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Abstract
In this article, new classes of functions based on new variations of metric-preserving
functions are defined. Necessary and sufficient conditions for functions to be in these
classes are also provided. As a result, we can explain relations between all classes and
learn that all functions in the classes are weakly separated from 0. We can extend
fixed point theorems, which were originally provided by Kirk and Shahzad and were
later extended by Pongsriiam and Termwuttipong, in this journal by considering all
functions that are weakly separated from 0.
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1 Introduction
We first refer to the works of Krasner [14], Bakhtin [1], and Kada et al. [9] for the definitions
of ultrametrics, b-metrics, and w-distances, respectively.

Definition 1 Let d : X × X → [0,∞), where X is a nonempty set. We say that d is an
ultrametric if the following conditions hold for all x, y, z ∈ X:

(U1) d(x, y) = d(y, x);
(U2) d(x, y) = 0 if and only if x = y;
(U3) d(x, y) ≤ max{d(x, z), d(z, y)}.

Definition 2 Let d : X × X → [0,∞), where X is a nonempty set. We say that d is a b-
metric if there exists s ≥ 1 such that the following conditions hold for all x, y, z ∈ X:

(B1) d(x, y) = d(y, x);
(B2) d(x, y) = 0 if and only if x = y;
(B3) d(x, y) ≤ s(d(x, z) + d(z, y)).

Definition 3 Let f : X →R, where X is a topological space. Then f is lower semicontinu-
ous if for all a ∈R, f –1((a,∞)) is open.
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Definition 4 Let p : X × X → [0,∞), where (X, d) is a metric space. We say that p is a
w-distance on (X, d) if the following conditions hold:

(W1) For all x, y, z ∈ X , p(x, z) ≤ p(x, y) + p(y, z);
(W2) For each x ∈ X , p(x, ·) : X → [0,∞) is lower semicontinuous;
(W3) For each ε > 0, there exists δε > 0 such that, if p(z, x) ≤ δε and p(z, y) ≤ δε , then

d(x, y) ≤ ε.

From the definitions, we know that every ultrametric on X is a metric and every metric
on X is a b-metric. Moreover, we notice that if d is a metric on X, then d is also a w-distance
on (X, d). These distances and generalized metrics also have many applications. Examples
and applications of ultrametrics can be found in [2, 5, 6, 14, 15, 18, 19, 21, 26, 28]. We also
refer the reader to [8, 9, 12, 20, 22–24] for examples and applications of w-distances. Some
results concerning b-metrics can be found in [1, 10, 11, 21].

In 1935, Wilson [27] introduced the concept of metric-preserving functions, which have
been thoroughly studied by many people as we can see, for example, in [3, 4, 10–12, 16–
18, 20, 21].

Definition 5 Let f : [0,∞) → [0,∞). If for all metric d on a nonempty set X, f ◦ d is also
a metric on X, then we say that f is metric-preserving. We denote the set of all metric-
preserving functions by M.

In 1981, Borsík and Doboš [3] showed that every metric-preserving function f is
amenable, that is, f –1({0}) = {0}. Moreover, a characterization of metric-preserving func-
tions was provided as follows.

Theorem 1.1 [3, Theorem 2.7] Let f : [0,∞) → [0,∞) be amenable. Then f ∈ M if and
only if (f (x), f (y), f (z)) ∈ � for all (x, y, z) ∈ �, where � := {(x, y, z) ∈ R

3 : 0 ≤ x ≤ y + z, 0 ≤
y ≤ x + z, and 0 ≤ z ≤ x + y}.

The idea of metric-preserving functions was modified by replacing metrics with ultra-
metrics in 2014 by Pongsriiam and Termwuttipong [18]. Later, Khemaratchatakumthorn
and Pongsriiam [10] introduced a variation involving b-metrics, and Prinyasart and Sam-
phavat [20] investigated a variation related to w-distances. In this article, we introduce
new variations of the concept of metric-preserving functions concerning ultrametrics, b-
metrics, and w-distances as follows.

(i) Let UW denote the set of all function f : [0,∞) → [0,∞) such that for all
ultrametric d on a nonempty set X , f ◦ d is a w-distance on (X, d).

(ii) Let UW∗ denote the set of all function f : [0,∞) → [0,∞) such that for all
ultrametric d on a nonempty set X , there is a metric d′ on X such that f ◦ d is a
w-distance on (X, d′).

(iii) Let WU denote the set of all function f : [0,∞) → [0,∞) such that for all
w-distance p on any metric space (X, d), f ◦ p is an ultrametric on X .

(iv) Let BW∗ denote the set of all function f : [0,∞) → [0,∞) such that for all b-metric
d on a nonempty set X , there is a metric d′ on X such that f ◦ d is a w-distance on
(X, d′).

(v) Let WB denote the set of all function f : [0,∞) → [0,∞) such that for all
w-distance p on any metric space (X, d), f ◦ p is a b-metric on X .
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In Sects. 2–5, we provide necessary and sufficient conditions for functions to be in each
set defined above. Consequently, we can explain the relations between these sets in Sect. 6.

A metric transform is an amenable, strictly increasing, and concave function from [0,∞)
to itself. Let T be the set of all metric transforms. In 2013, Kirk and Shahzad [13] estab-
lished a fixed point theorem concerning T and local radial contractions as follows.

Definition 6 Let g : X → X, where X is a metric space with a metric d. We say that g is
a local radial contraction if there is c ∈ (0, 1) such that for each x ∈ X, there exists δx > 0
such that d(g(x), g(y)) ≤ c · d(x, y) for all y ∈ X with d(x, y) < δx.

Theorem 1.2 [13, Theorem 2.2] Let g : X → X, where X is a metric space with a metric d.
Then g is a local radial contraction if there are f ∈ T and k > 0 satisfying the following two
conditions:

(i) For all x ∈ X , there is δx > 0 such that f ◦ d(g(x), g(u)) ≤ k · d(x, u) for all u ∈ X with
d(x, u) < δx;

(ii) There exist c ∈ (0, 1) and γ > 0 such that f (ct) ≥ kt for all t ∈ (0,γ ).

In 2014, Pongsriiam and Termwuttipong [17] showed that T ⊆M and extended Theo-
rem 1.2 by replacing T with M in [17, Theorem 18]. Moreover, they also obtained another
similar result as follows.

Theorem 1.3 [17, Theorem 16] Let g : X → X, where X is a metric space with a metric d.
Then g is a local radial contraction if there are f ∈ T and k > 0 satisfying the following two
conditions:

(i) For all x ∈ X , there is δx > 0 such that f ◦ d(g(x), g(u)) ≤ k · d(x, u) for all u ∈ X with
d(x, u) < δx;

(ii) lim inft→0
f (t)

t > k.

In Sect. 7, let S be the set of all functions f : [0,∞) → [0,∞) satisfying one of the fol-
lowing conditions:

(i) f is weakly separated from 0, i.e., inf{f (t) : t > ε} > 0 for all ε > 0;
(ii) f (0) > 0;

(iii) lim inft→0
f (t)

t = 0.
We will see later that T ⊆ M ⊆ UW∗ ⊆ S . We extend Theorem 1.2 and Theorem 1.3 by
replacing T and M with S , and show that S is the largest set of functions from [0,∞) to
[0,∞) that makes the theorems hold.

2 Preliminaries
Theorem 2.1 WU = WB = ∅.

Proof Consider R as a metric space with the usual metric d. Define p : R×R → [0,∞) by
p(x, y) = 1 for all x, y ∈ R. Then p is a w-distance on (R, d). Notice that, for any function
f : [0,∞) → [0,∞), f ◦ p is a constant function on R×R, so f ◦ p is neither an ultrametric
nor a b-metric on R. �

From the previous theorem, we see that only UW∗, UW , and BW∗ are left to be consid-
ered. Next, let us recall the definition of semimetrics, which are functions that share some
properties with ultrametrics and b-metrics as follows.
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Definition 7 Let X be a nonempty set. A function d : X × X → [0,∞) is called a semimet-
ric if d satisfies the following conditions:

(S1) d(x, y) = d(y, x);
(S2) d(x, y) = 0 if and only if x = y.

Throughout this article, for any function f : [0,∞) → [0,∞), we denote by f0 a function
from [0,∞) to [0,∞) such that f0(0) = 0 and f0(t) = f (t) for all t > 0. The following lemma
gives relations between f ◦ d and f0 ◦ d, where d is a semimetric and f satisfies f –1({0}) ⊆
{0}, called weakly amenable [20, Definition 6].

Lemma 2.2 Let X be a nonempty set, d be a semimetric on X, and f : [0,∞) → [0,∞) be
a weakly amenable function. If f ◦ d satisfies the triangle inequality on X, i.e., f ◦ d(x, z) ≤
f ◦ d(x, y) + f ◦ d(y, z) for all x, y, z ∈ X, then f0 ◦ d is a metric on X. Conversely, if f0 ◦ d is a
metric on X and f (0) ≤ 2 inf f ([0,∞)), then f ◦ d satisfies the triangle inequality.

Proof Assume that the triangle inequality holds for f ◦d. Since f is weakly amenable and d
satisfies (S2), we have that f0 ◦ d satisfies (M1). Since d satisfies (S1), it is obvious that f0 ◦ d
also satisfies (M2). Since the triangle inequality holds for f ◦ d, we have that f0 ◦ d satisfies
(M3).

Conversely, assume that f0 ◦ d is a metric on X and f (0) ≤ 2 inf f ([0,∞)). To show that
f ◦d satisfies the triangle inequality, let x, y, z ∈ X. If x �= y, then f ◦d(x, y) = f0 ◦d(x, y) ≤ f0 ◦
d(x, z) + f0 ◦ d(z, y) ≤ f ◦ d(x, z) + f ◦ d(z, y). If x = y, then f ◦ d(x, y) = f (0) ≤ 2 inf f ([0,∞)) ≤
f ◦ d(x, z) + f ◦ d(z, y). �

The notions of ultrametric-metric-preserving functions and b-metric-metric-pre-
serving functions were respectively introduced in [18] and [10] as follows.

Definition 8 Let f : [0,∞) → [0,∞).
(i) If for all ultrametric d on a nonempty set X , f ◦ d is a metric on X , then we say that f

is ultrametric-metric-preserving. We denote the set of all
ultrametric-metric-preserving functions by UM.

(ii) If for all b-metric d on a nonempty set X , f ◦ d is a metric on X , then we say that f is
b-metric-metric-preserving. We denote the set of all b-metric-metric-preserving
functions by BM.

Since all ultrametrics and b-metrics are semimetrics, we obtain a relation between UW∗

and UM, and a relation between BW∗ and BM from Lemma 2.2 as follows.

Corollary 2.3 Let f : [0,∞) → [0,∞) be weakly amenable. Then the following statements
hold:

(i) If f ∈ UW∗, then f0 ∈ UM;
(ii) If f ∈ BW∗, then f0 ∈ BM.

Frequently, we want to construct a w-distance from a metric. The following lemma is
helpful in this situation.

Lemma 2.4 Let (X, d) be a metric space and p : X × X → [0,∞). If 1
2 p(x, x) ≤ p(x, y) =

d(x, y) for all x, y ∈ X with x �= y, then p is a w-distance on (X, d).
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Proof Assume that for all x, y ∈ X if x �= y, then 1
2 p(x, x) ≤ p(x, y) = d(x, y). Thus, (W1)

holds. To show (W2), let x0, y0 ∈ X, a ∈ R such that p(x0, y0) > a. Let r := p(x0, y0) – a,
which is a positive number. Let y ∈ X such that d(y0, y) < r. If y = y0, then we immediately
obtain that p(x0, y) = p(x0, y0) > a. Now, assume that y �= y0, then

p(x0, y) ≥ p(x0, y0) – p(y, y0) = p(x0, y0) – d(y, y0) > p(x0, y0) – r = a.

Therefore, p(x0, ·) is lower semicontinuous, which also implies that (W2) holds. For (W3),
let ε > 0 and δε := ε

2 . For all x, y, z ∈ X, if p(z, x), p(z, y) ≤ δε , then by the triangle inequality,

d(x, y) ≤ p(x, y) ≤ p(z, x) + p(z, y) ≤ δ + δ = ε.

Therefore, p is a w-distance on (X, d). �

3 Characterization of UW∗

From our previous work [20, Proposition 3.2], we showed that every function in MW∗ is
weakly amenable. Similarly, we can now show that the result holds for functions in UW∗

as well.

Proposition 3.1 All functions in UW∗ are weakly amenable.

Proof Let f : [0,∞) → [0,∞) be a function that is not weakly amenable. Then f (a) = 0 for
some a > 0. Let d : R×R → [0,∞) be an ultrametric defined by

d(x, y) :=

⎧
⎨

⎩

0, if x = y;

a, otherwise.

To show that f /∈ UW∗, suppose not. Then there is a metric d′ on R such that f ◦ d is a
w-distance on (R, d′). Since f ◦ d(0, 1) = 0 < δ and f ◦ d(0, 2) = 0 < δ for any positive real
number δ, by (W3), we obtain that d′(1, 2) < ε for any positive real number ε, which implies
that d′(1, 2) = 0. This is impossible. So, f /∈ UW∗. �

From the definition, it is easy to see that UW and BW∗ are subsets of UW∗. Thus, all
functions in UW and BW∗ are weakly amenable by Proposition 3.1 as well.

Before we start the characterization of UW∗, let us recall the following result on
ultrametric-metric-preserving functions from [18].

Definition 9 Let f : [0,∞) → [0,∞). If f ◦ d is a metric on X for all ultrametric d on X,
then we say that f is ultrametric-metric-preserving. We denote by UM, the set of all
ultrametric-metric-preserving functions.

We denote the set
{

(x, y, z) ∈R
3 : 0 ≤ x ≤ y + z, 0 ≤ y ≤ x + z and 0 ≤ z ≤ x + y

}

by �. We also denote the set
{

(x, y, z) ∈R
3 : 0 ≤ x ≤ max(y, z), 0 ≤ y ≤ max(x, z) and 0 ≤ z ≤ max(x, y)

}

by �∞.
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Theorem 3.2 [18, Theorem 19] Let f : [0,∞) → [0,∞). Then f ∈ UM if and only if f is
amenable and satisfies one of the following equivalent conditions:

(i) (f (x), f (y), f (z)) ∈ � for all (x, y, z) ∈ �∞;
(ii) If 0 ≤ x ≤ y, then f (x) ≤ 2f (y).

Now, we are ready to state the characterization of UW∗ in the following theorem.

Theorem 3.3 Let f : [0,∞) → [0,∞) be weakly amenable. The following statements are
equivalent:

(i) f ∈ UW∗;
(ii) (f (a), f (b), f (c)) ∈ � for all (a, b, c) ∈ �∞;
(iii) If 0 ≤ a ≤ b, then f (a) ≤ 2f (b).

Proof First, we show that (i) implies (ii). Assume that f ∈ UW∗. By Corollary 2.3, f0 ∈
UM. To show that f satisfies (ii), let (a, b, c) ∈ �∞. If a, b, c �= 0, then (f (a), f (b), f (c)) =
(f0(a), f0(b), f0(c)) ∈ � by Theorem 3.2. Next, consider the case where a, b, or c is zero.
Without loss of generality, we may assume that c = 0. Thus, (a, b, 0) ∈ �∞, which implies
that a = b. So, f (a) ≤ f (a) + f (c) = f (b) + f (c) and f (b) ≤ f (b) + f (c) = f (a) + f (c). In order
to show that f (c) ≤ f (a) + f (b), let X := {0, a} and d be the usual metric on R. Then d is
an ultrametric on X. Since f ∈ UW∗, there exists a metric d′ on X such that f ◦ d is a w-
distance on (X, d′). By the triangle inequality, f (c) = f ◦ d(0, 0) ≤ f ◦ d(0, a) + f ◦ d(a, 0) =
f (a) + f (b). Hence, (ii) holds.

It is obvious that (ii) implies (iii). To show that (iii) implies (i), assume that f (a) ≤ 2f (b)
for all a ≤ b. Then f0 ∈ UM by Theorem 3.2. Let d be an ultrametric on X. Since f0 ∈ UM,
we have that d′ := f0 ◦ d is a metric on X. By the assumption, we have that 1

2 f ◦ d(x, x) =
1
2 f (0) ≤ f ◦d(x, y) = d′(x, y) for all distinct elements x, y ∈ X. Therefore, f ◦d is a w-distance
on (X, d′) by Lemma 2.4. �

Corollary 3.4 All functions in UW∗ are weakly separated from 0.

Proof Let f ∈ UW∗. By Proposition 3.1, f is weakly amenable. By Theorem 3.3, for all
a, b ≥ 0, if a ≤ b, then f (a) ≤ 2f (b). To show that f is weakly separated from 0, let ε > 0 be
arbitrary. Since f is weakly amenable, we have that f (ε) > 0. Since f (ε) ≤ 2f (t) for all t ≥ ε,

inf
{

f (t) : t ≥ ε
} ≥ 1

2
f (ε) > 0.

Hence, f is weakly separated from 0. �

4 Characterization of UW
From the previous section, we know thatUW ⊆ UW∗ and all functions inUW∗ are weakly
amenable. Then, in order to characterize UW , we can consider only weakly amenable
functions.

Theorem 4.1 Assume that f : [0,∞) → [0,∞) is weakly amenable. We have that the fol-
lowing statements are equivalent:

(i) f ∈ UW ;
(ii) f is lower semicontinuous and (f (a), f (b), f (c)) ∈ � for all (a, b, c) ∈ �∞;
(iii) f is lower semicontinuous and f (a) ≤ 2f (b) whenever 0 ≤ a ≤ b.
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Proof By Theorem 3.3, (ii) and (iii) are equivalent. So, it is enough to show that (i) implies
(ii), and (iii) implies (i). First, assume that f ∈ UW . Since f ∈ UW ⊆ UW∗, by Theorem 3.3,
we have that for all (a, b, c) ∈ �∞, (f (a), f (b), f (c)) ∈ �. Next, we show that f is a lower
semicontinuous function. Define an ultrametric d on R by

d(x, y) :=

⎧
⎨

⎩

max{|x|, |y|}, if x �= y;

0, if x = y.

Since f ∈ UW , f ◦ d is a w-distance on (X, d). Since f (x) = f ◦ d(0, x) for all x ≥ 0, we can
conclude that f is lower semicontinuous by property (W2) of f ◦ d.

To show that (iii) implies (i), assume (iii). Then f0(a) ≤ 2f0(b) if 0 ≤ a ≤ b, which implies
that f0 ∈ UM by Theorem 3.2. Let d be an ultrametric on a nonempty set X. Then f0 ◦d is a
metric on X. Since d is continuous on (X, d) and f is lower semicontinuous, we obtain that
f ◦ d satisfies (W2). By Lemma 2.2, since f0 ◦ d is a metric on X and f (0) ≤ 2 inf f ([0,∞)),
f ◦d satisfies the triangle inequality, so (W1) holds for f ◦d. Lastly, we show that (W3) holds
for f ◦d. Let ε > 0 be arbitrary and δε be any positive real number less than inf{f (t) : t ≥ ε}.
Since f0 ∈ UM ⊆ UW∗, f0 is weakly separated from 0, which implies that δε > 0. Now, let
x, y, z ∈ X such that f ◦ d(z, x) ≤ δε and f ◦ d(z, y) ≤ δε . Then f (d(z, x)), f (d(z, y)) < inf{f (t) :
t ≥ ε}. Thus, d(z, x), d(z, y) < ε, which imply that d(x, y) ≤ max{d(z, x), d(z, y)} < ε. �

5 Characterization of BW∗

Let us recall the characterization of BM established by Khemaratchatakumthorn and
Pongsriiam [10].

Definition 10 Let f : [0,∞) → [0,∞). We say that f is tightly bounded if one of the fol-
lowing equivalent conditions holds:

(i) There exists v > 0 such that f (t) ∈ [v, 2v] for all t > 0;
(ii) 2 inf{f (t) : t > 0} ≥ sup{f (t) : t > 0} > 0.

Theorem 5.1 [10, Theorem 24] A function f : [0,∞) → [0,∞) is a member of BM if and
only if f is tightly bounded and amenable.

We use the previous theorem to obtain a characterization of BW∗ as follows.

Theorem 5.2 Let f : [0,∞) → [0,∞). Then f ∈ BW∗ if and only if f is tightly bounded
and f (0) ≤ 2 inf f ([0,∞)).

Proof Assume that f ∈ BW∗. Since f ∈ BW∗ ⊆ UW∗, we have that f is weakly amenable
by Proposition 3.1. Since f ∈ BW∗, f0 ∈ BM by Corollary 2.3. By Theorem 5.1, f0 is tightly
bounded, which implies that f is tightly bounded as well. Since f ∈ UW∗, f (0) ≤ 2f (t) for
all t ≥ 0 by Theorem 3.3. Hence, f (0) ≤ 2 inf f ([0,∞)).

Next, we assume that f is tightly bounded and f (0) ≤ 2 inf f ([0,∞)). Since f is tightly
bounded, f0 is amenable and tightly bounded, so f0 ∈ BM by Theorem 5.1. Let d be a b-
metric on a set X and d′ = f0 ◦ d. Since f0 ∈ BM, d′ is a metric on X. Since 1

2 f ◦ d(x, x) =
1
2 f (0) ≤ inf f ([0,∞)) ≤ f ◦ d(x, y) = d′(x, y) for all distinct elements x, y ∈ X, we have that
f ◦ d is a w-distance on (X, d′) by Lemma 2.4. �
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6 The relations between all sets of functions
In our previous work [20], we introduced the following notions related to w-distances and
metrics.

(i) Let W denote the set of all function f : [0,∞) → [0,∞) such that for all metric d on
a nonempty set X and any w-distance p on (X, d), f ◦ p is a w-distance on (X, d).

(ii) Let W∗ denote the set of all function f : [0,∞) → [0,∞) such that for all metric d
on a nonempty set X and any w-distance p on (X, d), there is a metric d′ on X such
that f ◦ p is a w-distance on (X, d′).

(iii) Let MW denote the set of all function f : [0,∞) → [0,∞) such that for all metric d
on a nonempty set X , f ◦ d is a w-distance on (X, d).

(iv) Let MW∗ denote the set of all function f : [0,∞) → [0,∞) such that for all
metric d on a nonempty set X , there is a metric d′ on X such that f ◦ d is a
w-distance on (X, d′).

The characterizations of functions in the classes defined above were also given as fol-
lows.

Theorem 6.1 [20, Theorem 3.3–3.7] Assume that f : [0,∞) → [0,∞) is a weakly amenable
function.

(i) f ∈MW∗ if and only if (f (x), f (y), f (z)) ∈ � for all (x, y, z) ∈ �.
(ii) f ∈MW if and only if f is lower semicontinuous and (f (x), f (y), f (z)) ∈ � for all

(x, y, z) ∈ �.
(iii) f ∈W if and only if f is nondecreasing, lower semicontinuous, and

f (x + y) ≤ f (x) + f (y) for all x, y ∈ [0,∞).
(iv) If infx∈(0,∞) f (x) > 0, then f ∈W∗ if and only if for all x, y, z ≥ 0 with x ≤ y + z,

f (x) ≤ f (y) + f (z).
(v) If infx∈(0,∞) f (x) = 0, then f ∈W∗ if and only if f is nondecreasing, lower

semicontinuous, and f (x + y) ≤ f (x) + f (y) for all x, y ∈ [0,∞).

From the definitions and the facts that every ultrametric is a metric, and every metric is a
b-metric, we obtain the following inclusions: BW∗ ⊆ MW∗ ⊆ UW∗ and MW ⊆ UW ⊆
UW∗. So, we can extend the diagram showing the relations between W , W∗ MW , and
MW∗ in [20, Sect. 3.6] by adding UW∗, UW , and BW∗ to the diagram.

f ∈W f ∈W∗

f ∈MW

f ∈M

f ∈ BW∗

f ∈MW∗ f ∈ UW∗

f ∈ UW

In the diagram, if there is a directed path from f ∈A to f ∈ B, then A⊆ B. The following
examples show that if there is no directed path from f ∈A to f ∈ B then A� B.

Example 1 Define f : [0,∞) → [0,∞) by f (t) := t for all t ∈ [0,∞). Then f is amenable,
nondecreasing, lower semicontinuous and f (x + y) ≤ f (x) + f (y) for all x, y ∈ [0,∞). Thus,
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f ∈ M ∩ W by Theorem 1.1 and Theorem 6.1. On the other hand, since f is not tightly
bounded, f /∈ BW∗ by Theorem 5.2. Hence, M ∩ W � BW∗. We can also conclude that
W , M, W∗, MW , MW∗, UW , and UW∗ are not contained in BW∗.

Example 2 Define f : [0,∞) → [0,∞) by

f (t) :=

⎧
⎪⎪⎨

⎪⎪⎩

2, if t = 0;

8, if t = 2;

4, otherwise.

Since f is tightly bounded and f (0) ≤ 2 inf f ([0,∞)), f ∈ BW∗ by Theorem 5.2. Since f
is not amenable, by Theorem 1.1, we have that f /∈ M. Moreover, since 2 ≤ 0 + 4 but
f (2) > f (0) + f (4), by Theorem 6.1, we have that f /∈ W∗. Lastly, since f –1((5,∞)) = {2} is
not an open set in [0,∞), we obtain that f is not a lower semicontinuous function. By
Theorem 4.1, f /∈ UW . Hence, BW∗

�M ∪W∗ ∪ UW . We can also conclude that BW∗

is not contained in UW , M, W∗, MW , and W .

Example 3 Define f : [0,∞) → [0,∞) by

f (t) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, if t = 0;

1, if 0 < t < 1;

2, if t ≥ 1.

By Theorem 5.2, it is obvious that f ∈ BW∗. To show that f ∈ W∗, let a, b, c be nonnega-
tive real numbers such that a ≤ b + c. If b > 0 and c > 0, then f (b) + f (c) ≥ 1 + 1 = 2 ≥ f (a).
Now, assume that b = 0 or c = 0. Without loss of generality, we may assume that b = 0.
Then a ≤ c. Since f is nondecreasing, f (a) ≤ f (c) ≤ f (b) + f (c). Therefore, f ∈ W∗ by
Theorem 6.1. Since f (a) ≤ f (b) + f (c) for all a, b, c ≥ 0 with a ≤ b + c, we have that
(f (x), f (y), f (z)) ∈ � for all (x, y, z) ∈ �. Therefore, f ∈ M by Theorem 1.1. Lastly, since
f –1((1,∞)) = [1,∞) is not an open set in [0, ∞), we obtain that f is not a lower semicon-
tinuous function. By Theorem 4.1, f /∈ UW . Hence, BW∗ ∩M∩W∗

� UW . We can also
conclude that BW∗, M, W∗, MW∗, and UW∗ are not contained in UW .

Example 4 Define f : [0,∞) → [0,∞) by

f (t) :=

⎧
⎨

⎩

1, if t ≤ 1;

3, if t > 1.

It is easy to see that f is lower semicontinuous. Moreover, if 0 ≤ a ≤ b, then f (a) ≤
f (b) ≤ 2f (b). Thus, f ∈ UW by Theorem 4.1. However, since there is (1, 1, 2) ∈ � such
that (f (1), f (1), f (2)) = (1, 1, 3) /∈ �, by Theorem 6.1, we have that f /∈ MW∗. Hence,
UW � MW∗. We can also conclude that UW is not contained in W , BW∗, M, W∗,
and MW .
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7 Local radial contractions and the collection S
Recall that S is the set of all functions f : [0,∞) → [0,∞) satisfying one of the following
conditions:

(i) f is weakly separated from 0;
(ii) f (0) > 0;

(iii) lim inft→0
f (t)

t = 0.
By Corollary 3.4, we know that UW∗ ⊆ S . From [17, Proposition 20], we also know that
T ⊆ M. Therefore, from Sect. 6, we have that T ⊆ M ⊆ UW∗ ⊆ S . In this section, we
show that T in Theorem 1.2 and M in Theorem 1.3 can be replaced by S . Moreover, S is
the largest set of functions from [0,∞) to [0,∞) that makes the theorems hold.

First, notice that if the function g in Theorem 1.3 is continuous, then M can be replaced
by any set of functions from [0,∞) to [0,∞) as shown in the following proposition.

Proposition 7.1 Let g : X → X be a continuous function, where X is a metric space with
a metric d. Then g is a local radial contraction if there are f : [0,∞) → [0,∞) and k > 0
satisfying the following two conditions:

(i) For each x ∈ X , there is δx > 0 such that f ◦ d(g(x), g(u)) ≤ k · d(x, u) for all u ∈ X with
d(x, u) < δx;

(ii) lim inft→0
f (t)

t > k.

Proof Let α be a real number such that k < α < lim inft→0
f (t)

t . Then there exists δ > 0 such
that αt ≤ f (t) for all t ∈ [0, δ). Let x ∈ X be arbitrary. By (i) and since g is continuous,
there is δx > 0 such that for every u ∈ X, f ◦ d(g(x), g(u)) ≤ k · d(x, u) and d(g(x), g(u)) < δ

whenever d(x, u) < δx. Let u ∈ X be such that d(x, u) < δx. Since d(g(x), g(u)) < δ, we have
that

α · d
(
g(x), g(u)

) ≤ f ◦ d
(
g(x), g(u)

) ≤ k · d(x, u).

Thus, d(g(x), g(u)) ≤ k
α

· d(x, u). Hence, g is a local radial contraction. �

If g is not continuous, then we need the following lemma.

Lemma 7.2 Let g : X → X, where X is a metric space with a metric d. Then g is contin-
uous if there are a function f : [0,∞) → [0,∞) that is weakly separated from 0 and k > 0
satisfying condition (i) in Proposition 7.1.

Proof Let x ∈ X and ε > 0 be arbitrary. Let α := inf{f (t) : t > ε
2 }. Since f is weakly separated

from 0, we have that α > 0. Choose δ := min(δx, α
k ) > 0 and let u ∈ X be such that d(x, u) < δ.

Then, by (i),

f
(
d
(
g(x), g(u)

)) ≤ k · d(x, u) < kδ ≤ α.

Therefore, d(g(x), g(u)) ≤ ε
2 < ε. �

Now, we obtain a generalization of Theorem 1.3 as follows.

Theorem 7.3 Let g : X → X, where X is a metric space with a metric d. Then g is a local
radial contraction if there are f ∈ S and k > 0 satisfying the following two conditions:
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(i) For each x ∈ X , there is δx > 0 such that f ◦ d(g(x), g(u)) ≤ k · d(x, u) for all u ∈ X with
d(x, u) < δx;

(ii) lim inft→0
f (t)

t > k.

Proof From (i) and (ii), we know that f (0) = 0 and lim inft→0
f (t)

t > 0, respectively. Since
f ∈ S , we can conclude that f is weakly separated from 0. By Lemma 7.2, g is continuous.
It follows that g is a local radial contraction by Proposition 7.1. �

For a function f : [0,∞) → [0,∞), if there are k,γ > 0 and c ∈ (0, 1) such that f (ct) ≥ kt
for all t ∈ (0,γ ), then

lim inf
t→0

f (t)
t

= lim inf
t→0

f (ct)
ct

≥ lim inf
t→0

f (ct)
t

≥ k.

Thus, we obtain a generalization of Theorem 1.2 as follows.

Theorem 7.4 Let g : X → X, where X is a metric space with a metric d. Then g is a local
radial contraction if there are f ∈ S and k > 0 satisfying the following two conditions:

(i) For each x ∈ X , there is δx > 0 such that for every f ◦ d(g(x), g(u)) ≤ k · d(x, u) for all
u ∈ X with d(x, u) < δx;

(ii) There exist c ∈ (0, 1) and γ > 0 such that f (ct) ≥ kt for all t ∈ (0,γ ).

The following proposition tells us that S is the largest set that makes Theorem 7.3 and
Theorem 7.4 hold.

Proposition 7.5 Let f : [0,∞) → [0,∞) be a function that is not weakly separated from 0,
lim inft→0

f (t)
t > 0 and f (0) = 0. Then there exist a metric space (X, d), k > 0, and g : X → X

satisfying conditions (i) and (ii) in Theorem 7.3 and Theorem 7.4, but g is not continuous,
which also implies that g is not a local radial contraction.

Proof Let α := lim inft→0
f (t)

t > 0. Since f is not weakly separated from 0, there exists δ >
0 such that inf{f (t) : t > δ} = 0. Then there exists a sequence (tn)n∈N in (δ,∞) such that
f (tn) ≤ α

2n for all n ∈N. Let N ∈ N be such that 1
N < δ. Let d be the usual Euclidean metric

on R, X := {0} ∪ H ∪ T , where H := { 1
n : n ∈N and n ≥ N} and T := {tn : n ∈N and n ≥ N}.

Notice that H ⊆ (0, δ) and T ⊆ (δ,∞). Define g : X → X by

g(x) :=

⎧
⎨

⎩

tn, if x = 1
n for some n ∈N with n ≥ N ;

0, otherwise.

Since lim infn→∞ g( 1
n ) = lim infn→∞ tn ≥ δ > 0 = g(0), we have that g is not continuous at 0.

Thus, g is not a local radial contraction. Let k := α
2 > 0. It is clear that condition (ii) in

Theorem 7.3 holds. To show that condition (ii) in Theorem 7.4 holds, choose c := 3
4 ∈

(0, 1). Since k
c < lim inft→0

f (t)
t , there exists γ > 0 such that kt

c ≤ f (t) for all t ∈ (0,γ ). Thus,
kt ≤ f (ct) for all t ∈ (0, γ

c ). Then (ii) in Theorem 7.4 holds. To show that (i) holds, let x ∈ X
be arbitrary.

Case 1 (x = 0): Choose δx := δ. Let u ∈ X with d(x, u) < δx. Then u = 0 or u ∈ H . If u = 0,
then f ◦ d(g(x), g(u)) = f (0) = 0 = k · d(x, u). Now, assume that u ∈ H . Thus, u = 1

n for some
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n ∈N with n ≥ N . Thus,

f ◦ d
(
g(x), g(u)

)
= f ◦ d(0, tn) = f (tn) ≤ α

2n
=

k
n

= k · d(x, u).

Case 2 (x ∈ H): Then x is an isolated point in X. Thus, there is δx > 0 such that for all
u ∈ X if d(x, u) < δx, then u = x, so

f ◦ d
(
g(x), g(u)

)
= f (0) = 0 = k · d(x, u).

Case 3 (x ∈ T ): Choose δx := x – δ > 0. Let u ∈ X with d(x, u) < δx. Then u ≥ x – d(x, u) >
x – δx = δ. Thus, u ∈ T . So,

f ◦ d
(
g(x), g(u)

)
= f ◦ d(0, 0) = f (0) = 0 ≤ k · d(x, u).

Thus, condition (i) holds. �

In [13] and [17], the authors used the following two results to obtain fixed point theo-
rems for a function g satisfying the assumptions in Theorem 1.2.

Lemma 7.6 [7, Theorem 1] Let X be a complete metric space and g : X → X be a local
radial contraction. Suppose that for some y0 ∈ X the points y0 and g(y0) are joined by a
path of finite length. Then g has a unique fixed point x0 ∈ X, and limn→∞ gn(x) = x0 for all
x ∈ X.

Lemma 7.7 [25, Proposition 2.4] Let X be any topological space, x0 ∈ X, and g : X → X. If
there exists N ∈ N such that limn→∞(gN )n(x) = x0 for all x ∈ X, then limn→∞ gn(x) = x0 for
all x ∈ X.

By the same argument shown in [13] and [17], we use Theorem 7.3 and Theorem 7.4 with
Lemma 7.6 and Lemma 7.7 to obtain the following generalization of [13, Theorem 2.8] and
[17, Theorem 26].

Theorem 7.8 Let g : X → X, where X is a complete metric space such that any two points
in X can be joined by a path of finite length. Assume that there exists N ∈ N such that gN

satisfies the assumptions in Theorem 7.3 or the assumptions in Theorem 7.4. Then g has a
unique fixed point x0 ∈ X, and limn→∞ gn(x) = x0 for all x ∈ X.

The following example shows that there is a metric space (X, d), a function g : X → X, a
constant k > 0, and a function f ∈ S satisfying (i) and (ii) in Theorem 7.3, but f /∈ M. So,
Theorem 7.8 is a generalization of [13, Theorem 2.8] and [17, Theorem 26].

Example 5 Define f : [0,∞) → [0,∞) by

f (t) :=

⎧
⎨

⎩

t, if t ∈ [0, 1];

t2, otherwise.

It is clear that f is weakly separated from 0. So, f ∈ S . On the other hand, since (1, 1, 2) ∈ �

but (f (1), f (1), f (2)) = (1, 1, 4) /∈ �, we have that f /∈M by Theorem 1.1. In particular, if we
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let X := [0,∞), k := 1
2 , g : X → X defined by g(x) := 1

2 x, and δx := 1 for all x ∈ X, then (i)
and (ii) in Theorem 7.3 hold.

8 Set-valued contractions
In this section, we investigate set-valued mappings and establish a theorem similar to The-
orem 7.3 and Theorem 7.4 in the same way shown in [13, Sect. 3] and [17, Sect. 4].

Let (X, d) be a metric space. We denote the family of nonempty, closed, and bounded
subsets of X by CB(X). For A, B ∈ CB(X), the usual Hausdorff distance H(A, B) is defined
by

H(A, B) := max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

,

where d(x, Y ) := infy∈Y d(x, y) for x ∈ X and Y ∈ CB(X).

Definition 11 Let T : X → CB(X), where X is a metric space with a metric d.
(i) If there is k ∈ (0, 1) such that H(T(x), T(y)) ≤ k · d(x, y) for all x, y ∈ X , then we say

that T is a multivalued k-contraction mapping.
(ii) Let ε > 0 and k ∈ (0, 1). If H(T(x), T(y)) ≤ k · d(x, y) for all x, y ∈ X with d(x, y) < ε,

then we say that T is an (ε, k)-uniform local multivalued contraction.
(iii) A fixed point of T is a point x ∈ X such that x ∈ T(x).

Kirk and Shahzad gave a variation of Theorem 1.2 for functions from X to CB(X) as
follows.

Theorem 8.1 [13, Theorem 3.4] Let T : X → CB(X), where X is a metric space with a
metric d. Assume that there are f ∈ T and k > 0 such that the following two conditions
hold:

(i) f ◦ H(T(x), T(y)) ≤ k · d(x, y) for all x, y ∈ X ;
(ii) There exist γ > 0 and c ∈ (0, 1) such that f (ct) ≥ kt for all t ∈ (0,γ ).

Then there exists δ > 0 such that T is an (ε, c)-uniform local multivalued contraction for
all ε ∈ (0, δ).

Similar to the previous section, Pongsriiam and Termwuttipong also extended Theo-
rem 8.1 by replacing T with M in [17, Corollary 31]. Additionally, they also gave another
similar result as follows.

Theorem 8.2 [17, Theorem 30] Let T : X → CB(X), where X is a metric space with a met-
ric d. Then there exist δ > 0 and c ∈ (0, 1) such that T is an (ε, c)-uniform local multivalued
contraction for all ε ∈ (0, δ) if there are f ∈M and k > 0 satisfying the following two condi-
tions:

(i) f ◦ H(T(x), T(y)) ≤ k · d(x, y) for all x, y ∈ X ;
(ii) lim inft→0

f (t)
t > k.

In this article, we can extend Theorem 8.1 by replacing T with S as follows.

Theorem 8.3 Let T : X → CB(X), where X is a metric space with a metric d. Assume that
there are f ∈ S and k > 0 such that the following two conditions hold:
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(i) f ◦ H(T(x), T(y)) ≤ k · d(x, y) for all x, y ∈ X ;
(ii) There exist γ > 0 and c ∈ (0, 1) such that f (ct) ≥ kt for all t ∈ (0,γ ).

Then there exists δ > 0 such that T is an (ε, c)-uniform local multivalued contraction for
all ε ∈ (0, δ).

Proof From (i), we know that f (0) = 0. By (ii),

lim inf
t→0

f (t)
t

= lim inf
t→0

f (ct)
ct

≥ lim inf
t→0

f (ct)
t

≥ k > 0.

Therefore, f is weakly separated from 0 since f ∈ S . Let δ := 1
k · inf{f (t) : t ≥ cγ } > 0. Let

ε ∈ (0, δ) be arbitrary. It follows that f (t) ≥ kδ > kε for all t ≥ cγ . Let x, y ∈ X be such
that d(x, y) < ε. By (i), we have that f (H(T(x), T(y))) ≤ k · d(x, y) < kε, which implies that
H(T(x), T(y)) < cγ . By condition (ii), we know that kt

c ≤ f (t) for all t ∈ [0, cγ ). Therefore,

k
c

· H
(
T(x), T(y)

) ≤ f
(
H

(
T(x), T(y)

)) ≤ k · d(x, y).

Hence, H(T(x), T(y)) ≤ c · d(x, y). So, T is an (ε, c)-uniform local multivalued contrac-
tion. �

We also obtain a generalization of Theorem 8.2 as follows.

Theorem 8.4 Let T : X → CB(X), where X is a metric space with a metric d. Then there
exist δ > 0 and c ∈ (0, 1) such that T is an (ε, c)-uniform local multivalued contraction for
all ε ∈ (0, δ) if there are f ∈ S and k > 0 satisfying the following two conditions:

(i) f ◦ H(T(x), T(y)) ≤ k · d(x, y) for all x, y ∈ X ;
(ii) lim inft→0

f (t)
t > k.

Proof It is enough to show that condition (ii) in this theorem implies condition (ii) in
Theorem 8.3. Assume that lim inft→0

f (t)
t > k. Then lim inft→0

f (t)
kt > 1. Choose c ∈ (0, 1)

such that 1 < 1
c < lim inft→0

f (t)
kt . Thus, there exists γ > 0 such that 1

c ≤ f (t)
kt for all t ∈ (0,γ ).

Equivalently, f (ct) ≥ kt for all t ∈ (0, γ

c ). �

To illustrate that Theorem 8.4 is a generalization of Theorem 8.2, we provide the fol-
lowing example showing that there are a metric space (X, d), a function T : X → CB(X), a
constant k > 0, and a function f ∈ S satisfying (i) and (ii) in Theorem 8.4, but f /∈M.

Example 6 Let f : [0,∞) → [0,∞) be as in Example 5. Then f ∈ S�M. Let X := [0, 1], k :=
1
2 , T : X → CB(X) defined by T(x) := [0, x

2 ]. Notice that f ◦ H(T(x), T(y)) = |x–y|
2 = k|x – y|

for all x, y ∈ X and lim inft→0
f (t)

t = 1 > k. Hence, (i) and (ii) in Theorem 8.4 hold.

9 Conclusions
In this research, we define new classes of functions, which are UW , UW∗, WU , BW∗,
and WB, based on new variations of metric-preserving functions. We give necessary and
sufficient conditions for functions to be in these classes in Theorem 2.1, Theorem 3.3,
Theorem 4.1, and Theorem 5.2. We learn that all functions in the classes are weakly sep-
arated from 0. In Sect. 7, by considering the class of functions that are weakly separated
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from 0, we can extend fixed point theorems, which were originally provided by Kirk and
Shahzad [13] and were later extended by Pongsriiam and Termwuttipong [17]. We also
investigate set-valued mappings in Sect. 8 and obtain results similar to [13] and [17].
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