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Abstract
In this study, we manifest a new class of mappings that satisfy Geraghty–Ćirić-type
contractive conditions in the context of b-metric spaces and prove a theorem on the
existence and uniqueness of fixed points. Our results unify and generalize the results
of Geraghty; Ćirić; Dukic, Kadelburg, and Radenović; and Shu-fang Li, Fei Hi, and Ning
Lu in the setting of b-metric spaces. Furthermore, we provide examples to verify the
correctness and applicability of our results. We also utilize our findings to show the
existence of a unique solution for a nonlinear integral equation.

Keywords: Fixed point; b-metric spaces; Geraghty–Ćirić-type contraction; Nonlinear
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1 Introduction and preliminaries
Fixed point theory is one of the fundamental and most significant areas in the advance-
ment of mathematics and nonlinear analysis. This theory has been used extensively in
numerous scientific disciplines, including computer science, engineering, chemistry, bi-
ology, economics, medical sciences, and telecommunication. One of the key findings of
traditional functional analysis, known as the Banach contraction principle, was initially
presented by Banach [9] in 1922. This principle is a well-known and widely recognized
result of fixed point theory. Since its initial proposal and successful demonstration, nu-
merous mathematicians have extended and generalized the Banach contraction mapping
concept in several intriguing ways.

Geraghty [18] demonstrated a significant extension of the Banach contraction principle
in 1973 by using an auxiliary function instead of a constant and establishing a fixed point
result for these mappings in the setting of complete metric spaces. Geraghty [18] stated
and proved the following result:

Theorem 1 ([18]) Let (M, d) be a complete metric space and T : M→M be a mapping
satisfying

d(T x,T y) ≤ β
(
d(x, y)

)
d(x, y),
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for all x, y ∈ M, where β ∈ S = {β : �+ → [0, 1)| limn→∞ β(ζn) = 1 �⇒ limn→∞ ζn = 0}.
Then, T has a unique fixed point x∗ in M.

Later on, many researchers have generalized and extended the result obtained by Ger-
aghty in diverse ways, see [4, 5, 7, 14, 15, 17, 19] and the references therein.

Ćirić [10, 11] established the famous Ćirić-type fixed point theorem in the context of
metric spaces, which is regarded as one of the most well-known findings that generalizes
the Banach contraction principle. An important generalization of the Banach contraction
principle obtained by Ćirić is as follows:

Theorem 2 ([11]) Let (M, d) be a complete metric space and T : M→M be a mapping.
If there exists a λ ∈ [0, 1) satisfying

d(T x,T y) ≤ λmax
{

d(x, y), d(x,T x), d(y,T y), d(x,T y), d(y,T x)
}

,

for all x, y ∈M, then T has a unique fixed point x∗ in M.

Over the past few decades, fixed point theorems of the Ćirić kind have been generalized
and extended in various ways by several authors. In 2013, Kumam et al. [23] reported
one of the most interesting results and established a new fixed point theorem, which is
a generalization of the Ćirić fixed point theorem. Karapınar [21] explored a Ćirić-type
nonunique fixed point result in the framework of Branciari metric spaces and generalized
the Ćirić-type fixed point theorem.

Recently, some authors studied fixed point theorems that incorporate Geraghty and
Ćirić type contraction conditions in the framework of complete metric spaces. In 2019,
Alqahtani et al. [2] introduced the notion of Ćirić-type ϕ-Geraghty contraction mappings
and investigated under which conditions such mappings possess a unique fixed point in
complete metric spaces.

In 2022, Shu-fang Li et al. [25] unified Geraghty and Ćirić type contractive mappings
and obtained a fixed point for such mappings in a complete metric space. Shu-fang Li et
al. [25] defined Geraghty–Ćirić-type contraction as follows:

A self-map T on a metric space (M, d) is said to be a Geraghty–Ćirić-type contraction
mapping if there exists β ∈ S such that, for all x, y ∈M,

d(T x,T y) ≤ M(x, y),

where

M(x, y) = max
{
β
(
d(x, y)

)
d(x, y),β

(
d(x,T x)

)
d(x,T x),β

(
d(y,T y)

)
d(y,T y),

β
(
d(x,T y)

)
d(x,T y),β

(
d(y,T x)

)
d(y,T x)

}
.

Theorem 3 ([25]) Let (M, d) be a complete metric space and T : M→M be a Geraghty–
Ćirić-type contraction with some β ∈ S . Then T has a unique fixed point x∗ ∈M.

Notation 1 Throughout the paper, we use the following notations:
(i) � stands for the set of all real numbers;
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(ii) �+ stands for the set of all nonnegative real numbers;
(iii) N stands for the set of all positive integers;
(iv) N0 stands for the set of all nonnegative integers;
(v) M and T denote a nonempty set and a self-mapping on M, respectively.

The notion of a b-metric space was introduced by Bakhtin [8] and Czerwik [12] as a
generalization of metric space, and they demonstrated fixed point results for contractive
mappings in such spaces. Subsequently, several papers on the fixed point theory for dif-
ferent classes of mappings satisfying various contractive conditions have been published
in b-metric spaces. Karapinar et al. [22] obtained a fixed point theorem of Ćirić type in b-
metric spaces. In 2016, Pant and Panicker [27] introduced Geraghty and Ćirić type fixed
point theorems and obtained fixed point results for admissible mappings in the setting of
b-metric spaces. In 2019, Mlaiki et al. [26] discussed the fixed point results given by Pant
and Panicker [27] and improved some related fixed point theorems in b-metric spaces. For
some recent significant developments in the area of b-metric spaces and their extensions
with various contractive conditions, we refer to the work of Karapinar [20], Afshari et al.
[1], Ding et al. [13], Latif et al. [24], Faraji et al. [17], Eshraghi et al. [16], Amirbostagi and
Asad [3], Asadi and Afshar [6], Erhan [15], and the references therein.

The concept of a b-metric space was defined independently by Bakhtin [8] and Czerwik
[12] as follows:

Definition 1 ([8, 12]) A mapping d : M×M → �+ is said to be a b-metric if it satisfies
the following three conditions:

(i) d(x, y) = 0 if and only if x = y for any x, y ∈M;
(ii) d(x, y) = d(y, x) for any x, y ∈M;

(iii) there exists a real number ν ≥ 1 such that d(x, y) ≤ ν[d(x, z) + d(z, y)] for any
x, y, z ∈M.

In this case, the triplet (M, d,ν) is called a b-metric space.

Remark 1 ([1]) Every metric is a b-metric with ν = 1 but not conversely. Thus, the class of
b-metrics is effectively larger than that of metrics.

We illustrate the above remark by using the following two examples.

Example 1 ([1]) Let M = [0, 1] be a set and d : M × M → �+ be a function given by
d(x, y) = |x – y|2 for all x, y ∈M. For any x, y, z ∈M, we have

d(x, y) ≤ 2
[
d(x, z) + d(z, y)

]
.

So, d is a b-metric with ν = 2. But d is not a metric. In fact, if we take x = 0 and y = 1, we
obtain

d(0, 1) = 1 > 0.5 = 0.25 + 0.25 = d(1, 0.5) + d(0.5, 0).

Example 2 ([20]) Given a set M = {0, 1, 2}. Define the function d : M×M→ �+ by
⎧
⎨

⎩
d(x, x) = 0, for all x ∈M, d(x, y) = d(y, x) for all x, y ∈M,

d(1, 2) = d(1, 0) = 1, d(0, 2) = 3.
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Letting x = 2 and y = 0, we get

d(2, 0) = 3 > 2 = d(2, 1) + d(1, 0).

However, for all x, y, z ∈M, we have

d(x, y) ≤ 3
2
[
d(x, z) + d(z, y)

]
.

Therefore, d is a b-metric with ν = 3
2 but not a metric.

Definition 2 ([12]) Let {xn} be a sequence on a b-metric space (M, d,ν) with ν ≥ 1. Then
(i) {xn} is called b-convergent if there exists x ∈M such that d(xn, x) → 0 as n → ∞.

In this case, we write limn→∞ xn = x.
(ii) {xn} is called b-Cauchy if and only if limn,m→∞ d(xn, xm) = 0, that is, if for every ε > 0

there exists n0 ∈N such that d(xn, xm) < ε for all n, m ≥ n0.

Definition 3 ([12]) A b-metric space (M, d,ν) with ν ≥ 1 is said to be complete if every
Cauchy sequence in M is b-convergent in M.

Remark 2 ([12]) Let (M, d,ν) be a b-metric space with ν ≥ 1 and {xn} is a b-convergent
sequence in M. Then, the sequence {xn} has a unique limit and it is b-Cauchy.

In 2011, Dukic et al. [14] obtained fixed points for Geraghty-type mappings in b-metric
spaces by considering the class of functions

Sν =
{
β : �+ →

[
0,

1
ν

)∣∣∣ lim
n→∞β(ζn) =

1
ν

�⇒ lim
n→∞ ζn = 0

}
,

where ν ≥ 1. For instance, the function β : �+ → [0, 1
ν

) defined by β(ζ ) = 1
ν

e–ζ for ζ > 0
and β(0) ∈ [0, 1

ν
) is in Sν .

Theorem 4 ([14]) Let (M, d,ν) be a complete b-metric space with ν > 1. Suppose that a
mapping T : M→M satisfies

d(T x,T y) ≤ β
(
d(x, y)

)
d(x, y),

for all x, y ∈M and for some β ∈ Sν . Then T has a unique fixed point x∗ ∈M.

In 2019, Faraji et al. [17] established a fixed point theorem satisfying Geraghty-type con-
tractive conditions in b-metric spaces by defining a class of function S∗

ν , for ν ≥ 1, as

S∗
ν =

{
β : �+ →

[
0,

1
ν

)∣∣∣ lim sup
n→∞

β(ζn) =
1
ν

�⇒ lim
n→∞ ζn = 0

}
.

Theorem 5 ([17]) Let (M, d,ν) be a b-complete b-metric space with ν ≥ 1 and let T :
M→M be a self-mapping. If there exists β ∈ S∗

ν such that

d(T x,T y) ≤ β
(
M(x, y)

)
M(x, y), for all x, y ∈M,
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where

M(x, y) = max

{
d(x, y), d(x,T x), d(y,T y),

1
2ν

[
d(x,T y) + d(y,T x)

]}
,

then T has a unique fixed point.

The aim of this paper is to introduce a new class of mappings satisfying Geraghty–Ćirić-
type contraction condition in the context of b-metric spaces and prove a theorem on the
existence and uniqueness of fixed points for the mappings introduced. Our result general-
ize, include, and unify the results defined by Geraghty [18], Ćirić [11], Dukic et al. [14] and
Shu-fang Li et al. [25], and also various existing results on the topic in the corresponding
literature. Furthermore, we provide examples to illustrate the validity of our main result
and apply our findings in establishing the existence and uniqueness of a solution of a non-
linear integral equation.

The following lemma is useful in proving our main result.

Lemma 1 ([24]) Let (M, d,ν) be a b-metric space with ν ≥ 1 and let {xn} and {yn} be b-
convergent to x, y ∈M, respectively. Then, the following inequality holds:

1
ν2 d(x, y) ≤ lim inf

n→∞ d(xn, yn) ≤ lim sup
n→∞

d(xn, yn) ≤ ν2d(x, y).

In particular, if x = y, we have limn→∞ d(xn, yn) = 0. Moreover, for each z ∈M, we have

1
ν

d(x, z) ≤ lim inf
n→∞ d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ νd(x, z).

2 Main results
In this section, we introduce Geraghty–Ćirić-type contraction mappings and study fixed
point results for such mappings in the setting of b-metric spaces.

Here, we use a comparison function β : �+ → [0, 1
ν

), where ν ≥ 1, satisfying the condi-
tion

lim sup
n→∞

β(ζn) =
1
ν

�⇒ lim
n→∞ ζn = 0.

We denote the set of all functions β satisfying the above condition by F .
The main result in this paper is based on the following contractive condition.

Definition 4 A mapping T : M → M on a b-metric space (M, d,ν) with ν ≥ 1 is called
a Geraghty–Ćirić-type contraction mapping if there exists β ∈F such that

d(T x,T y) ≤L(x, y), for all x, y ∈M, (1)

where

L(x, y) = max
{
β
(
d(x, y)

)
d(x, y),β

(
d(x,T x)

)
d(x,T x),β

(
d(y,T y)

)
d(y,T y),

β
(
d(x,T y)

)
d(x,T y),β

(
d(y,T x)

)
d(y,T x)

}
.
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Lemma 2 Let (M, d,ν) be a b-metric space with ν ≥ 1 and let T : M → M be a self-
mapping. Let x0 ∈ M be given and {xn} be a sequence in M such that xn = T xn–1 for all
n ∈N. Consider the sequence defined by

An = max
{

d(xp, xq)|0 ≤ p, q ≤ n and p, q ∈N0
}

, (2)

for n ∈N0. If T satisfies the contractivity condition in (1), then {An} is bounded.

Proof Let n ∈ N be arbitrary and fixed. Then, for any p, q ∈ N with 1 ≤ p, q ≤ n, using (1),
we have

d(xp, xq) = d(T xp–1,T xq–1)

≤L(xp–1, xq–1)

= max
{
β
(
d(xp–1, xq–1)

)
d(xp–1, xq–1),β

(
d(xp–1, xp)

)
d(xp–1, xp),

β
(
d(xq–1, xq)

)
d(xq–1, xq),β

(
d(xp–1, xq)

)
d(xp–1, xq),

β
(
d(xp, xq–1)

)
d(xp, xq–1)

}

<
1
ν

max
{

d(xp–1, xq–1), d(xp–1, xp), d(xq–1, xq), d(xp–1, xq), d(xp, xq–1)
}

≤ An.

As a result, max{d(xp, xq)|1 ≤ p, q ≤ n; p, q ∈ N0} < An. From this, we conclude that there
is ωn ∈N with 1 ≤ ωn ≤ n such that

An = d(x0, xωn ).

Observe that 0 ≤ An ≤ An+1 for all n ∈ N0. We aim to show that the sequence {An} is
bounded. Assume, to the contrary, that {An} is unbounded. Then, since {An} is an increas-
ing sequence of nonnegative real numbers, we have limn→∞ An = +∞.

Now, applying b-triangle inequality on the term d(x0, xωn ) and using (1), we get

An = d(x0, xωn ) ≤ ν
[
d(x0, x1) + d(x1, xωn )

]

= νd(x0, x1) + νL(x0, xωn–1 ),
(3)

where

L(x0, xωn–1 ) = max
{
β
(
d(x0, xωn–1 )

)
d(x0, xωn–1 ),β

(
d(x0, x1)

)
d(x0, x1),

β
(
d(xωn–1 , xωn )

)
d(xωn–1 , xωn ),β

(
d(x0, xωn )

)
d(x0, xωn ),

β
(
d(x1, xωn–1 )

)
d(x1, xωn–1 )

}
.

Since the sequences

{
β
(
d(x0, xωn–1 )

)
d(x0, xωn–1 )

}
,

{
β
(
d(x0, x1)

)
d(x0, x1)

}
,

{
β
(
d(xωn–1 , xωn )

)
d(xωn–1 , xωn )

}
,

{
β
(
d(x0, xωn )

)
d(x0, xωn )

}
, and
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{
β
(
d(x1, xωn–1 )

)
d(x1, xωn–1 )

}

are real-number sequences, there is a subsequence {L(x0, xωnk –1 )} of {L(x0, xωn–1 )} that is
equal to one of the following five terms:

β
(
d(x0, xωnk –1 )

)
d(x0, xωnk –1 ), β

(
d(x0, x1)

)
d(x0, x1),

β
(
d(xωnk –1 , xωnk

)
)
d(xωnk –1 , xωnk

), β
(
d(x0, xωnk

)
)
d(x0, xωnk

), or

β
(
d(x1, xωnk –1 )

)
d(x1, xωnk –1 ).

So, we have five cases to consider:
Case 1. Suppose that

L(x0, xωnk –1 ) = β
(
d(x0, xωnk –1 )

)
d(x0, xωnk –1 ). (4)

Using (3) and (4), we get

Ank ≤ νd(x0, x1) + νβ
(
d(x0, xωnk –1 )

)
d(x0, xωnk –1 )

≤ νd(x0, x1) + νβ
(
d(x0, xωnk –1 )

)
Ank .

(5)

Rearranging the terms in the second inequality of (5) yields

1
ν

–
d(x0, x1)

Ank

≤ β
(
d(x0, xωnk –1 )

)
<

1
ν

.

Since Ank → +∞ as k → ∞, we can see that limk→∞( 1
ν

– d(x0,x1)
Ank

) = 1
ν

. Hence
lim supk→∞ β(d(x0, xωnk –1 )) = 1

ν
. This implies that limk→∞ d(x0, xωnk –1 ) = 0 since β ∈ F .

Taking the limit on both sides of (5), we obtain

lim
k→∞

Ank ≤ lim
k→∞

[
νd(x0, x1) + νβ

(
d(x0, xωnk –1 )

)
d(x0, xωnk –1 )

]

= νd(x0, x1).

This contradicts our assumption limk→∞ Ank = +∞.
Case 2. Suppose that

L(x0, xωnk–1
) = β

(
d(x0, x1)

)
d(x0, x1). (6)

By means of (3) and (6), we have

Ank ≤ ν
[
d(x0, x1) + β

(
d(x0, x1)

)
d(x0, x1)

]

< (ν + 1)d(x0, x1).

This contradicts Ank → +∞ as k → ∞.
Case 3. Suppose that

L(x0, xωnk–1
) = β

(
d(xωnk –1 , xωnk

)
)
d(xωnk –1 , xωnk

). (7)
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Combining (3) and (7), we obtain

Ank ≤ ν
[
d(x0, x1) + β

(
d(xωnk –1 , xωnk

)
)
d(xωnk –1 , xωnk

)
]

≤ νd(x0, x1) + νβ
(
d(xωnk –1 , xωnk

)
)
Ank .

(8)

It follows from the second inequality in (8) that

1
ν

–
d(x0, x1)

Ank

≤ β
(
d(xωnk –1 , xωnk

)
)

<
1
ν

.

As k → +∞, we have ( 1
ν

– d(x0,x1)
Ank

) → 1
ν

and hence β(d(xωnk –1 , xωnk
)) → 1

ν
. Since β ∈F , we

obtain limk→∞ d(xωnk –1 , xωnk
) = 0. Letting k → ∞ on both sides of the inequality in (8), we

get

lim
k→∞

Ank ≤ lim
k→∞

[
νd(x0, x1) + νβ

(
d(xωnk –1 , xωnk

)
)
d(xωnk –1 , xωnk

)
]

= νd(x0, x1).

This contradicts our assumption Ank → +∞ as k → ∞.
Case 4. Suppose that

L(x0, xωnk –1 ) = β
(
d(x0, xωnk

)
)
d(x0, xωnk

). (9)

Substituting (9) into (3), we get

Ank ≤ ν
[
d(x0, x1) + β

(
d(x0, xωnk

)
)
d(x0, xωnk

)
]

≤ νd(x0, x1) + νβ
(
d(x0, xωnk

)
)
Ank .

(10)

From the second inequality in (10) it follows that

1
ν

–
d(x0, x1)

Ank

≤ β
(
d(x0, xωnk

)
)

<
1
ν

.

Since Ank → +∞ as k → ∞, then limk→∞( 1
ν

– d(x0,x1)
Ank

) = 1
ν

and hence lim supk→∞ β(d(x0,
xωnk

)) = 1
ν

. Since β ∈F , we have limk→∞ d(x0, xωnk
) = 0. Letting k → ∞ in (10), we obtain

lim
k→∞

Ank ≤ lim
k→∞

[
νd(x0, x1) + νβ

(
d(x0, xωnk

)
)
d(x0, xωnk

)
]

= νd(x0, x1).

This contradicts Ank → +∞ as k → ∞.
Case 5. Suppose that

L(x0, xωnk –1 ) = β
(
d(x1, xωnk –1 )

)
d(x1, xωnk –1 ). (11)
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Putting (11) into (3), we have

Ank ≤ ν
[
d(x0, x1) + β

(
d(x1, xωnk –1 )

)
d(x1, xωnk –1 )

]

≤ νd(x0, x1) + νβ
(
d(x1, xωnk –1 )

)
Ank .

(12)

The second inequality in (12) yields that

1
ν

–
d(x0, x1)

Ank

≤ β
(
d(x1, xωnk –1 )

)
<

1
ν

.

Following similar argument as in case 4, we have that d(x1, xωnk–1
) → 0 as k → ∞ and

using (12), we obtain

lim
k→∞

Ank ≤ lim
k→∞

[
νd(x0, x1) + νβ

(
d(x1, xωnk –1 )

)
d(x1, xωnk –1 )

]

= νd(x0, x1).

This contradicts our assumption Ank → +∞ as k → ∞.
The contradictions in all the cases considered above guarantee that {An} is a bounded

sequence. �

Theorem 6 Let (M, d,ν) be a complete b-metric space with ν ≥ 1 and let T : M → M
be a mapping satisfying Geraghty–Ćirić-type contraction condition in (1). Then, T has a
unique fixed point x∗ ∈M.

Proof Let x0 ∈M be arbitrary. Construct a sequence {xn} in M by

xn = T xn–1 = T nx0, for all n ∈N.

Step 1. We show that {xn}n∈N0 is a b-Cauchy sequence inM. Consider a sequence defined
by

An = max
{

d(xp, xq)|0 ≤ p, q ≤ n and p, q ∈N0
}

.

Using Lemma 2, there exists K > 0 such that An ≤ K for all n ∈N. Since {An} is an increas-
ing sequence, we have limn→∞ An ≤ K .

Define a sequence {Υn} on a b-metric space (M, d,ν) by

Υn = sup
{

d(xp, xq)|p, q ≥ n and p, q ∈N0
}

.

From this, we can see that

0 ≤ Υn ≤ Υn–1 ≤ · · · ≤ Υ0 = lim
n→∞ An ≤ K for all n ∈N0.

Thus, {Υn} is a decreasing and bounded sequence of nonnegative real numbers, so that it
converges to some r ≥ 0, that is, limn→∞ Υn = r. Then there exist two subsequences {xpk }
and {xqk } of {xn} with qk > pk ≥ k for k ∈N such that

d(xpk , xqk ) → r as k → ∞. (13)
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We claim that r = 0. Assume that r > 0. Putting x = xpk –1 and y = xqk –1 in (1), we have

d(xpk , xqk ) = d(T xpk –1,T xqk –1) ≤L(xpk –1, xqk –1), (14)

where

L(xpk –1, xqk –1) = max
{
β
(
d(xpk –1, xqk –1)

)
d(xpk –1, xqk –1),β

(
d(xpk –1, xpk )

)
d(xpk –1, xpk ),

β
(
d(xqk –1, xqk )

)
d(xqk–1, xqk ),β

(
d(xpk –1, xqk )

)
d(xpk –1, xqk ),

β
(
d(xpk , xqk –1)

)
d(xpk , xqk –1)

}
.

Thus, L(xpk –1, xqk –1) equals to one of the five terms on the right-hand side, so that we have
five cases to consider.

First, consider the case L(xpk –1, xqk –1) = β(d(xpk –1, xqk –1))d(xpk –1, xqk –1) for all k ∈ N.
Then, condition (14) becomes

d(xpk , xqk ) ≤ β
(
d(xpk –1, xqk –1)

)
d(xpk –1, xqk –1)

≤ β
(
d(xpk –1, xqk –1)

)
Υk–1.

(15)

Taking the upper limit as k → ∞ on both sides of (15), it follows that

lim sup
k→∞

d(xpk , xqk ) ≤ lim sup
k→∞

β
(
d(xpk –1, xqk –1)

)
lim sup

k→∞
Υk–1,

and, using (13), we have

r ≤ lim sup
k→∞

β
(
d(xpk –1, xqk –1)

)
r,

1
ν

≤ 1 ≤ lim sup
k→∞

β
(
d(xpk –1, xqk –1)

)
<

1
ν

.

Since β ∈F , we have limk→∞ d(xpk –1, xqk –1) = 0. Using (13) and the first inequality of (15),
we get

r = lim
k→∞

d(xpk , xqk ) = 0.

This contradicts our assumption r > 0. Hence, limn→∞ Υn = r = 0.
The other four cases can be handled similarly. Therefore, we have r = limn→∞ Υn = 0.
Now, let m, n ∈N0 with m > n. Then we get

lim
n→∞ d(xn, xm) ≤ lim

n→∞Υn = 0.

Hence, {xn} is a b-Cauchy sequence in M. By completeness of M, the sequence {xn} con-
verges to some x∗ ∈M.

Step 2. We show that x∗ is a fixed point of T .
Assume that T x∗ �= x∗, that is, d(T x∗, x∗) > 0. Letting x = xn and y = x∗ in (1), we have

d
(
xn+1,T x∗) = d

(
T xn,T x∗) ≤L

(
xn, x∗), (16)
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where

L
(
xn, x∗) = max

{
β
(
d
(
xn, x∗))d

(
xn, x∗),β

(
d(xn,T xn)

)
d(xn,T xn),

β
(
d
(
x∗,T x∗))d

(
x∗,T x∗),β

(
d
(
xn,T x∗))d

(
xn,T x∗),

β
(
d
(
x∗,T xn

))
d
(
x∗,T xn

)}

= max
{
β
(
d
(
xn, x∗))d

(
xn, x∗),β

(
d(xn, xn+1)

)
d(xn, xn+1),

β
(
d
(
x∗,T x∗))d

(
x∗,T x∗),β

(
d
(
xn,T x∗))d

(
xn,T x∗),

β
(
d
(
x∗, xn+1

))
d
(
x∗, xn+1

)}
.

We consider the following five cases:
Case 1. Suppose that L(xn, x∗) = β(d(xn, x∗))d(xn, x∗). Then, from (16), we have

d
(
xn+1,T x∗) ≤ β

(
d
(
xn, x∗))d

(
xn, x∗).

Taking the upper limit as n → ∞ on both sides of the above inequality together with
Lemma 1 and noting that limn→∞ d(xn, x∗) = 0, we have

1
ν

d
(
x∗,T x∗) ≤ lim sup

n→∞
d
(
xn+1,T x∗)

≤ lim sup
n→∞

β
(
d
(
xn, x∗)) lim sup

n→∞
d
(
xn, x∗) = 0.

Consequently, we get d(x∗,T x∗) = 0. This contradicts our assumption d(T x∗, x∗) > 0.
Case 2. Suppose that L(xn, x∗) = β(d(xn, xn+1))d(xn, xn+1). In a similar way as above, using

(16) and Lemma 1 together with limn→∞ d(xn, xn+1) = 0, we have

1
ν

d
(
x∗,T x∗) ≤ lim sup

n→∞
d
(
xn+1,T x∗)

≤ lim sup
n→∞

β
(
d(xn, xn+1)

)
lim sup

n→∞
d(xn, xn+1) = 0.

This implies d(x∗,T x∗) = 0, contradicting our assumption d(T x∗, x∗) > 0.
Case 3. Suppose that L(xn, x∗) = β(d(x∗,T x∗))d(x∗,T x∗). Then, using (16) and Lemma 1,

we have

1
ν

d
(
x∗,T x∗) ≤ lim sup

n→∞
d
(
xn+1,T x∗)

≤ lim sup
n→∞

β
(
d
(
x∗,T x∗))d

(
x∗,T x∗)

= β
(
d
(
x∗,T x∗))d

(
x∗,T x∗) <

1
ν

d
(
x∗,T x∗),

which is a contradiction.
Case 4. Suppose that L(xn, x∗) = β(d(xn,T x∗))d(xn,T x∗). Then, using (16), we have

d
(
xn+1,T x∗) ≤ β

(
d
(
xn,T x∗))d

(
xn,T x∗).
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Applying b-triangle inequality on d(xn, Tx∗), we have

d
(
xn+1,T x∗) ≤ νβ

(
d
(
xn,T x∗))[d(xn, xn+1) + d

(
xn+1,T x∗)],

which is equivalent to

[
1 – νβ

(
d
(
xn,T x∗))]d

(
xn+1,T x∗) ≤ νβ

(
d
(
xn,T x∗))d(xn, xn+1).

Taking the upper limit as n → ∞ on both sides of the above inequality, we obtain

lim sup
n→∞

{[
1 – νβ

(
d
(
xn,T x∗))]d

(
xn+1,T x∗)}

≤ ν lim sup
n→∞

β
(
d
(
xn,T x∗)) lim sup

n→∞
d(xn, xn+1) = 0.

That is,

lim sup
n→∞

[
1 – νβ

(
d
(
xn,T x∗))] lim sup

n→∞
d
(
xn+1,T x∗) ≤ 0.

Using Lemma 1, we have 0 < 1
ν

d(x∗,T x∗) ≤ lim supn→∞ d(xn+1,T x∗) ≤ νd(x∗,T x∗), so that

lim sup
n→∞

[
1 – νβ

(
d
(
xn,T x∗))] ≤ 0.

From this, it follows that

1
ν

≤ lim sup
n→∞

β
(
d
(
xn,T x∗)) <

1
ν

.

Since β ∈ F , we get limn→∞ d(xn,T x∗) = 0. That is, limn→∞ xn = T x∗. By the uniqueness
of limit of a b-convergent sequence, we have x∗ = T x∗. This contradicts our assumption
x∗ �= T x∗.

Case 5. Suppose that L(xn, x∗) = β(d(x∗, xn+1))d(x∗, xn+1). Similarly, using (16) and
Lemma 1 together with limn→∞ d(x∗, xn+1) = 0, we have

1
ν

d
(
x∗,T x∗) ≤ lim sup

n→∞
d
(
xn+1,T x∗)

≤ lim sup
n→∞

β
(
d
(
x∗, xn+1

))
lim sup

n→∞
d
(
x∗, xn+1

)
= 0.

This implies d(x∗,T x∗) = 0 and it contradicts the assumption d(T x∗, x∗) > 0.
Therefore, from cases 1 to 5, we deduce that x∗ = T x∗ and hence x∗ is a fixed point of T .
Step 3. Now, we show the uniqueness of the fixed point.



Kalo et al. Fixed Point Theory Algorithms Sci Eng          (2024) 2024:8 Page 13 of 22

Assume u ∈ M is another fixed point of T such that x∗ �= u (or d(x∗, u) > 0). Then, by
means of (1), we get

d
(
x∗, u

)
= d

(
T x∗,T u

) ≤L
(
x∗, u

)

= max
{
β
(
d
(
x∗, u

))
d
(
x∗, u

)
,β

(
d
(
x∗,T x∗))d

(
x∗,T x∗),β

(
d(u,T u)

)
d(u,T u),

β
(
d
(
x∗,T u

))
d
(
x∗,T u

)
,β

(
d
(
T x∗, u

))
d
(
T x∗, u

)}

= max
{
β
(
d
(
x∗, u

))
d
(
x∗, u

)
,β

(
d
(
x∗, x∗))d

(
x∗, x∗),β

(
d(u, u)

)
d(u, u)

}

= β
(
d
(
x∗, u

))
d
(
x∗, u

)
<

1
ν

d
(
x∗, u

)
,

which is a contradiction. Therefore, x∗ = u and hence x∗ is the only fixed point of T
in M. �

The following corollary is an immediate consequence of Theorem 6.

Corollary 1 Let (M, d,ν) be a complete b-metric space with ν ≥ 1. Suppose T : M→M
is a self-mapping and β ∈F satisfies the following condition for any x, y ∈M:

d(T x,T y) ≤ β
(
N (x, y)

)
N (x, y), (17)

where N (x, y) = max{d(x, y), d(x,T x), d(y,T y), d(x,T y), d(y,T x)}. Then T has a unique
fixed point x∗ ∈M.

Proof For any x, y ∈ M, the value of N (x, y) is always equal to at least one of the terms
d(x, y), d(x,T x), d(y,T y), d(x,T y), or d(y,T x). It follows that

d(T x,T y) ≤ β
(
N (x, y)

)
N (x, y)

≤ max
{
β
(
d(x, y)

)
d(x, y),β

(
d(x,T x)

)
d(x,T x),β

(
d(y,T y)

)
d(y,T y),

β
(
d(x,T y)

)
d(x,T y),β

(
d(y,T x)

)
d(y,T x)

}

= L(x, y).

All the assumptions of Theorem 6 are satisfied, and we deduce that T has a unique fixed
point in M. �

Remark 3 Let (M, d,ν) be a complete b-metric space with ν ≥ 1 and let T : M → M
be a self-mapping. Since β(d(x, y))d(x, y) ≤ L(x, y) for all x, y ∈ M, then we conclude that
Theorem 4 is a special case of Theorem 6.

The following example illustrates the validity of our result in Theorem 6.

Example 3 Let M = {1, 1
2 , 1

3 , . . . } ∪ {0} and let the function d : M×M → �+ be defined
by

d(x, y) = |x – y|2.
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Define the mappings T : M→M and β : �+ → [0, 1
ν

), respectively, by

T x =

⎧
⎨

⎩
0, if x = 0,

1
a2+1 , if x = 1

a , a ∈ N,
and β(ζ ) =

⎧
⎨

⎩

1
ζ+2 , if ζ ∈ 
,

0, otherwise,

where 
 = { κ
ω
| for some κ ,ω ∈N,κ is odd, gcd(κ ,ω) = 1}.

We show that all the conditions of Theorem 6 are fulfilled to conclude the existence of
a unique fixed point of T , whereas condition (17) in Corollary 1 is not with the β(ζ ).

Proof Clearly, d is a b-metric with ν = 2 and hence (M, d,ν) is a complete b-metric space.
Also, β ∈F .

To show that the conditions in Theorem 6 are satisfied, it is sufficient to prove that (1)
holds with β .

In case of x = y for any x, y ∈M, from (1) we have d(T x,T y) = 0 ≤ L(x, y), so that all the
conditions in Theorem 6 are satisfied.

Thus, we suppose that x �= y. Without loss of generality, assume that x > y. Now, we
consider the following two cases:

Case 1. Suppose y = 0. Let x = 1
a , for some a ∈N. Then,

d(T x,T y) = |T x – T y|2 =
1

(a2 + 1)2 =
1

a4 + 2a2 + 1

≤ 1
2a2 + 1

=
1

(2 + 1
a2 )

1
a2 = β

(
1
a2

)
1
a2

= β
(
d(x, y)

)
d(x, y) ≤L(x, y).

Case 2. Suppose x = 1
a and y = 1

b for some a, b ∈N. Since x > y, then b > a.
Here we consider the following two subcases:
Case 2.1. Suppose a is odd and b is even, or vice versa. In this case, b – a is odd. Then,

d(x, y) =
∣∣
∣∣
1
a

–
1
b

∣∣
∣∣

2

=
(b – a)2

a2b2 ,

and since (b – a)2 is odd, we have

β
(
d(x, y)

)
= β

(
(b – a)2

b2a2

)
=

1
(b–a)2

b2a2 + 2
=

b2a2

2b2a2 + b2 – 2ab + a2 .

Now, using the values of d(x, y) and β(d(x, y)) obtained above, we have

d(T x,T y) =
∣∣
∣∣

1
a2 + 1

–
1

b2 + 1

∣∣
∣∣

2

=
(b2 – a2)2

((a2 + 1)(b2 + 1))2

≤ (b – a)2(b + a)2

(b + a)2(2b2a2 + b2 + a2 – 2ab)

=
(b – a)2

2b2a2 + b2 + a2 – 2ab

=
b2a2

2b2a2 + b2 + a2 – 2ab

(
b – a

ab

)2
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= β

(
(b – a)2

a2b2

)
(b – a)2

a2b2

= β
(
d(x, y)

)
d(x, y) ≤L(x, y).

Case 2.2. Suppose both a and b are even (or odd). In both cases, b2 + 1 – a is odd. Then,

d(x,T y) =
∣
∣∣∣
1
a

–
1

b2 + 1

∣
∣∣∣

2

=
(

b2 + 1 – a
a(b2 + 1)

)2

,

and

β
(
d(x,T y)

)
= β

((
b2 + 1 – a
a(b2 + 1)

)2)
=

1
( b2+1–a

a(b2+1) )2 + 2

=
1

2 + 1
a2 – 2

a(b2+1) + 1
(b2+1)2

=
1

2 + 1
a2 – 1

b2+1 ( 2
a – 1

b2+1 )

>
1

2 + 1
a2

= β

(
1
a2

)
.

Observe that, since b > a, we have (b2 – a2)2 ≤ (b2 + 1 – a)2 and (a2 + 1)2 ≥ 2a2 + 1.
Thus,

d(T x,T y) =
∣
∣∣
∣

1
a2 + 1

–
1

b2 + 1

∣
∣∣
∣

2

=
(b2 – a2)2

(a2 + 1)2(b2 + 1)2

≤ (b2 + 1 – a)2

(a2 + 1)2(b2 + 1)2 ≤
(

1
2a2 + 1

)(
b2 + 1 – a

b2 + 1

)2

=
(

1
2 + 1

a2

)(
1
a2

)(
b2 + 1 – a

b2 + 1

)2

=
(

1
2 + 1

a2

)(
b2 + 1 – a
a(b2 + 1)

)2

= β

(
1
a2

)(
b2 + 1 – a
a(b2 + 1)

)2

< β
(
d(x,T y)

)
d(x,T y) ≤L(x, y).

Therefore, from cases 1 and 2 all the conditions of Theorem 6 are satisfied and T has a
unique fixed point in M. Thus, 0 is the only fixed point of T in M.

To show that condition (17) of Corollary 1 fails with this β , let us take x = 1
j+1 and y = 1

j+2 ,
for j ∈ N0. Then,

N (x, y) = max
{

d(x, y), d(x,T x), d(y,T y), d(x,T y), d(y,T x)
}

= max

{
1

(j + 1)2(j + 2)2 ,
(j2 + j + 1)2

(j + 1)2[((j + 1)2 + 1)]2 ,
(j2 + 3j + 3)2

(j + 2)2[(j + 2)2 + 1]2 ,

(j2 + 3j + 4)2

(j + 1)2[(j + 2)2 + 1]2 ,
(j2 + j)2

(j + 2)2[(j + 1)2 + 1]2

}

=
(

j2 + 3j + 4
(j + 1)[(j + 2)2 + 1]

)2

= d(x,T y).
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Since j2 + 3j + 4 is even for all j ∈N0, from the definition of β , we obtain

β
(
N (x, y)

)
= β

(
d(x,T y)

)
= β

((
j2 + 3j + 4

(j + 1)[(j + 2)2 + 1]

)2)
= 0.

Thus,

d(T x,T y) =
(

1
j2 + 2j + 2

–
1

j2 + 4j + 5

)2

=
(2j + 3)2

(j2 + 2j + 2)2(j2 + 4j + 5)2 > 0

= β
(
N (x, y)

)
N (x, y).

In particular, if x = 1
2 and y = 1

3 , then

N (x, y) = max
{

d(x, y), d(x,T x), d(y,T y), d(x,T y), d(y,T x)
}

= max

{
1

36
,

9
100

,
49

900
,

4
25

,
4

225

}
=

4
25

= d(x,T y).

From the definition of β , we obtain

β
(
N (x, y)

)
= β

(
d(x, Ty)

)
= β

(
4

25

)
= 0.

Thus,

d(T x,T y) =
(

1
5

–
1

10

)2

=
1

100
> 0 = β

(
N (x, y)

)
N (x, y).

Therefore, from this example we can see that condition (17) of Corollary 1 is not satisfied
with the β(ζ ) and hence Corollary 1 is not applicable to show the existence and uniqueness
of the fixed point. �

The following example indicate that our result is an actual generalization of Theorem 4.

Example 4 Let M = {x1, x2, x3, x4}. Define d : M×M→ �+ by

⎧
⎪⎪⎨

⎪⎪⎩

d(x, x) = 0 and d(x, y) = d(y, x) for all x, y ∈M,

d(x1, x2) = d(x1, x3) = 1
4 , d(x2, x4) = 1,

d(x1, x4) = d(x2, x3) = d(x3, x4) = 1
2 .

Clearly, (M, d,ν) is a complete b-metric space with ν = 4
3 > 1. Define a mapping T : M→

M by

T x1 = T x2 = x1, T x3 = T x4 = x2,

and define a function β : �+ → [0, 1
ν

) by β(ζ ) = 1
ν+ζ

for ζ > 0 and β(0) = 0.
We show that all the conditions of Theorem 6 are satisfied and conclude that x = x1 is

the unique fixed point of T , but the conditions in Theorem 4 are not satisfied.
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Proof As d(x2, x4) = 1 > 3
4 = 1

4 + 1
2 = d(x2, x1) + d(x1, x4), the function d is not a metric

on M.
The condition in Theorem 4 is fulfilled if, with the β ∈F , the inequality

d(T x,T y) ≤ β
(
d(x, y)

)
d(x, y) for all x, y ∈M, (18)

holds. Since β(ζ ) < 1
ν

for ζ > 0, we have d(T x,T y) < d(x, y) for all x, y ∈ M. Let us take
x = x1 and y = x3. Then, we have

d(T x1,T x3) =
1
4

>
3

19
= β

(
d(x1, x3)

)
d(x1, x3),

and this contradicts d(T x1,T x3) ≤ β(d(x1, x3))d(x1, x3). So, the inequality in (18) does not
hold for all xi, xj ∈M, and hence Theorem 4 is not applicable to conclude the existence of
fixed point of T with the β ∈F .

On the other hand, for all xi, xj ∈ X, where i, j = 1, 2, 3, 4,

d(T xi,T xj) ≤ β
(
N (xi, xj)

)
N (xi, xj) ≤L(xi, xj).

To see this, observe that

d(T x1,T x2) = d(T x3,T x4) = 0 and

d(T x1,T x3) = d(T x1,T x4) = d(T x2,T x3) = d(T x2,T x4) =
1
4

.

Thus,

d(T x1,T x2) = 0 ≤ 3
19

= β
(
N (x1, x2)

)
N (x1, x2) ≤ 3

11
= L(x1, x2),

d(T x1,T x3) =
1
4

≤ 3
11

= β
(
N (x1, x3)

)
N (x1, x3) = L(x1, x3),

d(T x1,T x4) =
1
4

≤ 3
7

= β
(
N (x1, x4)

)
N (x1, x4) = L(x1, x4),

d(T x2,T x3) =
1
4

≤ 3
11

= β
(
N (x2, x3)

)
N (x2, x3) = L(x2, x3),

d(T x2,T x4) =
1
4

≤ 3
7

= β
(
N (x2, x4)

)
N (x2, x4) = L(x2, x4),

d(T x3,T x4) = 0 ≤ 3
7

= β
(
N (x3, x4)

)
N (x3, x4) = L(x3, x4).

Therefore, all the conditions of Theorem 6 and Corollary 1 are satisfied with the β defined
above and x1 is the only fixed point of T . �

3 Applications to nonlinear integral equations
In this section, we discuss an existence result for the solution to a nonlinear integral equa-
tion using Theorem 6. We developed this application inspired by [17].
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Let M = C[α,γ ] be the set of all continuous real-valued functions defined on [α,γ ],
where 0 ≤ α < γ . Let d : M×M→ �+ be defined by

d(x, y) = max
α≤t≤γ

∣
∣x(t) – y(t)

∣
∣2, for all x, y ∈M. (19)

Clearly, (M, d,ν) is a complete b-metric space with ν = 2.
Our aim is to find a function x(t) ∈M, t ∈ [α,γ ], such that for f : [α,γ ] → �, g : [α,γ ] ×

[α,γ ] → � and A : [α,γ ] × [α,γ ] × � → �, it satisfies the nonlinear integral equation

x(t) = f (t) +
∫ γ

α

g(t, τ )A
(
t, τ , x(τ )

)
dτ . (20)

Theorem 7 The nonlinear integral equation (20) has a unique solution in M provided
that the following hypotheses hold:

(i) the functions f : [α,γ ] → �, g : [α,γ ] × [α,γ ] → � and A : [α,γ ] × [α,γ ] × � → �
are continuous on [α,γ ], [α,γ ]2, and [α,γ ]2 × �, respectively.

(ii) for all t, τ ∈ [α,γ ] and for all x, y ∈M, there exists φ : M×M→ �+ such that

∣∣A
(
t, τ , x(τ )

)
– A(t, τ , y(τ )

∣∣ ≤ φ(x, y)
√

ln
(

1 + max
α≤τ≤γ

∣∣x(τ ) – y(τ )
∣∣2

)
.

(iii) for all t, τ ∈ [α,γ ],

max
α≤t≤γ

∫ γ

α

∣
∣g(t, τ )φ(x, y)

∣
∣2 dτ ≤ 1

ν(γ – α)
.

Proof Define a mapping T : M→M by

T x(t) = f (t) +
∫ γ

α

g(t, τ )A
(
t, τ , x(τ )

)
dτ . (21)

The existence of a unique solution of the nonlinear integral equation (20) is equivalent to
the existence of a fixed point of T in (21).

Now, we prove that T is a Geraghty–Ćirić-type contraction mapping. From conditions
(ii) and (iii), we have

∣∣T x(t) – T y(t)
∣∣2

=
(

f (t) +
∫ γ

α

g(t, τ )A
(
t, τ , x(τ )

)
dτ – f (t) –

∫ γ

α

g(t, τ )A
(
t, τ , y(τ )

)
dτ

)2

=
(∫ γ

α

g(t, τ )
(
A

(
t, τ , x(τ )

)
– A

(
t, τ , y(τ )

))
dτ

)2

≤
(∫ γ

α

[
g(t, τ )

]2 dτ

)(∫ γ

α

∣∣A
(
t, τ , x(τ )

)
– A

(
t, τ , y(τ )

)∣∣2 dτ

)

≤
(∫ γ

α

[
g(t, τ )φ(x, y)

]2 dτ

)(∫ γ

α

ln
(

1 + max
α≤τ≤γ

∣
∣x(τ ) – y(τ )

∣
∣2

)
dτ

)

≤ 1
ν(γ – α)

(
ln

(
1 + max

α≤t≤γ

∣∣x(t) – y(t)
∣∣2

))∫ γ

α

dτ
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=
ln(1 + maxα≤t≤γ |x(t) – y(t)|2)

2

=
ln(1 + maxα≤t≤γ |x(t) – y(t)|2)

2 maxα≤t≤γ |x(t) – y(t)|2 max
α≤t≤γ

∣
∣x(t) – y(t)

∣
∣2

=
ln(1 + d(x(t), y(t)))

2d(x(t), y(t))
d
(
x(t), y(t)

)
.

Then, by (19),

d(T x,T y) = max
α≤t≤γ

∣∣T x(t) – T y(t)
∣∣2 ≤ max

α≤t≤γ

{
ln(1 + d(x(t), y(t)))

2d(x(t), y(t))
d
(
x(t), y(t)

)}
.

Define β : �+ → [0, 1
2 ) by β(ζ ) = ln(1+ζ )

2ζ
for ζ > 0 and β(0) ∈ [0, 1

2 ). Then, β ∈F and

d(T x,T y) ≤ max
α≤t≤γ

{
ln(1 + d(x(t), y(t)))

2d(x(t), y(t))
d
(
x(t), y(t)

)}

= max
α≤t≤γ

{
β
(
d
(
x(t), y(t)

))
d
(
x(t), y(t)

)}

≤ max
α≤t≤γ

{
β
(
d
(
x(t), y(t)

))
d
(
x(t), y(t)

)
,β

(
d
(
x(t),T x(t)

))
d
(
x(t),T x(t)

)
,

β
(
d
(
y(t),T y(t)

))
d
(
y(t),T y(t)

)
,β

(
d
(
x(t),T y(t)

))
d
(
x(t),T y(t)

)
,

β
(
d
(
y(t),T x(t)

))
d
(
y(t),T x(t)

)}

= L
(
x(t), y(t)

)
.

Thus, for all t ∈ [α,γ ] and for all x, y ∈ C[α,γ ], we have d(T x,T y) ≤L(x, y). Hence, T is a
Geraghty–Ćirić-type contraction mapping with β(ζ ) = ln(1+ζ )

2ζ
for ζ > 0 and β(0) ∈ [0, 1

2 ).
Therefore, by Theorem 6, T has a unique fixed point in M = C[α,γ ]. Hence, the non-

linear integral equation (20) has a unique solution in M = C[α,γ ]. �

Example 5 Consider M = C[0, 1] the space of real-valued continuous functions on [0, 1].
Assume that for any x ∈M, we have x(t) > 0 for all t ∈ [0, 1]. Let d : C[0, 1] × C[0, 1] → �+

be a b-metric given by

d(x, y) = max
0≤t≤1

∣
∣x(t) – y(t)

∣
∣2,

for all x, y ∈ C[0, 1]. Consider a nonlinear integral equation

x(t) =
1
2

t –
∫ 1

0
tτ

e–tx(τ )
1 + x(τ )

dτ , (22)

for x ∈ C[0, 1]. We show that, by using Theorem 6, the nonlinear integral equation (22)
has a unique solution.

Proof We can easily verify that (M, d,ν) is a b-metric space with ν = 2. Define T :
C[0, 1] → C[0, 1] by

T x(t) =
1
2

t –
∫ 1

0
tτ

e–tx(τ )
1 + x(τ )

dτ , (23)
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for x ∈ C[0, 1]. The existence of a unique fixed point of T in (23) is equivalent to the exis-
tence of a unique solution of the nonlinear integral equation (22).

Observe that (22) is a particular case of (20) with f (t) = 1
2 t, g(t, τ ) = tτ and A(t, τ , x(τ )) =

e–tx(τ )
1+x(τ ) . Also, the functions f (t) and g(t, τ ) are continuous on [0, 1], and A(t, τ , x(τ )) is inte-
grable with respect to τ on [0, 1].

For every sequence {tn} ⊂ [0, 1], we have t ∈ [0, 1] such that limn→∞ tn = t. Then, for any
x ∈ C[0, 1], we get

∣
∣T x(tn) – T x(t)

∣
∣

=
∣∣
∣∣f (tn) – f (t) –

∫ 1

0

(
g(tn, τ ) – g(t, τ )

)(
A

(
tn, τ , x(τ )

)
– A

(
t, τ , x(τ )

))
dτ

∣∣
∣∣

≤
∣
∣∣
∣
1
2

tn –
1
2

t
∣
∣∣
∣ +

∣
∣∣
∣

∫ 1

0
(tn – t)τ

(
e–tn – e–t) x(τ )

1 + x(τ )
dτ

∣
∣∣
∣

≤ 1
2
|tn – t| + |tn – t|∣∣e–tn – e–t∣∣

∫ 1

0
τ

∣∣
∣∣

x(τ )
1 + x(τ )

∣∣
∣∣dτ

≤ 1
2
|tn – t| +

1
2
|tn – t|∣∣e–tn – e–t∣∣.

Letting n → ∞, we have |T x(tn) – T x(t)| → 0. That is, limn→∞ T x(tn) = T x(t). Hence,
T x ∈ C[0, 1] for all x ∈ C[0, 1]. Then, for all t, τ ∈ [0, 1] and for all x, y ∈ C[0, 1], we have

∣∣A
(
t, τ , x(τ )

)
– A

(
t, τ , y(τ )

)∣∣2 =
∣
∣∣
∣

e–tx(τ )
1 + x(τ )

–
e–ty(τ )
1 + y(τ )

∣
∣∣
∣

2

=
e–2t(x(τ ) – y(τ ))2

(1 + x(τ ))2(1 + y(τ ))2

≤ e–2t(x(τ ) – y(τ ))2

1 + (x(τ ) – y(τ ))2 ≤ ln
(
1 +

∣∣x(τ ) – y(τ )
∣∣2)

≤ ln
(

1 + max
0≤τ≤1

∣∣x(τ ) – y(τ )
∣∣2

)
,

and

max
t∈[0,1]

∫ 1

0
(τ t)2 dτ = max

t∈[0,1]
t2

∫ 1

0
τ 2 dτ =

1
3

max
t∈[0,1]

t2 =
1
3

≤ 1
2

.

Let φ(x, y) = 1 for all (x, y) ∈ C[0, 1] × C[0, 1]. Then

∣
∣T x(t) – T y(t)

∣
∣2 =

(
f (t) – f (t) – t

∫ 1

0
τ

(
e–tx(τ )
1 + x(τ )

–
e–ty(τ )
1 + y(τ )

)
dτ

)2

=
(∫ 1

0
tτ

e–t(x(τ ) – y(τ ))
(1 + x(τ ))(1 + y(τ ))

dτ

)2

≤
(∫ 1

0
(tτ )2 dτ

)(∫ 1

0

e–2t(x(τ ) – y(τ ))2

1 + (x(τ ) – y(τ ))2 dτ

)

≤ 1
3

ln
(

1 + max
0≤t≤1

∣
∣x(t) – y(t)

∣
∣2

)∫ 1

0
dτ

≤ 1
2

ln
(

1 + max
0≤t≤1

∣
∣x(t) – y(t)

∣
∣2

)
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=
ln(1 + max0≤t≤1 |x(t) – y(t)|2)

2 max0≤t≤1 |x(t) – y(t)|2 max
0≤t≤1

∣
∣x(t) – y(t)

∣
∣2

=
ln(1 + d(x(t), y(t))

2d(x(t), y(t))
d
(
x(t), y(t)

)
.

Define β : �+ → [0, 1
2 ) by β(ζ ) = ln(1+ζ )

2ζ
for ζ > 0 and β(0) ∈ [0, 1

2 ). Then β ∈F . Thus,

d
(
T x(t),T y(t)

)
= max

0≤t≤1

∣∣T x(t) – T y(t)
∣∣2 ≤ max

0≤t≤1

{
ln(1 + d(x(t), y(t))

2d(x(t), y(t))
d
(
x(t), y(t)

)
}

= max
0≤t≤1

{
β
(
d
(
x(t), y(t)

))
d
(
x(t), y(t)

)}

≤ max
0≤t≤1

{
β
(
d
(
x(t), y(t)

))
d
(
x(t), y(t)

)
,β

(
d
(
x(t),T x(t)

))
d
(
x(t),T x(t)

)
,

β
(
d
(
y(t),T y(t)

))
d
(
y(t),T y(t)

)
,β

(
d
(
x(t),T y(t)

))
d
(
x(t),T y(t)

)
,

β
(
d
(
y(t),T x(t)

))
d
(
y(t),T x(t)

)}

≤L
(
x(t), y(t)

)
.

Thus, for all t ∈ [0, 1], we have d(T x,T y) ≤ L(x, y). Therefore, by Theorem 6, we see that
T has a unique fixed point in M = C[0, 1]. Hence, the nonlinear integral equation (22) has
unique solution in M = C[0, 1]. �

4 Conclusion
In this manuscript, we introduced a new fixed point theorem for a self-mapping satisfying
Geraghty–Ćirić-type contraction conditions in the framework of b-metric spaces. We es-
tablished the existence and uniqueness of fixed points for such mappings. The presented
main theorem unifies and generalizes some fixed point results in the related literature.
We have provided an example to demonstrate the superiority of our results compared to
some corresponding fixed point results. In addition, we presented the applicability of our
primary finding to show the existence of a unique solution to a nonlinear integral equation.
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