

Example 5.6. Let F : Sn+→ Sn be defined by

F(x)= S(x) +
1
16

x, G(x)= 1
8
x ∀x ∈ Sn+, (5.26)

where S : Sn+→ Sn is s-Lipschitz-continuous and monotone with 〈S(x),x〉 ≥ −∞.
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We have F is (s+ (1/16))-Lipschitz-continuous, (1/16)-strongly monotone, and G is
(1/8)-Lipschitz-continuous.

Now, we take M(Ax,Bx) = Ax + Bx, where Ax = (1 + (ck/16))x and Bx = −ckS(x)−
(ck/8)x for all x ∈ Sn and 0 < ck < 16. Then, we can easily prove that M(·,·) is Lipschitz-
continuous with first and second arguments, M(A,B) is bounded and semicontinuous;
and A and B are both Lipschitz-continuous. It is also easy to see that

lim
‖x‖→∞

〈
M(Ax,Bx),x

〉

‖x‖ = lim
‖x‖→∞

〈− ckS(x) +
(
1− (ck/16

))
x,x

〉

‖x‖ = +∞, (5.27)

which implies thatM(A,B) is coercive. Also, we can deduce thatM(A,B) is (1+ (ck/16))-
strongly monotone with respect to A and ck(s+ (1/8))-relaxed monotone with respect to
B and (1+ (ck/16)) > ck(s+ (1/8)), if we let s < (1/ck)− (1/16). Also, we can prove that G
is strongly monotone with respect toM(A,B).

We choose x0 ∈ Sn+, {εk}, {ck}, and {ρk} satisfying Theorem 4.6 and compute {wk} by
the residual rule

∥
∥(Fk

)nat
S+

(
wk
)∥∥=

∥
∥
∥
∥w

k −
∏

Sn+

(
wk −M

(
Awk,Bwk

)
+M

(
Axk,Bxk

)− ck
(
F
(
wk
)
+G

(
xk
)))

∥
∥
∥
∥

=
∥
∥
∥
∥w

k −
∏

Sn+

(
− ckS

(
xk
)
+
(
1− 3

ck
16

)
xk

)∥∥
∥
∥

≤ η(k)
1+L′(k)

εk,

(5.28)

that is, wk can be computed as follows:

∥
∥
∥
∥w

k −
∏

Sn+

(
− ckS(xk

)
+
(
1− 3

ck
16

)
xk

)∥∥
∥
∥≤

η(k)
1+L′(k)

εk. (5.29)

It follows from Theorem 4.6 that the sequence {xk} generated by Algorithm 4.5 converges
to a solution of

〈
S(x) +

1
16

x+
1
8
x, y− x

#
≥ 0, ∀y ∈ Sn+. (5.30)

Note that the core of proximal point algorithm is the calculation of wk. As we have seen,
if we use [10, Algorithm 12.3.8], which is based on the maximal monotonicity of T =
F +�(·,Sn+), wk will be computed as

∥
∥
∥
∥w

k −
∏

Sn+

(
xk − ckS

(
wk
)− ck

8
xk
)∥∥
∥
∥≤

η(k)
1+L′(k)

εk, (5.31)

which is more complicated to solve than (5.29). This example verifies the above com-
ments.
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