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Abstract
Several epidemiological models use the Caputo fractional-order differential operator
without establishing its significance. This study verifies a Caputo operator-based
fractional-order epidemiological model of the SAIVR type. COVID-19 kills. Infection
weakens the immune system. The fractional Caputo operator describes COVID-19
immunization. Fundamental system characteristics are determined using fractional
calculus. Our analysis included the fractional system’s Hyers–Ulam–Rassias stability
and stable states. The uniqueness and existence of fractional Caputo system solutions
are explored. The least-squares approach determines system parameters. The Caputo
fractional-order α value is optimized to 6.757e–01, indicating that the system best fits
real-life medical data for infection. Caputo and classical systems were compared for
absolute mean errors. The Box-Whisker chart case summaries show the Caputo
operator superiority. When α → 1, the memory traces and hereditary traits are also
observed. Finally, the Caputo fractional framework simulates COVID-19 using strong
numerical methods.

Keywords: Fractional Caputo operator; Hyers–Ulam–Rassias stability analysis;
Fractional differential equations; Approximate solutions

1 Introduction
The World Health Organization (WHO) called COVID-19 a pandemic after it spread
to many countries on all continents in the first quarter of 2020. Different mutations of
the new coronavirus have been observed in different regions, resulting in a wide range of
symptoms. Fever, dry cough, and fatigue are the most common signs of illness, but other
signs, such as a sore throat, diarrhea, loss of taste or smell, or a rash, are less prevalent.
COVID-19 can spread through direct contact, indirect contact, droplet spray (like when
someone sneezes), short-range transmission, airborne transmission (through aerosol),
and long-range transmission.

Integer-order differential equations have been extensively explored for their application
in epidemiological models of infectious diseases. Evidence from mathematical modeling
of epidemics in the literature suggests that nonlinear dynamical equations can shed light
on disease transmission dynamics. Constructing realistic nonlinear compartmental math-
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ematical models that are data-driven to better explain the transmission dynamics of epi-
demics has garnered much attention in the wake of the recent global COVID-19 outbreaks
[1–8], including several other important research studies on mathematical modeling with
the Caputo and other memory operators, as discussed in [9–12].

Musa et al. [13] propose a novel eight-compartmental deterministic model for the
COVID-19 epidemic in Nigeria, which accounts for awareness campaign initiatives and
hospitalization control tactics for severe and moderate instances of infections. Infected
cumulative instances in Nigeria were used to fit the suggested nonlinear dynamical model
from 29 March 2020 to 12 June 2020. Their research shows that an increase in infections
could happen in the population if programs to raise awareness are not done well. Some
authors in [14] developed and tested a SEQIJR epidemic model that looks at how well
quarantine and isolation work to stop COVID-19 outbreaks in Pakistan.

Caputo fractional differential operators are used in mathematical epidemiology to
model the dynamics of infectious diseases in populations where memory effects play an
important role. Unlike classical differential equations that assume the instantaneous re-
sponse to perturbations, fractional calculus considers the possibility of memory effects,
meaning that the system’s response to a perturbation depends on the entire history of the
system. In epidemiology, Caputo fractional differential operators have been used to model
the spread of infectious diseases that have a long-lasting impact on individuals, such as
measles or rubella. The Caputo fractional derivative of a function can be interpreted as
the fractional order derivative of the function’s memory, which can be used to capture the
long-term effects of infection on an individual’s immune system. Caputo fractional differ-
ential operators have also been used to model the effect of vaccination campaigns, where
individuals who have been vaccinated have a lower probability of becoming infected in the
future. Using fractional calculus, it is possible to model the long-term effects of vaccina-
tion on the dynamics of the disease, which can help inform public health policy decisions.
Overall, the use of Caputo fractional differential operators in mathematical epidemiology
allows for a more accurate representation of the dynamics of infectious diseases, taking
into account the complex interplay between memory effects, disease transmission, and
control measures. When modeling biological and engineering processes mathematically,
fractional order differential equations are extremely valuable and powerful tools. This is
due to the fact that the differential operators in such equations or models are associated
with systems with memory dynamics, a property shared by the vast majority of biological
and technical systems [15, 16]. To solve the problem of fractional-order models with con-
trol functions that change over time, authors in [17] develop a new and effective numerical
method based on hybrid Chelyshkov functions.

The fractional calculus Caputo-Fabrizio derivative operator was used by Rezapour and
coauthors in [18] to expand the nonlinear integer-order anthrax illness model established
and assessed by Githire et al. [19]. The existence criterion of solutions was presented
for the suggested fractional-order anthrax disease epidemic model using the Picard-
Lindelof technique. Several infectious disease transmission dynamics, including those of
HIV/AIDS [20], tuberculosis [21], malaria [22], dengue fever [23], Zika [24], Ebola [25],
and hepatitis B [26], have been studied and analyzed using differential equations charac-
terized by the Caputo fractional-order derivative.

In [27], the dynamics of reverse bifurcation are investigated in a simple but realistic
model of a vaccine pandemic. To back up the theoretical results, the author provides qual-
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itative and numerical simulations of the formulated mathematical model. The mathemat-
ical model of the cholera outbreak that the author developed in [28] was extended and
investigated by Javidi et al. [29] to capture the Caputo fractional-order derivative. In [30],
the author examined the uniform asymptotic stability of a few simple epidemic models
(SIS, SIR, SIRS), as well as the well-known Ross vector-borne diseases in the Caputo sense
using Lyapunov functions of the Volterra type.

In [31], the Caputo fractional derivative is used to analyze the fundamental mathemat-
ical model of SEIR, predicated on stochastic population dynamics. The authors provided
an in-depth qualitative stability investigation of their novel and plausible deterministic
model. The authors in [32] used a nonlinear system of differential equations in the sense of
the Caputo fractional order derivative operator to form an epidemiological model for Zika
virus infection, dividing the total human and mosquito populations into two compartmen-
tal classes (susceptible people and infected people; susceptible mosquitoes and infected
mosquitoes). The authors of [33] came up with and studied an SEIR-type epidemic model
based on classical and Caputo fractional-order differential operators to describe how the
Rubella epidemic in Pakistan changed over time. In [34], a fractional system models liq-
uid surface-stripe wave evolution. The Riemann-Liouville fractional derivative solves the
fractional system analytically.

Recent research has attempted to mathematically model this devastating COVID-19
pandemic using some of these valuable differentiable operators, which are, in turn, de-
rived from fractional-order differential equations [35]. Parameter estimation and numer-
ical simulations for a nonlinear COVID-19 epidemiological model built with Caputo and
Atangana-Baleanu fractional derivative operators were supplied by Naik et al. [36], along
with a comprehensive qualitative analysis. Another study [37] used a nonlinear Atangana-
Baleanu fractional-order differential equation model to analyze the COVID-19 pandemic
in Nigeria. The latest research by Baleanu et al. [38] explored a Caputo-Fabrizio derivative
version of the integer-order epidemic model introduced and studied by Chen et al. [39].
The uniqueness of the solution to the nonlinear Caputo-Fabrizio fractional order COVID-
19 model was demonstrated using fixed point theory. They used the transform method of
homotopy analysis and developed a convergent series approximation to the model prob-
lem. In [40], a Caputo fractional order deterministic epidemic model for COVID-19 infec-
tion was constructed and analyzed. To prove that there is a unique solution to the math-
ematical model, they turned to the well-known Banach contraction mapping concept. To
add the importance of fractional theory, authors in [41] solve the (2 + 1)-dimensional el-
liptic nonlinear Schrodinger problem with three fractional operators and derive fractional
analytical solutions.

It is difficult to predict how the present pandemic may influence people’s choices to
enroll in a COVID-19 vaccine clinical trial or to get immunized against the COVID-19
vaccine. France, which has the highest number of people who refuse to get vaccinated, is
particularly concerned about this. The Centers for Disease Control and Prevention (CDC)
classifies four of the top five counties in the United States with the highest percentage
of totally vaccinated people (84.3%) as “high” transmission jurisdictions. Many countries
consider vaccinated people unlikely to be a source of disease transmission. When thinking
about ways to manage public health, it seems like it would be irresponsible not to consider
the vaccinated population as a possible and major source of transmission.
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In terms of the reasons for the lower COVID-19, the majority of research (25/35 = 71.4%)
found that the male gender was an enabling factor in vaccine apprehension and increased
desire for COVID-19 vaccinations. When subjects were older or had a PhD or higher edu-
cation, the acceptance rate of the COVID-19 vaccination was higher in the 23 trials (23/35
= 65.7%). Vaccination was approved in 51.4 percent of the studies (18/35 = 51.4%). In ad-
dition, white or Asian ethnicity, higher income/education, history of chronic illness, fa-
miliarity with COVID-19 infection and sickness, employment in non-rural regions, and
confidence that vaccinations may protect family and community members were all asso-
ciated with greater acceptance of the COVID-19 immunization.

The present literature’s use of fractional-order operators provided the impetus for de-
veloping an epidemiological model of the COVID-19 infection, which includes a class for
the vaccinated population. This paper proposes an alternate SAIVR model to the model
originally proposed in [42] under classical calculus, in which the spread of COVID-19 oc-
curs directly between one class of vulnerable individuals and the infected patients being
vaccinated against. The model uses the Caputo fractional-order derivative and is based on
the coupling of nonlinear ordinary differential equations with real-world properties.

The following outline constitutes the paper’s structure: The mathematical construction
of a SAIVR nonlinear dynamical system is carried out in Sect. 2 with some explanations
for the usage of the Caputo fractional derivative operator in Sect. 3. In Sect. 4, the biologi-
cal parameters of the model are estimated. The qualitative analysis of the nonlinear model
is discussed in detail in Sect. 5, which includes an examination of the existence, unique-
ness, and steady states of the Caputo model. The simulations of the model are included in
Sect. 6. Section 7 gives the conclusion and future research directions.

2 Mathematical formulation
Recently, in [42], a standard epidemic model for explaining COVID-19 transmission has
been developed using the first-order time derivatives from classical calculus. The vacci-
nated SAIVR nonlinear dynamical model is a deterministic type of system based on five
compartments whose flow chart is in Fig. 1, wherein the dynamics for the movement of
individuals can easily be comprehended. The model is presented as follows:

S′(t) = –β1I(t)
S(t)
N

– ρ1A(t)
S(t)
N

– δ
S(t)
N

+ (1 – λ)εV (t),

A′(t) = ρ1A(t)
S(t)
N

+ β2I(t)
S(t)
N

+ ηA(t)
V (t)

N
– γ A(t),

I ′(t) = β1I(t)
S(t)
N

+ ρ2A(t)
S(t)
N

+ ζ I(t)
V (t)

N
– γ I(t),

V ′(t) = δ
S(t)
N

– ηA(t)
V (t)

N
– ζ I(t)

V (t)
N

– εV (t),

R′(t) = γ I(t) + γ A(t) + λεV (t).

(1)

The Caputo operator, a typical fractional-order operator, is used to analyze the integer-
order deterministic model. The COVID-19 epidemic SAIVR model is fractionally eval-
uated using the Caputo-type operator under the premise that solutions exist and that
the operator utilized for nonlinear differential equations is of this kind. As a result of its
widespread application in epidemiological modeling, the Caputo fractional operator has
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Figure 1 A flow chart for the dynamics of the SAIVR model given in (1)

gained popularity. The SAIVR model in a deterministic system has been separated into five
categories: susceptible, asymptomatic/undetected, infected, vaccinated, and recovered in-
dividuals at any point in time t. Nonlinear differential equations are shown below under
the Caputo operator, with α being the fractional-order operator in the Caputo sense.
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(2)

In this study, we examine how fractional calculus in mathematical epidemiology can be
used to create a model of COVID-19, among other areas. In fact, accurate modeling of
those infectious disease systems makes use of fractional derivative formulations. In any
case, fractional order differential equation systems provide an interesting modeling tech-
nique in the context of epidemiology, as one could expect, given that they permit higher
degrees of freedom and incorporate memory effects in the model. In fact, the fractional-
order derivative is a good tool for expressing the memory and heredity features of many
materials and processes, making fractional differential equations more sufficient for de-



Tassaddiq et al. Fixed Point Theory Algorithms Sci Eng          (2024) 2024:2 Page 6 of 23

scribing phenomena related to non-locality than integer-order derivatives. Therefore,
epidemic-based fractional derivatives have also been employed to address some epidemic
tendencies. In general, this basic/classical model does not yield adequate or satisfactory
results, as demonstrated by the failure of the classical first-order differential equations to
accurately reproduce the statistical data collected during an actual epidemic of the disease.
In our work, we have explored a more precise and intricate set of fractional differential
equations in an effort to achieve better findings that are more in line with reality.

3 Why COVID-19 model with the Caputo operator?
Traditional models employ local differential and integral operators, which ignore the de-
tails of the epidemic being studied. Therefore, the memory features of the underlying sys-
tem are ignored by conventional calculus. Some recent studies have shown that nonlocal
operators are superior to classical ones, making them the only choice for incorporating
memory effects into the deterministic model of the epidemic [43]. Recent scientific liter-
ature has seen the proposal of multiple epidemic models for the spread of the COVID-19
virus. Several have been created with the help of fractional-order differential operators,
the most popular of which is called Caputo. However, most research articles practically
never explain why the Caputo operator was used. In this paper, we have attempted to de-
scribe some of the more salient reasons why the Caputo operator should be considered
when modeling an infectious disease with nonlinear differential equations. The following
are some of the explanations:

• Because it is common knowledge that infectious diseases contain hereditary
components, the most appropriate alternatives for modeling infectious diseases are
fractional-order operators that can potentially preserve the memory of the systems
being considered [44]. In this way, the Caputo operator is the best choice to replace
the integer-order time derivative in the COVID-19 model that is currently being
talked about.

• Substituting α ∈C for n ∈N in the Cauchy formula for repeated integration yields the
well-known Riemann-Liouville integral formula, which has served as the basis for
developing numerous numerical methods for solving fractional ordinary and partial
differential equations.

• Recent works have successfully used Caputo’s revision of traditional epidemiological
models, which are paired with particulars regarding the existence of a single solution
and a study of the system’s stability [45]. In that part, simulations were used to show
why the Caputo variant is better than the standard (classical: integer-order
derivatives) one.

• Epidemiological research published recently [46] demonstrates that older models
failed to account for the complex and unpredictable dynamics of an infection’s spread.
Instead, we used actual data regarding the outbreak, largely from reputable sources
like the World Health Organization and scientifically published articles, to confirm
and corroborate the Caputo accounts. To further clarify the basic reproductive
number, which describes the typical number of secondary infected cases produced
when an infectious individual enters a completely susceptible class, we can use
Caputo’s differential operator to analyze the disease’s behavior under different values
for biological parameters.
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• Finally, using a fractional-order operator for any physical or biological model, one can
verify that there is no physical or geometrical meaning of the fractional parameter α

while keeping in mind that there is no physical or geometrical meaning of even
integer-order derivatives, such as the fourth-order ODE for the deflection of a beam
[47] wherein the fourth derivative itself does not have any meaning.

4 Best fitting of biological parameters
An epidemic’s dynamics can be explained by a system of nonlinear ordinary differential
equations, but there are challenges associated with validating the suggested differential
equations and achieving appropriate values for the working (or biological) parameters of
the proposed equations. Since most parameters are fully indeterminate from the available
information about the nonlinear system under study, the models with parameters that
need to be optimized and fitted are spread out across several domains. Infectious diseases
in mathematical epidemiology are typically represented using a set of nonlinear differ-
ential equations with a number of continuous parameters whose fitted values are crucial
to get using various methods currently accessible in the literature. However, with the aid
of demography and the studied disease’s past history, several of the biological parame-
ters connected with the suggested epidemic can be simply computed. It is typical practice
to utilize the biological parameters by employing the values discovered through study or
making educated assumptions about them. However, this method can sometimes make
the disease act in ways that are hard to predict, which means that the proposed model
cannot be tested.

Unknown parameters are one of the most challenging aspects of infectious disease
mathematics study. In epidemiology, deterministic models may employ several ap-
proaches to fit values for unknown parameters, including principle component iterated
sorting and nonlinear least-squares curve fitting. In the COVID-19 SAIVR model, scien-
tists need to know eleven epidemiological parameters: the inflow susceptible rate, asymp-
tomatic/undetected, vaccinated rate, and recovery rate. Data from the WHO’s official
website was used to predict the outbreak of COVID-19 in Turkey (March–April 2022).
The Caputo derivative has an initial recovery of R(0) = 50,269, people are initially asymp-
tomatic/undetected A(0) = 23,954, people initially infected I(0) = 59,885, V (0) = 40,658 is
the number of people who are vaccinated, and S(0) = 8,506,527 people who are suscep-
tible to getting infected. Both the standard SAIVR model (1) and the proposed Caputo
fractional SAIVR model (2) are used to obtain the COVID-19 pandemic’s behavior.

The Caputo fractional derivative operator clearly outperforms the standard approach as
shown by the absolute mean errors: |EC| = 1.9861e-01 for the classical model and |ECap| =
1.0474e-01 for the Caputo model. The biological parameters obtained with the technique
of least-squares are stored in Table 1 wherein the optimized parameters, including the
optimal value of α (the fractional order), are also shown. In addition, Figs. 2 and 3 compare
the simulations obtained from the models and the real medical data. It is clear that the
Caputo simulations agree better with the real medical data. It is also evident from the
Box-Whisker chart in Fig. 4, wherein the Caputo version of the model describes summary
statistics that match well enough with the real ones as shown in the first and third boxes
in Fig. 4.
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Table 1 The biological parameters used in the model

Parameter Explanation (Caputo) (Classical) Source

β1 the rate at which individuals are exposed to symptomatic 6.876e-04 1.079e-03 fitted
α fractional-order 6.757e-01 1 fitted
ρ1 asymptomatic infection rate 0.002 0.02 fixed
β2 the rate at which individuals are infected to asymptomatic 0.005 0.01 fixed
ρ2 symptomatic infection rate 0.005 0.005 fixed
γ the removal rate 1/9 1/12 fixed
ζ the rate at which a vaccinated (not immune) 0.02 0.5 fixed
η the transmission rate at which asymptomatic individual comes

into contact and infects vaccinated (but still not immune)
individuals

0.05 0.05 fixed

δ the first shot vaccination rate 0.01 0.01 fixed
λ the vaccine efficacy 0.05 0.002 fixed
ε immunity and moving to the removed compartment 0.02 0.02 fixed

Figure 2 The behavior of the Caputo model in comparison with the statistical cases with the residual plot

Figure 3 The behavior of the classical model in comparison with the statistical cases with the residual plot
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Figure 4 The comparison among real medical data,
simulations from classical model (1), and the
simulations from the Caputo model given in (2) via
Box-Whisker chart

5 Abstract analysis
In this section, a detailed qualitative analysis of the fractional-order Caputo model (2)
has been carried out wherein major focus is placed upon the existence and uniqueness of
solutions of the system, including its stability analysis via Hyers–Ulam–Rassias stability
criterion.

5.1 Existence and uniqueness results
In the context of this study, the Banach contraction principle supports the uniqueness of
the solution by providing a mathematical foundation to prove that the proposed Caputo
SAIVR model converges to a single, unique solution, indicating the reliability and stability
of the model in predicting the dynamics of the COVID-19 pandemic. This section will
discuss the Lipchitz condition, existence, uniqueness, and stability of the model (2). As a
result, we first assume the following five kernel values for simplicity and clarity:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
D

α
0,tS(t) = 
1(t, S),

C
D

α
0,tA(t) = 
2(t, A),

C
D

α
0,tI(t) = 
3(t, I),

C
D

α
0,tV (t) = 
4(t, V ),

C
D

α
0,tR(t) = 
5(t, R).

(3)

Applying the fractional-order Caputo operator on the above five kernels given in (3),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t) – S(0) = �(α)
1(t, S) + �(α)
∫ t

0 
1(θ , S) dθ ,

A(t) – A(0) = �(α)
2(t, A) + �(α)
∫ t

0 
2(θ , A) dθ ,

I(t) – I(0) = �(α)
3(t, I) + �(α)
∫ t

0 
3(θ , I) dθ ,

V (t) – V (0) = �(α)
4(t, V ) + �(α)
∫ t

0 
4(θ , V ) dθ ,

R(t) – R(0) = �(α)
5(t, R) + �(α)
∫ t

0 
5(θ , R) dθ ,

(4)

where �(α) and �(α) are positive real constants. Now, we will prove the Lipchitz condition
for the Caputo system (2).
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Theorem 1 The above five kernels 
1(t, S), 
2(t, A), 
3(t, I), 
4(t, V ) and 
5(t, R) satisfy
the Lipchitz condition.

Proof First, the Lipchitz condition is justified for 
1 kernel. Take S and S∗ as two func-
tions, then the corresponding norm is as follows:

∥∥
1(t, S) – 
1
(
t, S∗)∥∥ (5)

≤
∥∥∥∥
(

–βα
1 I(t)

S(t)
N

– ρα
1 A(t)

S(t)
N

– δα S(t)
N

+
(
1 – λα

)
καV (t)

)

–
(

–βα
1 I(t)

S∗(t)
N

– ρα
1 A(t)

S∗(t)
N

– δα S∗t)
N

+
(
1 – λα

)
καV (t)

)∥∥∥∥.

Simplifying and applying the norm property, we get

∥∥
1(t, S) – 
1
(
t, S∗)∥∥ ≤

(
βα

1 I
N

+
ρα

1 A
N

+
δα

N

)∥∥S – S∗∥∥,

∥∥
1(t, S) – 
1
(
t, S∗)∥∥ ≤ κ1

∥∥S – S∗∥∥, (6)

taking κ1 = βα
1 I
N + ρα

1 A
N + δα

N , where βα
1 I
N , ρα

1 A
N and δα

N are bounded functions. Similarly, the
norms can be created for rest of the model equations. �

5.2 Existence of the solution
In this subsection, we will prove that the Caputo model (2) under consideration has at
least one solution. Thus, the recursive formula for (4) becomes the one shown below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn(t) = �(α)
1(t, Sn–1) + �(α)
∫ t

0 
1(θ , Sn–1) dθ ,

An(t) = �(α)
2(t, An–1) + �(α)
∫ t

0 
2(θ , An–1) dθ ,

In(t) = �(α)
3(t, In–1) + �(α)
∫ t

0 
3(θ , In–1) dθ ,

Vn(t) = �(α)
4(t, Vn–1) + �(α)
∫ t

0 
4(θ , Vn–1) dθ ,

Rn(t) = �(α)
5(t, Rn–1) + �(α)
∫ t

0 
5(θ , Rn–1) dθ .

(7)

The positive initial conditions are first iterative values. The difference between two con-
secutive terms is as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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= �(α)(
1(t, Sn–1) – 
1(t, Sn–2)) + �(α)
∫ t

0 (
1(θ , Sn–1) – 
1(θ , Sn–2)) dθ ,

�2n = An(t) – An–1(t)

= �(α)(
2(t, An–1) – 
2(t, An–2)) + �(α)
∫ t

0 (
2(θ , An–1) – 
2(θ , An–2)) dθ ,

�3n = In(t) – In–1(t)

= �(α)(
3(t, In–1) – 
3(t, In–2)) + �(α)
∫ t

0 (
3(θ , In–1) – 
3(θ , In–2)) dθ ,

�4n = Vn(t) – Vn–1(t)

= �(α)(
4(t, Vn–1) – 
4(t, Vn–2)) + �(α)
∫ t

0 (
4(θ , Vn–1) – 
4(θ , Vn–2)) dθ ,

�5n = Rn(t) – Rn–1(t)

= �(α)(
5(t, Rn–1) – 
5(t, Rn–2)) + �(α)
∫ t

0 
5(θ , Rn–1) – 
5(θ , Rn–2)) dθ .

(8)
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It is worth noticing that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i=0 �1i = Sn(t),∑n
i=0 �2i = An(t),∑n
i=0 �3i = In(t),∑n
i=0 �4i = Vn(t),∑n
i=0 �5i = Rn(t).

(9)

Taking first equation of system (8), we assess the following

�1n =
∥∥Sn(t) – Sn–1(t)

∥∥

=
∥∥∥∥�(α)

(

1(t, Sn–1) – 
1(t, Sn–2)

)
+ �(α)

∫ t

0

(

1(θ , Sn–1) – 
1(θ , Sn–2)

)
dθ

∥∥∥∥. (10)

Applying the triangular inequality reduces the above equation to

∥∥Sn(t) – Sn–1(t)
∥∥

≤ �(α)
∥∥
1(t, Sn–1) – 
1(t, Sn–2)

∥∥ + �(α)
∥∥∥∥
∫ t

0

1(θ , Sn–1) – 
1(θ , Sn–2) dθ

∥∥∥∥. (11)

The kernel 
1(t, S) satisfies the Lipchitz condition on the evidence of Eq. (6). Therefore,
we can write it as follows

∥∥Sn(t) – Sn–1(t)
∥∥ ≤ �(α)κ1‖Sn–1 – Sn–2‖ + �(α)κ1

∫ t

0
‖Sn–1 – Sn–2‖dθ . (12)

On the evidence of (9), we can reduce the above inequality in the following manner

∥∥�1n(t)
∥∥ ≤ �(α)κ1

∥∥�1(n–1)(t)
∥∥ + �(α)κ1

∫ t

0

∥∥�1(n–1)(θ )
∥∥dθ . (13)

Similarly, we can get the following results:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖�2n(t)‖ ≤ �(α)κ2‖�2(n–1)(t)‖ + �(α)κ2
∫ t

0 ‖�2(n–1)(θ )‖dθ ,

‖�3n(t)‖ ≤ �(α)κ3‖�3(n–1)(t)‖ + �(α)κ3
∫ t

0 ‖�3(n–1)(θ )‖dθ ,

‖�4n(t)‖ ≤ �(α)κ4‖�4(n–1)(t)‖ + �(α)κ4
∫ t

0 ‖�4(n–1)(θ )‖dθ ,

‖�5n(t)‖ ≤ �(α)κ5‖�5(n–1)(t)‖ + �(α)κ5
∫ t

0 ‖�5(n–1)(θ )‖dθ .

(14)

Theorem 2 The analytical solution exists for the fractional-order Caputo model (2) under
the given condition at �0:

�(α)κi + �(α)κi�1,0 < 1, for i = 1, . . . , 5. (15)

Proof Since the functions S(t), A(t), I(t), V (t), R(t) are bounded and the condition for the
Lipschitz is satisfied, using Eq. (13) and the recursive relation yields

‖�1n‖ ≤ ∥∥S(0)
∥∥[

�(α)κ1 + �(α)κ1t
]n (16)
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As a result, the solutions above will continue to exist. On the other hand, to show that the
aforementioned functions represent the suggested model’s solution, we take into account

S(t) – S(0) = Sn(t) – M1n(t).

Therefore, we have

∥∥M1n(t)
∥∥ =

∥∥∥∥�(α)
(

1(t, S) – 
1(t, Sn–1)

)

+ �(α)
∫ t

0

(

1(θ , S) – 
1(θ , Sn–1)

)
dθ

∥∥∥∥.

Using the Lipchitz condition,

∥∥M1n(t)
∥∥ ≤ �(α)κ1‖S – Sn–1‖ + �(α)κ1‖S – Sn–1‖t. (17)

This gives,

∥∥M1n(t)
∥∥ ≤ (

�(α) + �(α)t
)n+1

κn+1
1 υ. (18)

Then, at t0, we have

∥∥M1n(t)
∥∥ ≤ (

�(α) + �(α)t0
)n+1

κn+1
1 υ. (19)

As n tends to ∞, we attain

∥∥M1n(t)
∥∥ → 0. (20)

Similarly, we can derive

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖M2n(t)‖ → 0,

‖M3n(t)‖ → 0,

‖M4n(t)‖ → 0,

‖M5n(t)‖ → 0.

(21)

�

This justifies the existence of the solution.

5.3 Uniqueness of the solution
Now, we must demonstrate whether or not the answer is unique. So, suppose that another
solution to the suggested model exists and it is S(t),

S(t) – S∗(t) = �(α)
(

1(t, S) – 
1

(
t, S∗)) + �(α)

∫ t

0

(

1(θ , S) – 
1

(
θ , S∗))dθ . (22)

Equation (22) with norm,

∥∥S(t) – S∗(t)
∥∥(

1 – �(α)κ1 + �(α)κ1t
) ≤ 0. (23)
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Theorem 3 The analytical solution is unique for the Caputo fractional model under the
following condition that is

(
1 – �(α)κ1 + �(α)κ1t

)
> 0. (24)

Proof Take into account that (24) holds so that from (23)

∥∥S(t) – S∗(t)
∥∥(

1 – �(α)κ1 + �(α)κ1t
) ≤ 0. (25)

Hence, we can say that ‖S(t) – S∗(t)‖ = 0. It implies that S(t) = S∗(t) and the solution is
unique. We now apply the same approach to another function yielding the following re-
sults

A = A1, I = I1, V = V1, R = R1. (26)

Thus, this proof shows that the proposed version of model (2) in the sense of the Caputo
operator has a unique solution. �

5.4 Hyers–Ulam–Rassias stability
The Hyers–Ulam–Rassias stability is a concept in functional analysis, particularly in the
theory of functional equations. It refers to the stability of a functional equation under
small perturbations of its arguments. In other words, it measures how close a solution of a
functional equation is to be a solution of a perturbed version of that equation. The stabil-
ity of a functional equation is a useful property for proving the existence and uniqueness
of solutions, and it has important applications in a wide range of fields, including mathe-
matics, physics, engineering, and economics. This subsection deals with stability analysis
of fractional model (2) under the concepts of Hyers–Ulam–Rassias stability analysis. Let
us rewrite model (3) as follows:

⎧⎨
⎩

C
D

α
t [ϕ(t)] = 
(t,ϕ(t)),

ϕ(0) = ϕ0, 0 < t < T < ∞,
(27)

where, the vector ϕ = {S, A, I, V , R} and 
 = (
1,
2,
3,
4,
5) is a continuous vector
function.

Definition 1 Assume that the fractional-order α is 0 < α < 1 and 
 : [0, T] ×R
5 → R

5 is
a continuous mapping. Then, model (27) is Hyers–Ulam stable if ∃ε > 0 and N > 0, such
that for each solution ϕ ∈ P([0, T],R5), the following inequality exists:

∥∥CDα
t [ϕ] – 
(t,ϕ)

∥∥ ≤ N , ∀t ∈ [0, T], (28)

∃ solution ϕ′ ∈ P([0, T],R5) of model (27), such as

∥∥ϕ – ϕ′∥∥ ≤ εN , ∀t ∈ [0, T]. (29)
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Definition 2 Assume that the fractional order α is 0 < α < 1. The function 
 : [0, T] ×
R

5 → R
5 and � : [0, T] → R

+ are continuous mappings. Then, model (27) is generalized
Hyers–Ulam–Rassias stable regarding to � if ∃P
,� > 0, such that for each solution ϕ ∈
P([0, T],R5), the following inequality exists:

∥∥CDα
t
[
ϕ(t)

]
– 


(
t,ϕ(t)

)∥∥ ≤ �(t), ∀t ∈ [0, T], (30)

∃ a solution ϕ′ ∈ P([0, T],R5) of model (27), such as

∥∥ϕ – ϕ′∥∥ ≤ P
,��(t), ∀t ∈ [0, T]. (31)

Now, to prove that model (27) is the Hyers–Ulam–Rassias stable, we assume that:
• [Q1]
 : [0, T] ×R

5 →R
5 is a continuous mapping.

• [Q2]∃P
 > 0 such that for each solution ϕ,ϕ′ ∈ P([0, T],R5),

∥∥ϕ – ϕ′∥∥ ≤ P


∥∥ϕ – ϕ′∥∥, ∀t ∈ [0, T].

• [Q3] Let � ∈ ([0, T],R+) be an increasing mapping, and let W�>0, such that

∫ t

0
�(θ ) dθ ≤ W��(t), ∀ϕ ∈ [0, T].

Theorem 4 Assuming that [Q1]–[Q3] exist and model (27) is generalized Hyers–Ulam–
Rassias stable with respect to � on the interval provided that �(α)P
 < 1.

Proof Let ϕ′ ∈ P([0, T],R5) be a solution of model (27). Then, the unique solution of model
(27) from Theorem (3) is

ϕ = ϕ(0) + �(α)
(t,�) + �(α)
∫ t

0



(
ϕ,ϕ(θ )

)
dθ . (32)

On the evidence of (30), we can say that

∥∥∥∥ϕ′ – ϕ(0) + �(α)

(
t,�′) + �(α)

∫ t

0



(
ϕ,ϕ′(θ )

)
dθ

∥∥∥∥

≤ �(α)�(t) + �(α)
∫ t

0
�(θ ) dθ

≤ (
�(α) + �(α)W�

)
�(t).

So,

∥∥ϕ – ϕ′∥∥ ≤
∥∥∥∥ϕ′ – ϕ(0) – �(α)


(
t,�′) – �(α)

∫ t

0



(
θ ,ϕ′(θ )

)
dθ

∥∥∥∥

≤
∥∥∥∥ϕ′ – ϕ(0) – �(α)
(t,ϕ) – �(α)

∫ t

0



(
θ ,ϕ(θ )

)
dθ

– �(α)

(
t,ϕ′) – �(α)

∫ t

0



(
θ ,ϕ′(θ )

)
dθ
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+ �(α)

(
t,ϕ′) + �(α)

∫ t

0



(
θ ,ϕ′(θ )

)
dθ

∥∥∥∥

≤
∥∥∥∥ϕ′ – ϕ(0) – �(α)


(
t,ϕ′) – �(α)

∫ t

0



(
θ ,ϕ′(θ )

)
dθ

∥∥∥∥

+ �(α)
∥∥
(t,ϕ) – 


(
t,ϕ′)∥∥ + �(α)

∫ t

0

∥∥

(
θ ,ϕ(θ )

)
– 


(
θ ,ϕ′(θ )

)∥∥dθ

≤ (
�(α) + �(α)W�

)
�(t) + �(α)P


∥∥ϕ – ϕ′)
∥∥

+ �(α)P


∫ t

0

∥∥ϕ(θ ) – ϕ′(θ )
∥∥dθ .

Now, ϕ(α)P
 < 1, so

∥∥ϕ – ϕ′∥∥ ≤ (�(α) + �(α)W�)�(t)
1 – �(α)P


+
�(α)P


1 – �(α)P


∫ t

0

∥∥ϕ(θ ) – ϕ′(θ )
∥∥dθ . (33)

The Gronwall’s inequality yields

∥∥ϕ – ϕ′∥∥ ≤
[

�(α) + �(α)W�

1 – �(α)P


exp(t)
]
�(t). (34)

On setting P
,� = [ �(α)+�(α)W�

1–�(α)P

exp(t)], we have

∥∥ϕ – ϕ′∥∥ ≤ P
,��(t). (35)

Inequality (35) authenticated that model (27) is generalized Hyers–Ulam–Rassias stable
with respect to �. �

6 Numerical results from simulations
This section analyzes the numerical dynamics of the COVID-19 epidemic as modeled with
the Caputo fractional operator. When doing so, it is important to keep in mind that the
fractional order parameter that is used for simulations is the one that was optimized in the
Sect. 4, while the rest of the parameters are taken from the third column of the Table 1. An
explicit numerical method of the predictor-corrector type that was developed [48] specif-
ically for use in simulations of fractional Caputo types of ordinary differential equations is
used in this particular instance. One may find the method itself as well as a comprehensive
study of it based upon convergence and error analysis in [49]. The numerical method de-
veloped specifically for this objective has garnered much praise in the most recent body
of research because of its ease of use and adaptability. Furthermore, the author of [50]
has thoroughly discussed the numerical approach in MATLAB implementation, includ-
ing predictor-corrector capabilities. The simulations for the present research work for the
Caputo COVID-19 model (2) were significantly simplified by utilizing such readily avail-
able routines on MathWorks. It should be noted that we run the MATLAB software on
Windows with an Intel(R) Core(TM) i7-1065G7 CPU running at 1.30 GHz, 1.50 GHz, and
24 GB of RAM. The version number of this software is “9.8.0.1323502 (R2020a).”

For the COVID-19 model selected to be operated on by the Caputo operator, there are
many crucial parameters whose values need careful attention to determine whether they
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Figure 5 The dynamical behavior of the susceptible, asymptomatic, vaccinated, and removed individuals
included in model (2) over a period [0, 100]

are growing or shrinking. In this regard, we have selected a few factors, such as the indi-
viduals’ exposure rate β1, the asymptomatic infection rate β2, and the Caputo fractional
order optimized parameter α. We have also shown the numerical dynamics of each of the
five state variables using the Caputo operator, taking into account the fitted parameters
and the value of α that has been optimized with the least-squares technique.

Several observations have been produced as a consequence of running simulations using
the Caputo version of the COVID-19 model. Figure 5 shows that the dynamical behavior
of the four classes (susceptible, asymptotic, vaccinated, and recovered) reflects the theo-
retical analysis that is being observed in the community after it was simulated using the
four state variables (susceptible, asymptotic, vaccinated, and recovered). The simulations
have been carried out with the parameters that best match the Caputo model. If the pa-
rameters shown in the table are used, the number of individuals who are susceptible to
the disease and those who have recovered from it will both increase with the passage of
time, while the number of individuals in the asymptotic and vaccinated groups will begin
to decrease. In addition, it can be seen from Fig. 6 that if we slightly increase the exposure
rate, then the infection substantially rises, demonstrating the sensitivity of this fundamen-
tal parameter. This is shown to be the case. This demonstrates that if one can manage the
number of people exposed to the infection, one can also control the infection. The behav-
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Figure 6 The dynamical behavior of the infectious individuals included in model (2) over a period [0, 100]
under the effects of increasing exposure rate β1

Figure 7 The dynamical behavior of the infectious
individuals included in the model (2) over a period
[0, 100] under the effects of increasing asymptotic
infection rate β2

Figure 8 The dynamical behavior of the infectious
individuals included in model (2) over a period [0,
100] under the effects of decreasing fractional
order α
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ior of a comparable nature is seen to occur with regard to the infection rate, as shown in
Fig. 7.

Last, the fractional-order parameter is important to consider while comprehending the
disease transmission pattern. As can be seen in Fig. 8, it is not advised to use values of
this parameter that are lower than those shown, and determining the parameter’s optimal
value is of the utmost significance. In the current research investigation, this particular
procedure was carried out. It should also be mentioned that quite a few studies have been
conducted that have carried out this kind of analysis, which finds the optimal value of the
fractional-order parameter in the Caputo sense. This is something to consider.

6.1 Memory trace and hereditary traits
Using fractional-order differentiation to represent memory effects in the system, the Ca-
puto fractional-order epidemic model is a mathematical model used to predict the trans-
mission of infectious illnesses [51]. The term “memory trace” is used here to describe how
previous infections have affected the current pandemic. To account for genetic factors
that may influence the dynamics of illness transmission, the model can be expanded to
include hereditary features. Fractional-order differential equations (FODE), in which the
derivative order is not an integer but a fractional value, are used in epidemic models to add
memory effects. This helps the model more accurately reflect the course of the pandemic.
Fractional derivatives capture the effect of prior infections in the setting of the Caputo
fractional-order epidemic model, where fractional-order differential equations character-
ize the dynamics of the epidemic. Therefore, the current status of the disease is depen-
dent not only on the current affected population but also on its past levels. This model’s
memory trace can be used to capture phenomena like the population’s slow but steady
development of immunity, the disease’s tenacity, and the lasting effects of therapies.

Traits that can be passed down from one generation to the next are said to be hereditary.
These characteristics are relevant to epidemiology because they can influence an individ-
ual’s vulnerability to infection, transmission rate, and prognosis. Incorporating genetic el-
ements into the differential equations that regulate the dynamics of the epidemic is what
is meant by including hereditary qualities in the Caputo fractional-order epidemic model.
Transmission rates, recovery rates, and contact rates are just some of the model parame-
ters that might be affected by genetic factors. Disease dynamics may be drastically altered
by inherited characteristics. Whether an individual contracts a disease, is able to transfer it
to others, or benefits from a vaccination program may all depend on their genetic makeup.
Integrating genetic data and population genetics principles into an epidemiological model
to account for heritable features is a hard endeavor. In conclusion, the Caputo fractional-
order epidemic model is an effective tool for modeling the role of memory in the spread of
disease. It takes into account the impact of previous infections on the current epidemic by
employing fractional-order derivatives. Genetic factors influencing illness transmission
and susceptibility can also be accounted for by including hereditary features in the model.
These two features can be used to develop more precise and all-encompassing models of
infectious illness dynamics in communities.

To delve into the behavior of model (2), we utilize the Caputo operator defined in [52]
for our analysis. For α, 0 < α ≤ 1 derivative, let the fractional derivative of variable χ (t) be

C
D

α
0,tχ (t) = G

(
χ (t), t

)
. (36)
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Using one of the most widely used numerical methods, namely, the L1 scheme [52], the
numerical approximation of the fractional-order derivative (FOD) of χ (t) is as follows:

C
D

α
0,tχ (t) ≈ dt–α

�(2 – α)

(T–1∑
k=1

(
χ (tk+1) – χ (tk)

)(
(T – k)1–α – (T – k – 1)1–α

))
, (37)

where dt = h stands for the stepsize. One of the most effective numerical methods for
discretizing the Caputo fractional-order derivative (CFOD) in the time domain is the L1
scheme. Although the memory component is present in other numerical approaches, its
integration is more clearly represented in the L1 scheme. Taking (36) and (37), we get the
following numerical solution to (36):

χ (tT ) ≈ C
D

α
0,t�(2 – α)H

(
χ (t), t

)
+ χ (tT–1) (38)

–

(T–2∑
k=1

(
χ (tk+1) – χ (tk)

)(
(T – k)1–α – (T – k – 1)1–α

))
.

Therefore, the difference between the Markov term and the memory trace [53, 54] can be
thought of as the FODE solution. Here is how the Gamma function affects the Markov
term:

Markov Term = C
D

α
0,t�(2 – α)H

(
χ (t), t

)
+ χ (tT–1). (39)

The memory trace (MT) (χ -memory trace since it is related to variable χ (t)) is

Memory Term =
T–2∑
k=1

(
χ (tk+1) – χ (tk)

)(
(T – k)1–α – (T – k – 1)1–α

)
. (40)

The memory is adept at combining all prior acts, and this includes the system’s tremen-
dous historical evolution. When α = 1, the memory trace is zero at all times t. The behavior
of memory traces changes significantly over time. Nonlinearly increasing from zero, the
memory trace increases when α is decreased. Therefore, fractional-order systems behave
considerably differently from integer systems. We now present numerical simulations and
elaborate biological interpretations of memory traces. To achieve this, the numerical ap-
proximation of the fractional-order derivative of S(t) is as follows:

C
D

α
0,tS(t) ≈ dt–α

�(2 – α)

(T–1∑
k=1

(
S(tk+1) – S(tk)

)(
(T – k)1–α – (T – k – 1)1–α

))
. (41)

Using (41) and the first compartment of the Caputo fractional system (2), the numerical
solution of Susceptible individuals S(t) is given by:

S(tT ) ≈ Markov term of S(t) – Memory trace of S(t),

where

Markov Term = C
D

α
0,t�(2 – α)H

(
S(t), t

)
+ S(tT–1), (42)
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Figure 9 The effects of memory trace on each population of model (2)

and the memory trace (MT) is given by:

Memory Term =
T–2∑
k=1

(
S(tk+1) – S(tk)

)(
(T – k)1–α – (T – k – 1)1–α

)
. (43)
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By following the same steps, the numerical approximations of the fractional-order deriva-
tive of A(t), I(t), V (t), and R(t) can be achieved. Numerical simulations were conducted to
visually illustrate the influence of memory trace on specific sub-populations inside the Ca-
puto fractional system, as defined by Equation (2), employing the aforementioned method-
ology. Figure 9 illustrates the impact of memory trace on population dynamics across a
range of fractional-order α values. Based on the observations depicted in these plots, it
can be inferred that the absence of a memory effect is evident when the value of α is set
to 1. As the value of α declines from 1 to 0.7, it becomes evident that the fractional or-
der and the presence of a memory effect have discernible effects. The phenomenon of
the memory effect has the potential to yield accurate outcomes and predictions pertain-
ing to the COVID-19 pandemic. Therefore, the influence of memory plays a crucial role
in epidemiological models. After doing an analysis in Fig. 9, it becomes evident that the
memory effect tends to approach zero after a certain period of time. The observed re-
sults are consistent with the expected outcomes of real biological mechanisms occurring
within the human organism. The results obtained from the graphical representations sug-
gest that FODEs successfully capture the memory impact of the system, eliminating the
need for additional components. It is widely recognized that fractional-order derivatives
are favored due to their inherent memory effect. The activation of the memory effect plays
a crucial role in the system effectiveness.

7 Conclusion
We have fractionalized the SAIVR epidemic model of order α using the well-known non-
local character of the Caputo differential operator, which is ideal for studying the dynamics
of disease transmission. The proposed Caputo SAIVR model is used for the study of the
COVID-19 pandemic. Based on the Banach contraction principle, it is proven that the
model has a unique solution. The stability of the Caputo model is established using Ulam-
Hyers and its generalized form. One of the main contributions of this work is the least-
squares method used to acquire the model’s fitted parameters from clinical samples of the
virus (March–April, 2022); this method also optimizes the fractional order α (6.757e–01).
It has been shown that the Caputo model performs better than its classical counterpart.
According to the results of a number of numerical simulations, the exposure rate must be
reduced to control the pandemic effectively, and this is attainable when people practice
social distancing and use protective masks. However, if such regulations are not carefully
adhered to, a semi-developed country like Turkey will face serious difficulties. To effec-
tively mitigate the spread of the pandemic, it is imperative to decrease the rate of exposure.
This can be achieved by implementing social distancing measures and utilizing protective
masks by individuals. Memory traces and hereditary traits are used to show the vanishing
behavior of the model when α → 1. In future work, we plan to look into how non-singular
differential operators change the classic SAIVR framework.
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