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1. Introduction

Let X be a normed space and T a selfmap of X . Let x0 be a point of X , and assume that
xn+1 = f (T ,xn) is an iteration procedure, involving T , which yields a sequence {xn} of
points from X . Suppose {xn} converges to a fixed point x∗ of T . Let {ξn} be an arbitrary
sequence in X , and set εn = ‖ξn+1− f (T ,ξn)‖ for all n∈N.

Definition 1.1 [1]. If (limn→∞ εn = 0)⇒ (limn→∞ ξn = p), then the iteration procedure
xn+1 = f (T ,xn) is said to be T-stable with respect to T .

Remark 1.2 [1]. In practice, such a sequence {ξn} could arise in the following way. Let x0
be a point in X . Set xn+1 = f (T ,xn). Let ξ0 = x0. Now x1 = f (T ,x0). Because of rounding
or discretization in the function T , a new value ξ1 approximately equal to x1 might be
obtained instead of the true value of f (T ,x0). Then to approximate x2, the value f (T ,ξ1)
is computed to yield ξ2, an approximation of f (T ,ξ1). This computation is continued to
obtain {ξn} an approximate sequence of {xn}.

Let X be a normed space, D a nonempty, convex subset of X , and T a selfmap of D, let
p0 = e0 ∈D. The Mann iteration (see [2]) is defined by

en+1 =
(
1−αn

)
en +αnTen, (1.1)
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where {αn} ⊂ (0,1). The Ishikawa iteration is defined (see [3]) by

xn+1 =
(
1−αn

)
xn +αnTyn,

yn =
(
1−βn

)
xn +βnTxn,

(1.2)

where {αn} ⊂ (0,1), {βn} ⊂ [0,1). The Krasnoselskij iteration (see [4]) is defined by

pn+1 = (1− λ)pn + λTpn, (1.3)

where λ∈ (0,1). Recently, the equivalence between theT-stabilities ofMann and Ishikawa
iterations, respectively, for modified Mann-Ishikawa iterations was shown in [5]. In the
present paper, we shall prove the equivalence between the T-stabilities of the Krasnosel-
skij and the Mann iterations. Next, {un},{vn} ⊂ X are arbitrary.

Definition 1.3.
(i) The Mann iteration (1.1) is said to be T-stable if and only if for all {αn} ⊂ (0,1)

and for every sequence {un} ⊂ X ,

lim
n→∞εn = 0=⇒ lim

n→∞un = x∗, (1.4)

where εn := ‖un+1− (1−αn)un−αnTun‖.
(ii) The Krasnoselskij iteration (1.3) is said to be T-stable if and only if for all λ ∈

(0,1), and for every sequence {vn} ⊂ X ,

lim
n→∞δn = 0=⇒ lim

n→∞vn = x∗, (1.5)

where δn := ‖vn+1− (1− λ)vn− λTvn‖.

2. Main results

Theorem 2.1. Let X be a normed space and T : X → X a map with bounded range and
{αn} ⊂ (0,1) satisfy limn→∞αn = λ, λ∈ (0,1). Then the following are equivalent:

(i) the Mann iteration is T-stable,
(ii) the Krasnoselskij iteration is T-stable.

Proof. We prove that (i)⇒(ii). If limn→∞ δn = 0, then {vn} is bounded. Set

M1 :=max
{
sup
x∈X
{‖T(x)‖},‖v0‖,‖u0‖

}
. (2.1)

Observe that ‖v1‖ ≤ δ0 + (1− λ)‖v0‖+ λ‖Tv0‖ ≤ δ0 +M1. Set M :=M1 + 1/λ. Suppose
that ‖vn‖ ≤M to prove that ‖vn+1‖ ≤M. Remark that

∥
∥vn+1

∥
∥≤ δn + (1− λ)δn−1 + ···+ (1− λ)nδ0 +M1

≤ 1+ (1− λ) + ···+ (1− λ)n +M1

≤ 1
1− (1− λ)

+M1 =M.

(2.2)
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Suppose that limn→∞ δn = 0 to note that

εn =
∥
∥vn+1−

(
1−αn

)
vn−αnTvn

∥
∥

=∥∥vn+1− vn + λvn− λvn +αnvn− λTvn + λTvn−αnTvn
∥
∥

≤ ∥∥vn+1− (1− λ)vn− λTvn
∥
∥+

∣
∣λ−αn

∣
∣
∥
∥vn−Tvn

∥
∥

≤ ∥∥vn+1− (1− λ)vn− λTvn
∥
∥+2M

∣
∣λ−αn

∣
∣

= δn +2M
∣
∣λ−αn

∣
∣−→ 0 as n−→∞.

(2.3)

Condition (i) assures that if limn→∞ εn = 0, then limn→∞ vn = x∗. Thus, for a {vn} satisfy-
ing

lim
n→∞δn = lim

n→∞
∥
∥vn+1− (1− λ)vn− λTvn

∥
∥= 0, (2.4)

we have shown that limn→∞ vn = x∗.
Conversely, we prove (ii)⇒(i). First, we prove that {un} is bounded. Since limn→∞αn =

λ, for β ∈ (0,1) given, there exists n0 ∈N , such that 1−αn ≤ β, for all n≥ n0. Set M1 :=
max{supx∈X ‖Tx‖,‖u0‖} andM := n0 + 1+β/(1−β) +M1 to obtain

∥
∥un+1

∥
∥≤ [εn +

(
1−α1

)
εn−1 +

(
1−α1

)(
1−α2

)
εn−2

+ ···+ (1−α1
)(
1−α2

)···(1−αn0
)
εn−n0

]

+
(
1−α1

)(
1−α2

)···(1−αn0
)(
1−αn0+1

)
εn−n0−1

+ ···+ (1−α1
)(
1−α2

)···(1−αn
)
ε0 +M1

≤ (n0 + 1
)
+
(
1−αn0+1

)
+
(
1−αn0+1

)(
1−αn0+2

)···
+
(
1−αn0+1

)···(1−αn
)
ε0 +M1

≤ n0 + 1+β+β2 + ···+βn−n0 +M1 <M.

(2.5)

Suppose limn→∞ εn = 0. Observe that

δn =
∥
∥un+1− (1− λ)un− λTun

∥
∥

= ∥∥un+1−un + λun− λTun +αnun−αnun−αnTun +αnTun
∥
∥

≤ ∥∥un+1−
(
1−αn

)
un−αnTun

∥
∥+

∣
∣λ−αn

∣
∣
∥
∥un−Tun

∥
∥

≤ ∥∥un+1−
(
1−αn

)
un−αnTun

∥
∥+2M

∣
∣λ−αn

∣
∣

= εn +2M
∣
∣λ−αn

∣
∣−→ 0 as n−→∞.

(2.6)
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Condition (ii) assures that if limn→∞ δn = 0, then limn→∞ vn = x∗. Thus, for a {un} satis-
fying

lim
n→∞εn = lim

n→∞
∥
∥un+1−

(
1−αn

)
un−αnTun

∥
∥= 0, (2.7)

we have shown that limn→∞un = x∗. �

Remark 2.2. Let X be a normed space and T : X → X a map with bounded range and
{αn} ⊂ (0,1) satisfy limn→∞αn = λ, λ∈ (0,1). If the Mann iteration is not T-stable, then
the Krasnoselskij iteration is not T-stable, and conversely.

Example 2.3. Let T : [0,1)→ [0,1) be given by Tx = x2, and λ= 1/2. Then the Krasnosel-
skij iteration converges to the unique fixed point x∗ = 0, and it is not T-stable.

The Krasnoselskij iteration converges because, supposing F := supn pn<1, the sequence
pn→ 0, as we can see from

pn+1 =
(
1− 1

2

)
pn +

1
2
p2n =

1
2
pn +

1
2
p2n

= 1
2
pn
(
1+ pn

)≤ 1+F

2
pn =

(
1+F

2

)n
p0 −→ 0;

(2.8)

set vn = n/(n+1) and note that vn does not converge to zero, while δn does:

δn =
∣
∣
∣
∣
n+1
n+2

− 1
2

n

n+1
− 1
2

n2

(n+1)2

∣
∣
∣
∣=

n2 + 4n+2
2(n+1)2(n+2)

−→ 0. (2.9)

The Mann iteration also converges because (supposing E := supn en < 1) one has

en+1 =
(
1−αn

)
en +αne

2
n =

(
1− (1−E)αn

)
en

≤
n∏

k=1

(
1− (1−E)αk

)
e0 ≤ exp

(
− (1−E)

n∑

k=1
αk

)
e0 −→ 0;

(2.10)

the last inequality is true because 1− x ≤ exp(−x),∀x ≥ 0, and
∑
αn = +∞.

Take un = n/(n+1)→ 1, and note that εn→ 0 because

εn =
∣
∣
∣
∣
n+1
n+2

− (1−αn
) n

n+1
−αn

n2

(n+1)2

∣
∣
∣
∣=

αnn2 +
(
2αn +1

)
n+1

(n+1)2(n+2)
. (2.11)

So the Mann iteration is not T-stable. Actually, by use of Theorem 2.1, one can easily
obtain the non-T-stability of the other iteration, provided that the previous one is not
stable.

The following result takes in consideration the case in which no condition on {αn} are
imposed.

Theorem 2.4. Let X be a normed space and T : X → X a map, and {αn} ⊂ (0,1). If

lim
n→∞

∥
∥vn−Tvn

∥
∥= 0, lim

n→∞
∥
∥un−Tun

∥
∥= 0, (2.12)
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then the following are equivalent:
(i) the Mann iteration is T-stable,
(ii) the Krasnoselskij iteration is T-stable.

Proof. We prove that (i)⇒(ii). Suppose limn→∞ δn = 0, to note that,

εn =
∥
∥vn+1−

(
1−αn

)
vn−αnTvn

∥
∥

=∥∥vn+1− vn + λvn− λvn +αnvn− λTvn + λTvn−αnTvn
∥
∥

≤ ∥∥vn+1− (1− λ)vn− λTvn
∥
∥+

∣
∣λ−αn

∣
∣
∥
∥vn−Tvn

∥
∥

≤ δn +2
∥
∥vn−Tvn

∥
∥−→ 0 as n−→∞.

(2.13)

Condition (i) assures that if limn→∞ εn = 0, then limn→∞ vn = x∗. Thus, for a {vn} satisfy-
ing

lim
n→∞δn = lim

n→∞
∥
∥vn+1− (1− λ)vn− λTvn

∥
∥= 0, (2.14)

we have shown that limn→∞ vn = x∗.
Conversely, we prove (ii)⇒(i). Suppose limn→∞ εn = 0. Observe that

δn =
∥
∥un+1− (1− λ)un− λTun

∥
∥

= ∥∥un+1−un + λun− λTun +αnun−αnun−αnTun +αnTun
∥
∥

≤ ∥∥un+1− (1−αn)un−αnTun
∥
∥+

∣
∣λ−αn

∣
∣
∥
∥un−Tun

∥
∥

≤ εn +2
∥
∥un−Tun

∥
∥−→ 0 as n−→∞.

(2.15)

Condition (ii) assures that if limn→∞ δn = 0, then limn→∞ vn = x∗. Thus, for a {un} satis-
fying

lim
n→∞εn = lim

n→∞
∥
∥un+1−

(
1−αn

)
un−αnTun

∥
∥= 0, (2.16)

we have shown that limn→∞un = x∗. �

Remark 2.5. LetX be a normed space and T : X→X amap, {αn}⊂(0,1) and limn→∞‖vn−
Tvn‖ = 0, limn→∞‖un −Tun‖ = 0. If the Mann iteration is not T-stable, then the Kras-
noselskij iteration is not T-stable, and conversely.

Note that one can consider the usual conditions λ= 1/2, limαn = 0, and
∑
αn =∞ in

Theorem 2.4 and Remark 2.5.

Example 2.6. Again, let T : [0,1)→ [0,1) be given by Tx = x2, and λ= 1/2, αn = 1/n. Set
vn = un = n/(n+1), to note that limn→∞un = 1, and

lim
n→∞

∥
∥vn−Tvn

∥
∥= lim

n→∞
n

(n+1)2
= 0. (2.17)

Hence, neither the Mann nor the Krasnoselskij iteration is T-stable, as we can see from
Example 2.3.
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3. Further results

Let q0 ∈ X be fixed, and let qn+1 = Tqn be the Picard-Banach iteration.

Definition 3.1. The Picard iteration is said to be T-stable if and only if for every sequence
{qn} ⊂ X given,

lim
n→∞Δn = 0=⇒ lim

n→∞qn = x∗, (3.1)

where Δn := ‖qn+1−Tqn‖.
In [6], the equivalence between the T-stabilities of Picard-Banach iteration and Mann

iteration is given, that is, the following holds.

Theorem 3.2 [6]. Let X be a normed space and T : X → X a map. If

lim
n→∞

∥
∥qn−Tqn

∥
∥= 0, lim

n→∞
∥
∥un−Tun

∥
∥= 0, (3.2)

then the following are equivalent:
(i) for all {αn} ⊂ (0,1), the Mann iteration is T- stable,
(ii) the Picard iteration is T-stable.

Theorems 2.4 and 3.2 lead to the following conclusion.

Corollary 3.3. Let X be a normed space and T : X → X a map. If

lim
n→∞

∥
∥qn−Tqn

∥
∥= 0, lim

n→∞
∥
∥vn−Tvn

∥
∥= 0, lim

n→∞
∥
∥un−Tun

∥
∥= 0, (3.3)

then the following are equivalent:
(i) for all {αn} ⊂ (0,1), the Mann iteration is T-stable,
(ii) the Picard-Banach iteration is T-stable,
(iii) the Krasnoselskij iteration is T-stable.

Remark 3.4. Let X be a normed space and T : X → X a map, {αn} ⊂ (0,1) and
limn→∞‖qn−Tqn‖ = 0, limn→∞‖vn−Tvn‖ = 0, limn→∞‖un−Tun‖ = 0. If the Mann or
Krasnoselskij iteration is not T-stable, then the Picard-Banach iteration is not T-stable,
and conversely.

Example 3.5. To see that the Picard-Banach iteration is also not T-stable, consider T :
[0,1)→ [0,1), by Tx = x2.

Indeed, setting qn = n/(n+1), we have

lim
n→∞qn = lim

n→∞
n

n+1
= 1,

lim
n→∞

∣
∣
∣
∣

n

n+1
−
(

n

n+1

)2∣∣
∣
∣=

n

(n+1)2
= 0.

(3.4)
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