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1. Introduction and preliminaries

Let K be a nonempty subset of a real normed space E. A self-mapping T : K → K is said to
be nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y in K . T is said to be asymptotically
nonexpansive if there exists a sequence {rn} in [0,∞) with limn→∞ rn = 0 such that ‖Tnx−
Tny‖ ≤ (1+ rn)‖x− y‖ for all x, y in K and n∈N.

The class of asymptotically nonexpansive mappings which is an important generaliza-
tion of that of nonexpansive mappings was introduced by Goebel and Kirk [6]. Iteration
processes for nonexpansive and asymptotically nonexpansive mappings in Banach spaces
including Mann [7] and Ishikawa [8] iteration processes have been studied extensively
by many authors to solve the nonlinear operators as well as variational inequalities; see
[1–22, 25].

Noor [13] introduced a three-step iterative scheme and studied the approximate so-
lution of variational inclusion in Hilbert spaces by using the techniques of updating the
solution and auxiliary principle. Glowinski and Le Tallec [9] used three-step iterative
schemes to find the approximate solutions of the elastoviscoplasticity problem, liquid
crystal theory, and eigenvalue computation. It has been shown in [9] that the three-step
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iterative scheme gives better numerical results than the two-step and one-step approx-
imate iterations. Thus, we conclude that the three-step scheme plays an important and
significant role in solving various problems which arise in pure and applied sciences. Re-
cently, Xu and Noor [5] introduced and studied a three-step scheme to approximate fixed
points of asymptotically nonexpansive mappings in Banach space. Cho et al. [2] extended
the work of Xu and Noor [5] to the three-step iterative scheme with errors in a Banach
space and gave weak and strong convergence theorems for asymptotically nonexpansive
mappings in a Banach space. Moreover, Suantai [20] gave weak and strong convergence
theorems for a new three-step iterative scheme of asymptotically nonexpansivemappings.

More recently, Plubtieng et al. [4] introduced a three-step iterative scheme with errors
for three asymptotically nonexpansive mappings and established strong convergence of
this scheme to common fixed point of three asymptotically nonexpansive mappings. Very
recently, Chidume and Ali [1] considered multistep scheme for finite family of asymptot-
ically nonexpansive mappings and gave weak convergence theorems for this scheme in a
uniformly convex Banach space whose the dual space satisfies the Kadec-Klee property.
They also proved a strong convergence theorem under some appropriate conditions on
finite family of asymptotically nonexpansive mappings.

Inspired by the above facts, in this paper, a new multistep iteration scheme with errors
for finite family of asymptotically nonexpansive mappings is introduced and strong and
weak convergence theorems of this scheme to common fixed point of asymptotically non-
expansive mappings are proved. In particular, our weak convergence theorem is proved
in a uniformly convex Banach space whose the dual has a Kadec-Klee property. It is worth
mentioning that there are uniformly convex Banach spaces, which have neither a Fréchet
differentiable norm nor Opial property; however, their dual does have the Kadec-Klee
property. This means that our weak convergence result can apply not only to Lp-spaces
with 1 < p <∞ but also to other spaces which do not satisfy Opial’s condition or have a
Fréchet differentiable norm. Our theorems improve and generalize some previous results
in [1–5, 15, 17–19]. Our iterative scheme is defined as below.

Let K be a nonempty closed subset of a normed space E, and let {T1,T2, . . . ,TN} : K →
K be N asymptotically nonexpansive mappings. For a given x1 ∈ K and a fixed N ∈N (N
denote the set of all positive integers), compute the sequence {xn} by

xn+1 = x(N)
n = α(N)

n Tn
Nx

(N−1)
n +β(N)

n xn + γ(N)
n u(N)

n ,

x(N−1)n = α(N−1)n Tn
N−1x

(N−2)
n +β(N−1)n xn + γ(N−1)n u(N−1)n ,

...

x(3)n = α(3)n Tn
3 x

(2)
n +β(3)n xn + γ(3)n u(3)n ,

x(2)n = α(2)n Tn
2 x

(1)
n +β(2)n xn + γ(2)n u(2)n ,

x(1)n = α(1)n Tn
1 xn +β(1)n xn + γ(1)n u(1)n ,

(1.1)

where, {u(1)n },{u(2)n }, . . . ,{u(N)
n } are bounded sequences in K and {α(i)n }, {β(i)n }, {γ(i)n } are

appropriate real sequences in [0,1] such that α(i)n +β(i)n + γ(i)n = 1 for each i∈ {1,2, . . . ,N}.
We now give some preliminaries and results which will be used in the rest of this paper.
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A Banach space E is said to satisfy Opial’s condition if for each sequence xn in E, the
condition, that the sequence xn→ x weakly, implies

limsup
n→∞

∥
∥xn− x

∥
∥ < limsup

n→∞

∥
∥xn− y

∥
∥ (1.2)

for all y ∈ E with y �= x.
A Banach space E is said to have Kadec-Klee property if for every sequence {xn} in E,

xn→ x weakly and ‖xn‖→ ‖x‖ strongly together imply that ‖xn− x‖→ 0.
We will make use of the following lemmas.

Lemma 1.1 [2]. Let E be a uniformly convex Banach space, let K be a nonempty closed
convex subset of E, and let T : K → K be an asymptotically nonexpansive mapping. Then,
I −T is demiclosed at zero, that is, for each sequence {xn} in K , if {xn} converges weakly to
q ∈ K and {(I −T)xn} converges strongly to 0, then (I −T)q = 0.

Lemma 1.2 [16]. Let {an}, {bn}, and {cn} be sequences of nonnegative real numbers satis-
fying the inequality

an+1 ≤
(

1+ δn
)

an + bn, n≥ 1. (1.3)

If
∑∞

n=1 δn <∞ and
∑∞

n=1 bn <∞, then limn→∞ an exists. If, in addition, {an} has a subse-
quence which converges strongly to zero, then limn→∞ an = 0.

Lemma 1.3 [19]. Let E be a uniformly convex Banach space and let b, c be two constants
with 0 < b < c < 1. Suppose that {tn} is a real sequence in [b,c] and {xn}, {yn} are two
sequences in E such that

limsup
n→∞

∥
∥xn
∥
∥≤ a,

limsup
n→∞

∥
∥yn

∥
∥≤ a,

lim
n→∞

∥
∥tnxn +

(

1− tn
)

yn
∥
∥= a.

(1.4)

Then, limn→∞‖xn− yn‖ = 0, where a≥ 0 is some constant.

Lemma 1.4 [12]. Let E be a real reflexive Banach space such that its dual E∗ has the Kadec-
Klee property. Let {xn} be a bounded sequence in E and p,q ∈ ωw(xn), whereωw(xn) denotes
the weak w-limit set of {xn}. Suppose that limn→∞‖txn + (1− t)p− q‖ exists for all t ∈
[0,1]. Then p = q.

2. Main results

In this section, we prove strong and weak convergence theorems for multistep iteration
with errors in Banach spaces. In order to prove our main results, we need the following
lemmas.

Lemma 2.1. Let E be a real normed space and let K be a nonempty closed convex subset of
E. Let {T1,T2, . . . ,TN} : K → K be N asymptotically nonexpansive mappings with sequences

{r(i)n } such that
∑∞

n=1 r
(i)
n <∞, 1 ≤ i ≤ N . Let {xn} be the sequence defined by (1.1) with

∑∞
n=1 γ

(i)
n <∞, 1≤ i≤N . If F =⋂N

i=1F(Ti) �= ∅, then limn→∞‖xn− p‖ exists for all p ∈ F.
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Proof. For any p ∈ F, we note that

∥
∥x(1)n − p

∥
∥≤ α(1)n

∥
∥Tn

1 xn− p
∥
∥+β(1)n

∥
∥xn− p

∥
∥+ γ(1)n

∥
∥u(1)n − p

∥
∥

≤ α(1)n

(

1+ rn
)∥
∥xn− p

∥
∥+β(1)n

∥
∥xn− p

∥
∥+ γ(1)n

∥
∥u(1)n − p

∥
∥

≤ (1+ rn
)∥
∥xn− p

∥
∥+ t(1)n ,

(2.1)

where t(1)n = γ(1)n ‖u(1)n − p‖. Since {u(1)n } is bounded and
∑∞

n=1 γ
(1)
n <∞, we can see that

∑∞
n=1 t

(1)
n <∞. It follows from (2.1) that

∥
∥x(2)n − p

∥
∥≤ α(2)n

∥
∥Tn

2 x
(1)
n − p

∥
∥+β(2)n

∥
∥xn− p

∥
∥+ γ(2)n

∥
∥u(2)n − p

∥
∥

≤ α(2)n

(

1+ rn
)∥
∥x(1)n − p

∥
∥+β(2)n

∥
∥xn− p

∥
∥+ γ(2)n

∥
∥u(2)n − p

∥
∥

≤ α(2)n

(

1+ rn
)((

1+ rn
)∥
∥xn− p

∥
∥+ t(1)n

)

+β(2)n

∥
∥xn− p

∥
∥+ γ(2)n

∥
∥u(2)n − p

∥
∥

≤ α(2)n

(

1+ rn
)2∥
∥xn− p

∥
∥+α(2)n t(1)n

(

1+ rn
)

+β(2)n

∥
∥xn− p

∥
∥+ γ(2)n

∥
∥u(2)n − p

∥
∥

≤ α(2)n

(

1+ rn
)2∥
∥xn− p

∥
∥+α(2)n t(1)n

(

1+ rn
)

+β(2)n

(

1+ rn
)2∥
∥xn− p

∥
∥+ γ(2)n

∥
∥u(2)n − p

∥
∥

≤ (α(2)n +β(2)n

)(

1+ rn
)2∥
∥xn− p

∥
∥+α(2)n t(1)n

(

1+ rn
)

+ γ(2)n

∥
∥u(2)n − p

∥
∥

≤ (1+ rn
)2∥
∥xn− p

∥
∥+α(2)n t(1)n

(

1+ rn
)

+ γ(2)n

∥
∥u(2)n − p

∥
∥

≤ (1+ rn
)2∥
∥xn− p

∥
∥+ t(2)n ,

(2.2)

where t(2)n = α(2)n t(1)n (1 + rn) + γ(2)n ‖u(2)n − p‖. Since {u(2)n } is bounded and
∑∞

n=1 t
(1)
n <∞,

we can see that
∑∞

n=1 t
(2)
n <∞. Similarly, we see that

∥
∥x(3)n − p

∥
∥≤ α(3)n

(

1+ rn
)((

1+ rn
)2∥
∥xn− p

∥
∥+ t(2)n

)

+β(3)n

∥
∥xn− p

∥
∥+ γ(3)n

∥
∥u(3)n − p

∥
∥

≤ (α(3)n +β(3)n

)(

1+ rn
)3∥
∥xn− p

∥
∥+α(3)n t(2)n

(

1+ rn
)

+ γ(3)n

∥
∥u(3)n − p

∥
∥

≤ (1+ rn
)3∥
∥xn− p

∥
∥+α(3)n t(2)n

(

1+ rn
)

+ γ(3)n

∥
∥u(3)n − p

∥
∥

≤ (1+ rn
)3∥
∥xn− p

∥
∥+ t(3)n ,

(2.3)

where t(3)n = α(3)n t(2)n (1 + rn) + γ(3)n ‖u(3)n − p‖. Since {u(3)n } is bounded and
∑∞

n=1 t
(2)
n <∞,

we can see that
∑∞

n=1 t
(3)
n <∞. Continuing the above process, we get

∥
∥xn+1− p

∥
∥= ∥∥x(N)

n − p
∥
∥≤ (1+ rn

)N∥
∥xn− p

∥
∥+ t(N)

n , (2.4)

where {t(N)
n } is nonnegative real sequence such that

∑∞
n=1 t

(N)
n < ∞. By Lemma 1.2,

limn→∞‖xn− p‖ exists. This completes the proof. �

Lemma 2.2. Let E be a real uniformly convex Banach space and let K be a nonempty closed
convex subset of E. Let {T1,T2, . . . ,TN} : K → K beN asymptotically nonexpansive mappings
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with sequences {r(i)n } such that
∑∞

n=1 r
(i)
n <∞, 1 ≤ i ≤ N and let F =⋂N

i=1F(Ti) �= ∅. Let
{xn} be the sequence defined by (1.1) and some α,β ∈ (0,1) with the following restrictions:

(i) 0 < α≤ α(i)n ≤ β < 1, 1≤ i≤N , for all n≥ n0 for some n0 ∈N;
(ii)

∑∞
n=1 γin <∞, 1≤ i≤N .

Then, limn→∞‖xn−Tixn‖ = 0.

Proof. For any p ∈ F(T), it follows from Lemma 2.1 that limn→∞‖xn − p‖ exists. Let
limn→∞‖xn− p‖ = a for some a≥ 0. We note that

∥
∥xN−1n − p

∥
∥≤ (1+ rn

)N−1∥
∥xn− p

∥
∥+ t(N−1)n , ∀n≥ 1, (2.5)

where {t(N−1)n } is nonnegative real sequence such that
∑∞

n=1 t
(N−1)
n <∞. It follows that

limsup
n→∞

∥
∥x(N−1)n − p

∥
∥≤ limsup

n→∞

((

1+ rn
)N−1∥

∥xn− p
∥
∥+ tN−1n

)= lim
n→∞

∥
∥xn− p

∥
∥= a

(2.6)

and so

limsup
n→∞

∥
∥Tn

Nx
(N−1)
n − p

∥
∥≤ limsup

n→∞

(

1+ rn
)∥
∥x(N−1)n − p

∥
∥= limsup

n→∞

∥
∥x(N−1)n − p

∥
∥≤ a.

(2.7)

Next, consider

∥
∥Tn

Nx
(N−1)
n − p+ γ(N)

n

(

u(N)
n − xn

)∥
∥≤ ∥∥Tn

Nx
(N−1)
n − p

∥
∥+ γ(N)

n

∥
∥u(N)

n − xn
∥
∥. (2.8)

Thus,

limsup
n→∞

∥
∥Tn

Nx
(N−1)
n − p+ γ(N)

n

(

u(N)
n − xn

)∥
∥≤ a. (2.9)

Also,

∥
∥xn− p+ γ(N)

n

(

u(N)
n − xn

)∥
∥≤ ∥∥xn− p

∥
∥+ γ(N)

n

∥
∥u(N)

n − xn
∥
∥ (2.10)

gives that

limsup
n→∞

∥
∥xn− p+ γ(N)

n

(

u(N)
n − xn

)∥
∥≤ a, (2.11)

and we observe that

x(N)
n − p = α(N)

n Tn
Nx

(N−1)
n −α(N)

n p+α(N)
n γ(N)

n u(N)
n −α(N)

n γ(N)
n xn +

(

1−α(N)
n

)

xn

− (1−α(N)
n

)

p− γ(N)
n xn + γ(N)

n u(N)
n −α(N)

n γ(N)
n u(N)

n +α(N)
n γ(N)

n xn

= α(N)
n

(

Tn
Nx

(N−1)
n − p+ γ(N)

n

(

u(N)
n − xn

))

+
(

1−α(N)
n

)(

xn− p
)− (1−α(N)

n

)

γ(N)
n xn +

(

1−α(N)
n

)

γ(N)
n u(N)

n

= α(N)
n

(

Tn
Nx

(N−1)
n − p+ γ(N)

n

(

u(N)
n − xn

))

+
(

1−α(N)
n

)(

xn− p+ γ(N)
n

(

u(N)
n − xn

))

.
(2.12)
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Therefore,

a= lim
n→∞

∥
∥x(N)

n − p
∥
∥= lim

n→∞
∥
∥α(N)

n

(

Tn
Nx

(N−1)
n − p+ γ(N)

n

(

u(N)
n − xn

))

+
(

1−α(N)
n

)(

xn− p+ γ(N)
n

(

u(N)
n − xn

))∥
∥.

(2.13)

By (2.9), (2.14), and Lemma 1.3, we have

lim
n→∞

∥
∥Tn

Nx
(N−1)
n − xn

∥
∥= 0. (2.14)

Now, we will show that limn→∞‖Tn
N−1x

(N−2)
n − xn‖ = 0. For each n≥ 1,

∥
∥xn− p

∥
∥≤ ∥∥Tn

Nx
(N−1)
n − xn

∥
∥+

∥
∥Tn

Nx
(N−1)
n − p

∥
∥

≤ ∥∥Tn
Nx

(N−1)
n − xn

∥
∥+

(

1+ rn
)∥
∥x(N−1)n − p

∥
∥.

(2.15)

Using (2.14), we have

a= lim
n→∞

∥
∥xn− p

∥
∥≤ liminf

n→∞
∥
∥x(N−1)n − p

∥
∥. (2.16)

It follows that

a≤ liminf
n→∞

∥
∥x(N−1)n − p

∥
∥≤ limsup

n→∞

∥
∥x(N−1)n − p

∥
∥≤ a. (2.17)

This implies that

lim
n→∞

∥
∥x(N−1)n − p

∥
∥= a. (2.18)

On the other hand, we have

∥
∥x(N−2)n − p

∥
∥≤ (1+ rn

)N−2∥
∥xn− p

∥
∥+ t(N−2)n , ∀n≥ 1, (2.19)

where
∑∞

n=1 t
(N−2)
n <∞.Therefore,

limsup
n→∞

∥
∥x(N−2)n − p

∥
∥≤ limsup

n→∞

(

1+ rn
)N−2∥

∥xn− p
∥
∥+ t(N−2)n = a, (2.20)

and hence,

limsup
n→∞

∥
∥Tn

N−1x
(N−2)
n − p

∥
∥≤ limsup

n→∞

(

1+ rn
)∥
∥x(N−2)n − p

∥
∥≤ a. (2.21)

Next, consider

∥
∥Tn

N−1x
(N−2)
n − p+ γ(N−1)n

(

u(N−1)n − xn
)∥
∥≤ ∥∥Tn

N−1x
(N−2)
n − p

∥
∥+ γ(N−1)n

∥
∥u(N−1)n − xn

∥
∥.

(2.22)

Thus,

limsup
n→∞

∥
∥Tn

N−1x
(N−2)
n − p+ γ(N−1)n

(

u(N−1)n − xn
)∥
∥≤ a. (2.23)
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Also,

∥
∥xn− p+ γ(N−1)n

(

u(N−1)n − xn
)∥
∥≤ ∥∥xn− p

∥
∥+ γ(N−1)n

∥
∥u(N−1)n − xn

∥
∥ (2.24)

gives that

limsup
n→∞

∥
∥xn− p+ γ(N−1)n

(

u(N−1)n − xn
)∥
∥≤ a, (2.25)

and we observe that

x(N−1)n − p = α(N−1)n Tn
N−1x

(N−2)
n +

(

1−α(N−1)n

)

xn− γ(N−1)n xn

+ γ(N−1)n u(N−1)n − (1−α(N−1)n

)

p−α(N−1)n p

= α(N−1)n

(

Tn
N−1x

(N−2)
n − p+ γ(N−1)n

(

u(N−1)n − xn
))

+
(

1−α(N−1)n

)(

xn− p+ γ(N−1)n

(

u(N−1)n − xn
))

,

(2.26)

and hence

a= lim
n→∞

∥
∥x(N−1)n − p

∥
∥= lim

n→∞
∥
∥α(N−1)n

(

Tn
N−1x

(N−2)
n − p+ γ(N−1)n

(

u(N−1)n − xn
))

+
(

1−α(N−1)n

)(

xn− p+ γ(N−1)n

(

u(N−1)n − xn
))∥
∥.

(2.27)

By (2.23), (2.25), and Lemma 1.3, we have

lim
n→∞

∥
∥Tn

N−1x
(N−2)
n − xn

∥
∥= 0. (2.28)

Similarly, by using the same argument as in the proof above, we have

lim
n→∞

∥
∥Tn

N−1x
(N−2)
n − xn

∥
∥= 0. (2.29)

Continuing similar process, we have

lim
n→∞

∥
∥TN−ix(N−i−1)n − xn

∥
∥= 0, 0≤ i≤ (N − 2). (2.30)

Now,

∥
∥Tn

1 xn− p+ γ(1)n

(

u(1)n − xn
)∥
∥≤ ∥∥Tn

1 xn− p
∥
∥+ γ(1)n

∥
∥u(1)n − xn

∥
∥. (2.31)

Thus,

limsup
n→∞

∥
∥Tn

1 xn− p+ γ(1)n

(

u(1)n − xn
)∥
∥≤ a. (2.32)

Also,

∥
∥xn− p+ γ(1)n

(

u(1)n − xn
)∥
∥≤ ∥∥xn− p

∥
∥+ γ(1)n

∥
∥u(1)n − xn

∥
∥ (2.33)
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gives that

limsup
n→∞

∥
∥xn− p+ γ(1)n

(

u(1)n − xn
)∥
∥≤ a, (2.34)

and hence,

a= lim
n→∞

∥
∥x(1)n − p

∥
∥= lim

n→∞
∥
∥α(1)n

(

Tn
1 xn− p+ γ(1)n

(

u(1)n − xn
))

+
(

1−α(1)n

)(

xn− p+ γ(1)n

(

u(1)n − xn
))∥
∥.

(2.35)

By (2.32), (2.34), and Lemma 1.3, we have

lim
n→∞

∥
∥Tn

1 xn− xn
∥
∥= 0, (2.36)

and this implies that

∥
∥xn+1− xn

∥
∥= ∥∥α(N)

n Tn
Nx

(N−1)
n +

(

1−α(N)
n − γ(N)

n

)

xn + γ(N)
n u(N)

n − xn
∥
∥

≤ α(N)
n

∥
∥Tn

Nx
(N−1)
n − xn

∥
∥+ γ(N)

n

∥
∥u(N)

n − xn
∥
∥−→∞, as n−→∞.

(2.37)

Thus, we have

∥
∥Tn

Nxn− xn
∥
∥≤ ∥∥Tn

Nxn−Tn
Nx

(N−1)
n

∥
∥+

∥
∥Tn

Nx
(N−1)
n − xn

∥
∥

≤ (1+ rn
)∥
∥xn− x(N−1)n

∥
∥+

∥
∥Tn

Nx
(N−1)
n − xn

∥
∥

= (1+ rn
)∥
∥xn−α(N−1)n Tn

N−1x
(N−2)
n +

(

1−α(N−1)n − γ(N−1)n

)

xn

+ γ(N−1)n u(N−1)n

∥
∥+

∥
∥Tn

Nx
(N−1)
n − xn

∥
∥

≤ (1+ rn
)[

α(N−1)n

∥
∥xn−Tn

N−1x
(N−2)
n

∥
∥+ γ(N−1)n

∥
∥u(N−1)n − xn

∥
∥
]

+
∥
∥Tn

Nx
(N−1)
n − xn

∥
∥−→∞, as n−→∞,

(2.38)

and we have

∥
∥TNxn− xn

∥
∥≤ ∥∥xn+1− xn

∥
∥+

∥
∥xn+1−Tn+1

N xn+1
∥
∥

+
∥
∥Tn+1

N xn+1−Tn+1
N xn

∥
∥+

∥
∥Tn+1

N xn−TNxn
∥
∥

≤ ∥∥xn+1− xn
∥
∥+

∥
∥xn+1−Tn+1

N xn+1
∥
∥

+
(

1+ rn+1
)∥
∥xn+1− xn

∥
∥+

(

1+ r1
)∥
∥Tn

Nxn− xn
∥
∥.

(2.39)

It follows from (2.37), (2.38), and (2.39) that

lim
n→∞

∥
∥TNxn− xn

∥
∥= 0. (2.40)
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Next, we consider
∥
∥Tn

N−1xn− xn
∥
∥≤ ∥∥Tn

N−1xn−Tn
N−1x

(N−2)
n

∥
∥+

∥
∥Tn

N−1x
(N−2)
n − xn

∥
∥

≤ (1+ rn
)∥
∥xn− x(N−2)n

∥
∥+

∥
∥Tn

N−1x
(N−2)
n − xn

∥
∥

≤ (1+ rn
)[

α(N−2)n

∥
∥xn−Tn

N−2x
(N−3)
n

∥
∥+ γ(N−2)n

∥
∥u(N−2)n − xn

∥
∥
]

+
∥
∥Tn

N−1x
(N−2)
n − xn

∥
∥−→∞, as n−→∞,

(2.41)

∥
∥TN−1xn− xn

∥
∥≤ ∥∥xn+1− xn

∥
∥+

∥
∥xn+1−Tn+1

N−1xn+1
∥
∥

+
∥
∥Tn+1

N−1xn+1−Tn+1
N−1xn

∥
∥+

∥
∥Tn+1

N−1xn−TN−1xn
∥
∥

≤ ∥∥xn+1− xn
∥
∥+

∥
∥xn+1−Tn+1

N−1xn+1
∥
∥

+
(

1+ rn+1
)∥
∥xn+1− xn

∥
∥+

(

1+ r1
)∥
∥Tn

N−1xn− xn
∥
∥.

(2.42)

It follows from (2.37), (2.41) and the above inequality that

lim
n→∞

∥
∥TN−1xn− xn

∥
∥= 0. (2.43)

Continuing similar process, we have

lim
n→∞

∥
∥TN−ixn− xn

∥
∥= 0, 0≤ i≤ (N − 2). (2.44)

Now,
∥
∥T1xn− xn

∥
∥≤ ∥∥xn+1− xn

∥
∥+

∥
∥xn+1−Tn+1

1 xn+1
∥
∥

+
∥
∥Tn+1

1 xn+1−Tn+1
1 xn

∥
∥+

∥
∥Tn+1

1 xn−T1xn
∥
∥

≤ ∥∥xn+1− xn
∥
∥+

∥
∥xn+1−Tn+1

1 xn+1
∥
∥

+
(

1+ rn+1
)∥
∥xn+1− xn

∥
∥+

(

1+ r1
)∥
∥Tn

1 xn− xn
∥
∥.

(2.45)

It follows from (2.36), (2.37) and the above inequality that

lim
n→∞

∥
∥T1xn− xn

∥
∥= 0, (2.46)

and hence,

lim
n→∞

∥
∥TN−ixn− xn

∥
∥= 0, 0≤ i≤ (N − 1). (2.47)

This completes the proof. �

We recall the following definitions:
(i) A mapping T : K → K with F(T) �= ∅ is said to satisfy condition (A) [21] on K

if there exists a nondecreasing function f : [0,∞)→ [0,∞) with f (0) = 0 and
f (r) > r for all r ∈ (0,∞) such that for all x ∈ K ‖x−Tx‖ ≥ f (d(x,F)), where
d(x,F(T))= inf{‖x− p‖ : p ∈ F(T)}.

(ii) A finite family {T1, . . . ,TN} of N self mappings of K with F =⋂i=1N F(Ti) �= ∅
is said to satisfy condition (B) on K [1] if there exist f and d as in (i) such that
max1≤i≤N ‖x−Tix‖ ≥ f (d(x,F)) for all x ∈ K .



10 Fixed Point Theory and Applications

(iii) A finite family {T1, . . . ,TN} of N self mappings of K with F =⋂i=1N F(Ti) �= ∅
is said to satisfy condition (C) on K [1] if there exist f and d as in (i) such that
(1/N)

∑N
i=1‖x−Tix‖ ≥ f (d(x,F)) for all x ∈ K .

Note that condition (B) reduces to condition (A) when Ti = T , for all i= 1,2, . . . ,N .
It is well known that every continuous and demicompact mapping must satisfy condi-

tion (A) (see [21]). Since every completely continuous mapping T : K → K is continuous
and demicompact, it satisfies condition (A). Therefore, to study strong convergence of
{xn} defined by (1.1), we use condition (B) instead of the complete continuity of map-
pings T1,T2, . . . ,TN .

Theorem 2.3. Let E be a real uniformly convex Banach space andK let be a nonempty closed
convex subset of E. Let {T1, . . . ,TN} : K → K be N asymptotically nonexpansive mappings

with sequences {r(i)n } such that
∑∞

n=1 r
(i)
n <∞ for all 1 ≤ i ≤ N and F = ⋂N

i=1F(Ti) �= ∅.
Suppose that {T1,T2, . . . ,TN} satisfies condition (B). Let {xn} be the sequence defined by
(1.1) and some α,β ∈ (0,1) with the following restrictions:

(i) 0 < α≤ α(i)n ≤ β < 1, 1≤ i≤N ∀ n≥ n0 for some n0 ∈N;
(ii)

∑∞
n=1 γin <∞, 1≤ i≤N .

Then, {xn} converges strongly to a common fixed point of the mappings {T1, . . . ,TN}.
Proof. By Lemma 2.1, we see that limn→∞‖xn− p‖ exists for all p ∈ F. Let limn→∞‖xn−
p‖ = a for some a ≥ 0. Without loss of generality, if a = 0, there is nothing to prove.
Assume that a > 0, as proved in Lemma 2.1, we have

∥
∥xn+1− p

∥
∥= ∥∥x(N)

n − p
∥
∥≤ (1+ rn

)N∥
∥xn− p

∥
∥+ t(N)

n , (2.48)

where {t(N)
n } is nonnegative real sequence such that

∑∞
n=1 t

(N)
n <∞. This gives that

d
(

xn+1,F
)≤ (1+ rn

)N
d
(

xn,F
)

+ t(N)
n . (2.49)

Applying Lemma 1.2 to the above inequality, we obtain that limn→∞d(xn,F) exists. Also,
by Lemma 2.2, limn→∞‖xn−Tixn‖ = 0, for all i= 1,2, . . . ,N . Since {T1,T2, . . . ,TN} satis-
fies condition (B), we conclude that limn→∞d(xn,F)= 0.

Next, we show that {xn} is a Cauchy sequence. Since limn→∞d(xn,F) = 0, given any
ε > 0, there exists a natural number n0 such that d(xn,F) < ε/3 for all n≥ n0. So, we can
find p∗ ∈ F such that ‖xn0 − p∗‖ < ε/2. For all n≥ n0 andm≥ 1, we have

∥
∥xn+m− xn

∥
∥≤ ∥∥xn+m− p∗

∥
∥+

∥
∥xn− p∗

∥
∥≤ ∥∥xn0 − p∗

∥
∥+

∥
∥xn0 − p∗

∥
∥ <

ε

2
+
ε

2
= ε.

(2.50)

This shows that {xn} is a Cauchy sequence and so is convergent since E is complete.
Let limn→∞ xn = q∗. Then q∗ ∈ K . It remains to show that q∗ ∈ F. Let ε1 > 0 be given.
Then, there exists a natural number n1 such that ‖xn − q∗‖ < ε1/4 for all n ≥ n1. Since
limn→∞d(xn,F)= 0, there exists a natural number n2 ≥ n1 such that for all n≥ n2 we have
d(xn,F) < ε1/5 and in particular we have d(xn2 ,F)≤ ε1/5. Therefore, there exists w∗ ∈ F
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such that ‖xn2 −w∗‖ < ε1/4. For any i∈ I and n≥ n2, we have

∥
∥Tiq

∗ − q∗
∥
∥≤ ∥∥Tiq

∗ −w∗
∥
∥+

∥
∥w∗ − q∗

∥
∥

≤ 2
∥
∥q∗ −w∗

∥
∥≤ 2

(∥
∥q∗ − xn2

∥
∥+

∥
∥xn2 − q∗

∥
∥
)

< ε1.
(2.51)

This implies that Tiq∗ = q∗. Hence, q∗ ∈ F(Ti) for all i∈ I and so q∗ ∈ F =⋂N
n=1F(Ti).

This completes the proof. �

Remark 2.4. Theorem 2.3 holds true if we replace condition (B) with condition (C).

Remark 2.5. (1) Theorem 2.3 extends [3, Theorem 2], [4, Theorem 2.4], [17, Theorem],
[18, Theorem 1.5], and [5, Theorems 2.1–2.3] to the case of finite family of nonexpan-
sive mappings and multistep iteration considered here and no boundedness condition
imposed on K .

(2) Theorem 2.3 also generalizes [1, Theorem 3.5] to the case of the iteration with
errors in the sense of Xu [23].

We recall that a mapping T : K → K is called semicompact (or hemicompact) if any
sequence {xn} in K satisfying ‖xn−Txn‖→ 0 as n→∞ has a convergent subsequence.

Theorem 2.6. Let E be a real uniformly convex Banach space and letK be a nonempty closed
convex subset of E. Let {T1,T2, . . . ,TN} : K → K beN asymptotically nonexpansive mappings

with sequences {r(i)n } such that
∑∞

n=1 r
(i)
n <∞, for all 1 ≤ i ≤ N and F =⋂N

i=1F(Ti) �= ∅.
Suppose that one of the mappings in {T1,T2, . . . ,TN} is semi-compact. Let {xn} be the se-
quence defined by (1.1) and some α,β ∈ (0,1) with the following restrictions:

(i) 0 < α≤ α(i)n ≤ β < 1, 1≤ i≤N , for all n≥ n0 for some n0 ∈N;
(ii)

∑∞
n=1 γin <∞, 1≤ i≤N .

Then, {xn} converges strongly to a common fixed point of the mappings {T1, . . . ,TN}.

Proof. Suppose that Ti0 is semicompact for some i0 ∈ {1,2, . . . ,N}. By Lemma 2.2, we
have limn→∞‖xn − Ti0xn‖ = 0. So there exists a subsequence {xnj} of {xn} such that
limnj→∞ xnj = p ∈ K . Now, Lemma 2.2 guarantees that limnj→∞‖xnj −Tixnj‖ = 0 for all
i ∈ {1,2, . . . ,N} and so ‖p− Tip‖ = 0 for all i ∈ {1,2, . . . ,N}. This implies that p ∈ F.
Since limn→∞d(xn,F)= 0, it follows, as in the proof of Theorem 2.3, that {xn} converges
strongly to some common fixed point in F. This completes the proof. �

Remark 2.7. Theorem 2.6 extends [15, Theorem 2] and [19, Theorem 2.2] to the case of
finite family of nonexpansive mappings and multistep iteration considered here and no
boundedness condition imposed on K .

Next, we give the weak convergence.

Lemma 2.8. Let E be a real uniformly convex Banach space and let K be a nonempty closed
convex subset of E. Let {T1,T2, . . . ,TN} : K → K beN asymptotically nonexpansive mappings

with sequences {r(i)n } such that∑∞
n=1 r

(i)
n <∞, 1≤ i≤N , and F =⋂N

i=1F(Ti) �= ∅. Let {xn}
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be the sequence defined by (1.1) and some α,β ∈ (0,1) with the following restrictions:

(i) 0 < α≤ α(i)n ≤ β < 1, 1≤ i≤N , for all n≥ n0 for some n0 ∈N;
(ii)

∑∞
n=1 γin <∞, 1≤ i≤N .

Then for all u,v ∈ F, limn→∞‖txn + (1− t)u− v‖ exists for all t ∈ [0,1].

Proof. Since {xn} is bounded, there exist R > 0 such that {xn} ⊂ C := BR(0)∩K . Then, C
is a nonempty closed convex bounded subset of E. Basically, we follow the idea of [22].
Let an(t) = ‖txn + (1− t)u− v‖. Then, limn→∞ an(0) = ‖u− v‖, and from Lemma 2.1,
limn→∞ an(1) = ‖xn − v‖ exists. Without loss of generality, we may assume that
limn→∞‖xn−u‖ = r > 0 and t ∈ (0,1). Define Un : C→ C by

Unx = α(N)
n Tn

Nx
(N−1) +β(N)

n x+ γ(N)
n u(N)

n ,

x(N−1) = α(N−1)n Tn
N−1x

(N−2) +β(N−1)n x+ γ(N−1)n u(N−1)n ,

...

x(3) = α(3)n Tn
3 x

(2) +β(3)n x+ γ(3)n u(3)n ,

x(2) = α(2)n Tn
2 x

(1) +β(2)n x+ γ(2)n u(2)n ,

x(1) = α(1)n Tn
1 x+β(1)n x+ γ(1)n u(1)n , x ∈ C.

(2.52)

Then,
∥
∥Unx−Uny

∥
∥≤ (1+ rn

)N‖x− y‖. (2.53)

Set

Sn,m :=Un+m−1Un+m−2···Un, m≥ 1,

bn,m =
∥
∥Sn,m

(

txn + (1− t)u
)− (tSn,mxn + (1− t)Sn,mu

)∥
∥.

(2.54)

Then, observing Sn+mxn = xn+m, we get

an+m(t)=
∥
∥txn+m + (1− t)u− v

∥
∥≤ bn,m +

∥
∥Sn,m

(

txn + (1− t)u
)− v

∥
∥

≤ bn,m +

(n+m−1
∏

j=n

(

1+ r j
)N

)

an ≤ bn,m +Hnan,
(2.55)

where Hn =
∏∞

j=n(1+ r j)N . By a result of Bruck [24] we have

bn,m ≤Hng
−1(∥∥xn−u

∥
∥−H−1

n

∥
∥Sn,m−u

∥
∥
)

≤Hng
−1(∥∥xn−u

∥
∥−∥∥xn+m−u

∥
∥+

(

1−H−1
n

)

d
)

,
(2.56)

where g : [0,∞)→ [0,∞), g(0) = 0, is a strictly increasing continuous function depend-
ing only on d, the diameter of C. Since limn→∞Hn = 1, it follows from Lemma 2.1 that
limn,m→∞ bn,m = 0. Therefore,

limsup
m→∞

am ≤ lim
n,m→∞bn,m + liminf

n→∞ Hnan = liminf
n→∞ an. (2.57)

This completes the proof. �
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Theorem 2.9. Let E be a real uniformly convex Banach space such that its dual E∗ has the
Kadec-Klee property and let K be a nonempty closed convex subset of E. Let {T1,T2, . . . ,TN} :
K → K beN asymptotically nonexpansive mappings with sequences {r(i)n } such that∑∞

n=1 r
(i)
n

<∞, 1≤ i≤N , and F =⋂N
i=1F(Ti) �= ∅. Let {xn} be the sequence defined by (1.1) and some

α,β ∈ (0,1) with the following restrictions:

(i) 0 < α≤ α(i)n ≤ β < 1, 1≤ i≤N , for all n≥ n0 for some n0 ∈N;
(ii)

∑∞
n=1 γin <∞, 1≤ i≤N .

Then, {xn} converges weakly to a common fixed point of {T1,T2, . . . ,TN}.
Proof. Let p ∈ F. Then by Lemma 2.1, limn→∞‖xn − p‖ exists. Since E is reflexive and
{xn} is a bounded sequence in K , there exists subsequence {xnj} of {xn} which converges
weakly to some q ∈ K . Moreover limnj→∞‖xnj − Tixnj‖ → 0 for all i ∈ {1,2, . . . ,N}, by
Lemma 2.2. By Lemma 1.2, we have that (I −Ti)q = 0, that is, q ∈ F(Ti). By arbitrariness
of i∈ {1,2, . . . ,N}, we have q ∈ F =⋂N

i=1F(Ti).
Now, we show that {xn} converges weakly to q. Suppose that {xnk} is another sub-

sequence of {xn} which converges weakly to some q∗ ∈ K and q �= q∗. By the simi-
lar method as above, we have q∗ ∈ F = ⋂N

i=1F(Ti) and so p,q ∈ ωw(xn)∩ F. Then by
Lemma 2.8,

lim
n→∞

∥
∥txn + (1− t)q− q∗

∥
∥ (2.58)

exists for all t ∈ [0,1]. Now, Lemma 1.4 guarantees that q = q∗. As a result, ωw(xn) is
a singleton, this implies that {xn} converges weakly to a point in F = ⋂N

i=1F(Ti). This
completes the proof. �

Remark 2.10. (1) Since the duals of reflexive Banach spaces with Fréchet differentiable
norms have the Kadec-Klee property, Theorem 2.9 extends [2, Theorem 2.1], [3, Theo-
rem 1], [15, Theorem 1], [4, Theorem 2.9], [19, Theorem 2.1], and [22, Theorems 3.1-
3.2] to the case of finite family of asymptotically nonexpansive mappings and multistep
iteration and also to other Banach spaces which do not satisfy Opial’s condition or have
Fréchet differentiable norm. Moreover, we do not impose boundedness condition on K .

(2) Theorem 3.4 in [1] is also a special case of Theorem 2.9 with γ(i)n = 0 for i =
1,2, . . . ,N .
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