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Abstract
In 1990, D. Snow proposed an effective algorithm for computing the orbits of finite
Weyl groups. Snow’s algorithm is designed for computation of weights,W-orbits, and
elements of the Weyl group. An extension of Snow’s algorithm is proposed, which
allows to find pairs of mutually inverse elements together with the calculation of
W-orbits in the same runtime cycle. This simplifies the calculation of conjugacy
classes in the Weyl group. As an example, the complete list of elements of the Weyl
groupW(D4) obtained using the extended Snow’s algorithm. The elements ofW(D4)
are specified in two ways: as reduced expressions and as matrices of the faithful
representation. Then we give a partition of this group into conjugacy classes with
elements specified as reduced expressions. Various forms are given for
representatives of the conjugacy classes ofW(D4): with Carter diagrams, with reduced
expressions, and with signed cycle-types. In the Appendix, we provide an
implementation of the algorithm in Python.

1 Introduction
1.1 Snow’s algorithm: finding W-orbits
In 1990, D. Snow in [8] proposed an effective algorithm for computing the orbits of the
finite Weyl groups. The algorithm starts with a certain dominant weight and acts on it by
all simple reflections. This operation produces the complete list of weights of level 1 and
the complete list of all elements of length 1 in the Weyl group W . In the next step, we
again use reflections to obtain a list of level 2 weights and all elements of length 2, and so
on. This approach has a repetition problem: the same weight can be obtained in several
ways, and the list of elements of the Weyl group lying in some level contains duplicate
elements. Snow presented a solution showing which weight v should be taken on the level
Lk and which reflection si should be applied to v to get the given weight ξ at the level Lk+1.
Using Snow’s algorithm, the choice of v and si can be done in the unique way. This solution
avoids duplicate elements, see Sect. 2.4.

The computation of the elements of the Weyl group in Snow’s algorithm is based on
the following fact: there is a one-to-one correspondence between the Weyl chambers and
the elements of the Weyl group, and the Weyl group acts transitively on the set of Weyl
chambers. Each element from the closure of the fundamental Weyl chamber generates a
Weyl group orbit (W -orbit) whose length coincides with the order of the Weyl group. The
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W -orbit is constructed under the action of the Weyl group on some dominant weight. The
weights of the W -orbit are constructed together with the elements of the Weyl group W .

Let Φ be the root system associated with a certain semisimple Lie algebra L, W be the
Weyl group associated to Φ , and E be a real space spanned by the roots of Φ . A weight is
an element ξ ∈ E such that 〈ξ ,α〉 ∈ Z for all roots α ∈ Φ . The set of weights � forms a sub-
group of E , i.e., Φ ⊂ � ⊂ E . The significance of the weights theory is largely determined
by the highest weight theorem in the representation theory of semisimple Lie algebras.1

Snow’s algorithm produces the weights of W -orbits and elements of the Weyl group by
levels. For any ξ ∈ E there exist w ∈ W and v from the closure C of the fundamental Weyl
chamber such that ξ = w(v), see Theorem A.1. The level of ξ is as follows:

level(ξ ) = l(w), (1.1)

where l(w) is the smallest length of w given as a reduced expression, [2, Ch. IV, §1, no1]. The
level of weight ξ is equal to the number of reflections needed to move ξ to some dominant
weight lying in the closure of the fundamental chamber C, see Proposition A.3. Following
Snow, [8], the level of w ∈ W is also defined as l(w):

level(w) = l(w).

Using Snow’s algorithm, searching for elements of the Weyl group and their partitioning
is carried out in accordance with the level of the element, see tables in Sect. 5.

In Sect. 2, we will look at some details of Snow’s algorithm. The sizes of all levels and
the total computation time for cases B7, D8, E7, B8 are gathered in Table 1.

1.2 Extended Snow’s algorithm: finding inverse elements
To construct conjugacy classes of a group, one must first find all pairs of mutually inverse
elements of the group. In the case of the Weyl group, each element and its inverse belong
to the same level. However, even searching within a level can be quite an expensive task,
especially for very large levels, see Table 1, where the length of the levels is several hundred
thousand elements. Let

w = si1 si2 · · · sik–1 sik (1.2)

be an element of the level Lk . We can find the inverse element w–1 by reversing the order
of the reduced expression w:

w–1 = sik sik–1 · · · si2 si1 . (1.3)

However, the inverse element must be found in accordance to the repetition prevention
mechanism from Theorem 2.1. Then the reduced expression may differ from the reverse
order of w.

An extension of Snow’s algorithm is designed to get around this obstacle: for any ele-
ment w ∈ W , one must obtain the inverse element w–1, but this must be done in the order

1The highest weight theorem was proved by E. Cartan in 1913, [3], see Sect. A.5.
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Table 1 The Weyl groups B7, D8, E7, B8: level sizes and total runtime of the extended Snow’s
algorithm

B7 D8 E7 B8

Level Size Level Size Level Size Level Size

0, 49 1 0, 56 1 0, 63 1 0, 64 1
1, 48 7 1, 55 8 1, 62 7 1, 63 8
2, 47 27 2, 54 35 2, 61 27 2, 62 35
3, 46 77 3, 53 112 3, 60 77 3, 61 112
4, 45 181 4, 52 293 4, 59 182 4, 60 293
5, 44 371 5, 51 664 5, 58 378 5, 59 664
6, 43 686 6, 50 1350 6, 57 713 6, 58 1350
7, 42 1170 7, 49 2520 7, 56 1247 7, 57 2520
8, 41 1869 8, 48 4388 8, 55 2051 8, 56 4389
9, 40 2827 9, 47 7208 9, 54 3205 9, 55 7216
10, 39 4082 10, 46 11,263 10, 53 4975 10, 54 11,298
11, 38 5662 11, 45 16,848 11, 52 6909 11, 53 16,960
12, 37 7581 12, 44 24,248 12, 51 9632 12, 52 24,541
13, 36 9835 13, 43 33,712 13, 50 13,040 13, 51 34,376
14, 35 12,399 14, 42 45,425 14, 49 17,194 14, 50 46,775
15, 34 15,225 15, 41 59,480 15, 48 22,134 15, 49 62,000
16, 33 18,242 16, 40 75,853 16, 47 27,874 16, 48 80,241
17, 32 21,358 17, 39 94,384 17, 46 34,398 17, 47 101,592
18, 31 24,464 18, 38 114,766 18, 45 41,657 18, 46 126,029
19, 30 27,440 19, 37 136,544 19, 44 49,567 19, 45 153,392
20, 29 30,162 20, 36 159,125 20, 43 58,009 20, 44 183,373
21, 28 32,150 21, 35 181,800 21, 42 66,831 21, 43 215,512
22, 27 34,376 22, 34 203,777 22, 41 75,852 22, 42 249,201
23, 26 35,672 23, 33 224,224 23, 40 84,868 23, 41 283,704
24, 25 36,336 24, 32 242,318 24, 39 93,659 24, 40 318,171

25, 31 257,295 25, 38 101,997 25, 39 351,680
26, 30 268,504 26, 37 109,655 26, 38 383,270
27, 29 275,440 27, 36 116,417 27, 37 411,984
28 277,788 28, 35 122,087 28, 36 436,913

29, 34 126,497 29, 35 457,240
30, 33 129,514 30, 34 472,281
31, 32 131,046 31, 33 481,520

32 484,636

total 645,120 total 5,169,960 total 2,903,040 total 10,321,920
time 59 sec time 570 sec time 269 sec time 1153 sec

specified by Theorem 2.1. The reduced expression of the calculated inverse element will
not necessarily be of the form (1.3). Bypassing the specified obstacle achieved through
the exchange of information between any element and its inverse during the traversal per-
formed by Snow’s algorithm. This information exchange is carried out using the dictionary
mechanism described in Sect. 3.

The Weyl group W (D4) contains 192 elements. In Sect. 4, Carter diagrams and signed
cycle-types are used to study of conjugacy classes in W (D4). In Sect. 5, all elements of
W (D4) are divided into 12 levels. The elements of W (D4) are specified in two ways: as
matrices and as reduced expressions, see Tables 6–24. For each element w, we provide
also the reduced expression of the inverse element and its location.

The partition of the group W (D4) into conjugate classes is given in Sect. 6. There are
13 conjugacy classes including the trivial class containing only identity element e, see Ta-
bles 26–37. For each element w of the conjugacy class, we provide the level number k such
that w ∈ Lk and the position of w in the level Lk . With this information, the element w can
be found in the tables of levels of Sect. 5.
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The execution time of the extended Snow’s algorithm for Weyl groups B7, D8, E7, B8 on
CPU 3.7 GHz/Python 3.7.3 are as follows:

B7 645,120 elements 59 sec

E7 2,903,040 elements 269 sec

D8 5,169,960 elements 570 sec

B8 10,321,920 elements 1153 sec

For the execution time for each level, see Table 1.
Appendix A lists some properties of weights related to Lie algebras and Weyl groups.

An implementation of the extended Snow’s algorithm in Python is given in Appendix B.
An example of procedure for obtaining conjugacy classes is presented in Appendix C.

2 Snow’s algorithm: computation of W-orbits and levels
2.1 Computation of the W-orbits
Snow’s algorithm starts with a certain dominant weight and acts on it with all simple re-
flections. This produces all the weights of level 1 and a list of all elements of length 1 in W .
If we apply this procedure again, ignoring duplicates, we obtain the weights of level 2 and
a required list of elements of length 2 in W . By repeating this procedure, we compute a list
of weights of any level, and the entire group W can be generated if an appropriate initial
weight is chosen.

2.2 Computation of level(ξ )
The algorithm provides a simple criterion for adding an orbit element to the list of weights.
Let ξ = (x1, . . . , xn) be any weight in the basis consisting of fundamental dominant weights,
see Sect. A.2.2. What is the level of si(ξ ) for any simple reflection si?

Let w be the element in W such that ξ = w(v) for some v from the fundamental domain
C with level(ξ ) = l(w). By definition of the fundamental weights (A.7), we have

ξ =
∑

i

xiω̄i, and xi = 〈ξ ,αi〉 =
〈
w(v),αi

〉
. (2.1)

By (A.3) the sign of xi coincides with the sign of (w(v),αi), then

⎧
⎪⎪⎨

⎪⎪⎩

xi = 0 �⇒ si(ξ ) = ξ ,

xi > 0 �⇒ (w(v),αi) > 0,

xi < 0 �⇒ (w(v),αi) < 0.

(2.2)

Here, the first line in (2.2) follows from (A.11). Thus, in the case of xi = 0, the reflection si

does not change the level:

xi = 0 �⇒ level
(
si(ξ )

)
= level(ξ ). (2.3)

Further, since the Cartan–Killing form is invariant under the Weyl group W , we have

xi > 0 �⇒ (
v, w–1(αi)

)
> 0,

xi < 0 �⇒ (
v, w–1(αi)

)
< 0.

(2.4)
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Since v is a dominant weight, we have 〈v,α〉 ≥ 0 for all α ∈ Φ , see Sect. A.2. Then by
Theorem A.5, we have

xi > 0 �⇒ w–1(αi) ∈ Φ+ �⇒ l(siw) = l(w) + 1,

xi < 0 �⇒ w–1(αi) ∈ Φ– �⇒ l(siw) = l(w) – 1.
(2.5)

Thus the level is updated as follows:

level
(
si(ξ )

)
=

⎧
⎪⎪⎨

⎪⎪⎩

level(ξ ) + 1 if xi > 0,

level(ξ ) if xi = 0,

level(ξ ) – 1 if xi < 0.

(2.6)

2.3 Arranging the weights by levels
We start from a dominant weight μ ∈ �+, see Eq. (A.6). Let Lk be the kth level of W ·μ,
i.e.,

Lk =
{

weights ξ ∈ W ·μ | level(ξ ) = k
}

.

Then, the orbit W ·μ is the disjoint union of all levels:

W ·μ =
N⊔

i=0

Li,

where N is the maximal possible level in W · μ. By Proposition A.6, the number N is the
number of positive roots in C, since this is the maximal length of a Weyl group element.

To construct level Lk+1 from the previously computed level Lk , we apply reflections si.
By (2.6), if xi > 0 only reflection si move ξ from Lk to Lk+1:

Lk+1 =
{

si(ξ ) | i = 1, . . . , l, ξ = (x1, . . . , xl) ∈ Lk , xi > 0
}

. (2.7)

2.4 Snow’s solution to the repetition problem
2.4.1 An example of the repetition problem
For explanations about bases {α} of simple roots and {ω̄} of fundamental weights, see
Sect. A.3.5 and Sect. A.3.6. The main formulas used in calculation are (A.11) and (A.16).

We start with the dominant weight λ0 = (1, 1, 1, 1) and act on this weight by two different
elements of level 2 of the Weyl group W (D4):

w1 = s2s3 =

⎡

⎢⎢⎢⎣

1 0 0 0
1 0 –1 1
0 1 –1 0
0 0 0 1

⎤

⎥⎥⎥⎦ (Table 6, elm. 6),

w2 = s3s2 =

⎡

⎢⎢⎢⎣

1 0 0 0
1 –1 1 1
1 –1 0 1
0 0 0 1

⎤

⎥⎥⎥⎦ (Table 6, elm. 4).

(2.8)
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Figure 1 Two different reduced expressions that are
equal

By Eq. (A.16), we apply w1 and w2 to the row vector λ0 as follows:

λ1 = λ0w1 = λ0s2s3 = (2, 1, –2, 2),

λ2 = λ0w2 = λ0s3s2 = (3, –2, 1, 3).
(2.9)

Using (A.11), we act by reflection s2 onto weight λ1 (one could also use (A.16) as in (2.9)).
Here, m2 = 1, c̄2 = (–1, 2, –1, –1). Similarly, we act by reflection s3 on λ2, where m3 = 1,
c3 = (0, –1, 2, 0).

λ1s2 = λ1 – m2c2 = (2, 1, –2, 2) – (–1, 2, –1, –1) = (3, –1, –1, 3),

λ2s3 = λ2 – m3c3 = (3, –2, 1, 3) – (0, –1, 2, 0) = (3, –1, –1, 3).

So, (λ0)s3s2s3 = (λ0)s2s3s2.2 Thus, weight (3, –1, –1, 3) can be obtained in different ways.
This means that both s3s2s3 and s2s3s2 must be included in the list of level 3, even though
they are two different reduced expressions for the same element.

This is an example of the repetition problem, see Fig. 1. Snow’s algorithm solves this
problem with the following statement.

Theorem 2.1 (Snow, [8]) Let Lk be the kth level in the orbit W · μ of a dominant weight
μ ∈ C. Then, for each ξ = (x1, . . . , xl) ∈ Lk+1, there exists a unique ν ∈ Lk and a unique
simple reflection si such that si(ν) = ξ and xi ≥ 0 for j > i. In particular, the next level Lk+1

can be constructed without repetitions from the weights ν ∈ Lk by adding si(ν) to Lk+1 if
and only if the ith coordinate of ν is positive and the coordinates of si(ν) after the ith are
nonnegative:

Lk+1 =
{

si(ν) = (x1, . . . , xl | i = 1, . . . , l,

ν = (y1, . . . , yl) ∈ Lk , yi > 0, xk ≥ 0, j > i
}

.
(2.10)

2.4.2 Application of Theorem 2.1 to Example 2.4.1
Here ξ = (3, –1, –1, 3). For v = λ2 and reflection s3, we have i = 3 and x4 > 0. By Theorem 2.1,
the element s3s2s3 is added to level 3, see Table 7, element 10. On the other hand, for v = λ1

and reflection s2, we have i = 2 and x3 < 0. Then, the element s2s3s2, which is essentially
another reduced expression for s3s2s3, is not added to level 3.

2The last relation also follows from the well-known braid relation s3s2s3 = s2s3s2 .
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3 Extended Snow’s algorithm: computation of inverse elements
3.1 Double identification
Because the reduced expression is not unique, we must use another element identification
w to recognize the inverse element. The matrix of w in the faithful representation can be
chosen as such a requested identifier. We store the following information (class Element)
about each element w:

For a complete description of this class, see Sect. B.8. The pair (name, matr) forms the
double identification of the element. The question is why not use a weight that is simply a
1D-array instead of a matrix that is 2D-array. The reason is that at the time of calculating
the new element given the element w, we do not know the weight of the inverse element
w–1. However, we know the inverse matrix w–1 and at the same time do not perform a very
expensive matrix inversion procedure. Let i the index of the desired reflection in the list
of reflections refl. Then refl[i] (resp. si) is the matrix (resp. the symbol) of this reflection.
All we have to do is

• multiply the given matrix w on the left by refl[i] and the inverse matrix w–1 on the
right by the same reflection,

• add the symbol si on the left to the reduced expression w, and for the reduced
expression w–1 add the symbol si on the right.

When implemented in Python, it looks like this:

See function newElem in Sect. B.9. Here, np.mathmul is a function from the Numpy pack-
age for multiplying two matrices. The dot “ . ” is used as delimiter between generators in
string fields name, name_inv and new_name_inv.

3.2 Dictionary whose key is a matrix
The dictionary dictElemsOfLevel is used to exchange information between any element
w and its inverse w–1. The dictionary key is the matrix from class Element. The matrix is
presented as a two-dimensional list. Since a list cannot be a dictionary key in Python, we
convert the matrix to a string as follows:



Stekolshchik Fixed Point Theory Algorithms Sci Eng         (2023) 2023:15 Page 8 of 45

The dictionary value corresponding to this key is the location n_in_lvl of the matrix in
level(ξ ). See function keyValAndKeyInv() in Sect. B.8. Let key (resp. key_inv) be the key
corresponding to the new_matr (resp. new_matr_inv). In the calculation cycle new level
Lk+1 by the level Lk , there are 3 cases, see function findAllLevels_to_LvlK() in Sect. B.9.
Each record of the dictionary is the pair (key, value), where key is the matrix converted to
string, and value is the location of w in Lk+1.

It should be noted that the dictionary mechanism in Python is realized very effi-
ciently [11].

3.3 Exchange information between w and w–1

The element w leaves in the dictionary record about its location in Lk+1. The inverse ele-
ment w–1 will read this record later. There are three typical cases:

Case 1. If the computed matrix new_matr is of order 2, i.e., the matrix is inverse to itself,
then no message should be left in the dictionary. This is the simplest case. Here,

Case 2: Suppose, after checking the key of the element w, it turned out that the key is not
in the dictionary. This means that the inverse element will appear later in the calculation
loop. Then, the record about the location of w is recorded in the dictionary.

The inverse element w–1 will read this record later, see (3).

Case 3: Suppose the key is in the dictionary. This means that the inverse element left an
exact record about its location, see (2):

Then, there is no need to write any information in the dictionary, because both new_elem
and new_elem_inv are already informed about each other’s location:

The keys will be recorded into the dictionary only for Case 2. Let ν be number of records
of some level Lk , let ω2 be the number of elements of order 2 in Lk . Then, the number of
elements of Lk in the dictionary at the end of the run cycle is (ν – ω2)/2. The number of
elements of any level in the dictionary will always be less than half of all elements of this
level.

Extended Snow’s algorithm (ESA) has comparable complexity to the original Snow’s
algorithm and is, in practice, very efficient in providing information about inverse ele-
ments.
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A possible strategy for computing conjugacy classes in a Weyl group using the obtained
information on inverse elements is presented in Appendix C.

4 Conjugacy classes in W(D4)
In this section, we consider different representations of the conjugacy classes in W (D4).
An algorithm for obtaining conjugacy classes based on a priori information about inverse
elements is presented in Appendix C.

4.1 Conjugacy classes of W(D4) represented by Carter diagrams
First, we will see why, in Table 2, the representative element

s1s2s3s4s2s1s2s3s4s2s3s4 (4.1)

of the conjugacy class 12 is represented as 4 unconnected vertices (root subset 4A1), and
the representative element

s3s2s4s3s2s1 (4.2)

of the conjugacy class 11 is represented by the Carter diagram D4(a1).
For more convenient work with roots of the root system D4, we change the notation

of vertices from i to αi. We use the Bourbaki numbering of the vertices of the Dynkin
diagram D4: The reflection sα2 does not commute with reflections sαi , i = 1, 3, 4, while
the reflections sα1 , sα3 , sα4 commute with each other, see Carter diagram in Table 2,
line 10.

Table 2 Conjugacy classes in the Weyl groups D4, see Tables 26–37 and Table 3

N◦ Carter diagrama Representative element Elms Root subset Order Signed cycle-typeb

0 – e 1 ∅ 1 [1111]
1 s1 12 A1 2 [211]
2 s1s2 32 A2 3 [31]
3 s1s3 6 2A1 2 [22]
4 s1s4 6 2A1 2 [22]
5 s3s4 6 D2 2 [1̄1̄11]
6 s1s2s3 24 A3 4 [4]
7 s1s2s4 24 A3 4 [4]
8 s1s3s4 12 3A1 2 [21̄1̄]
9 s3s2s4 24 D3 4 [2̄1̄1]

10 s1s4s2s3 32 D4 6 [3̄1̄]

11 s3s2s4s3s2s1 12 D4(a1) 4 [2̄2̄]
12 s1s2s3s4s2s1s2s3s4s2s3s4 1 4A1 2 [1̄1̄1̄1̄]

aFor an explanation of the Carter diagram D4(a1) with a dotted edge (in the 11th conjugacy class), see [9, §1.1.1].
bFor the definition of signed cycle-types, see [5, §7].
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Table 3 Weyl groups D4. Partitioning by element orders

Order 1 2 3 4 6
Elements 1 43 32 84 32

For any pair of non-orthogonal roots α and β , such that (α,β) = –1, the following rela-
tions hold:

sβsαsβ = ssβ (α) = sα+β , and sβsα = sα+βsβ , sαsβ = sβsα+β ,

(sβsα)3 = 1, since (sβsα)3 = (sβsαsβ )(sαsβsα) = s2
α+β = 1.

(4.3)

4.1.1 Conjugacy class 11, Carter diagram D4(a1)
The representative element w = s3s2s4s3s2s1 is the first element of conjugacy class 11, see
Table 36. Using the roots from the root system as indices, we get the following expression
for w:

w = sα3 sα2 sα4 sα3 sα2 sα1 = sα3 sα2 sα3 sα4 sα2 sα1 = sα2+α3 sα4 sα2 sα1 .

Further,

w
sα1� sα1 sα2+α3 sα4 sα2 , (4.4)

where, the notaion
A� means conjugacy by the element A. The element (4.4) can be trans-

formed as follows:

w = sα1 sα2+α3 sα4 sα2 = sα2+α3+α1 sα1 sα4 sα2 = sα̃3 sα1 sα4 sα2 , (4.5)

where α̃3 = –(α1 + α2 + α3).
The element w is represented by the Carter diagram D4(a1), where the dotted edge

{̃α3,α4} corresponds to the inner product (̃α3,α4) = 1, see [9, 10].

4.1.2 Conjugacy class 12, four unconnected vertices
The element (4.1) looks like this:

w = sα1 sα2 sα3 sα4 sα2 sα1 sα2 sα3 sα4 sα2 sα3 sα4 .

First of all, according to (4.3), we change sα2 sα1 sα2 to sα2+α1 , and sα4 sα2 sα4 to sα2+α4 . Then

w = sα1 sα2 sα3 sα4 sα2+α1 sα3 sα2+α4 sα3 .

Further, by (4.3), we change sα3 sα2+α4 sα3 to sα2+α4+α3 , and sα4 sα2+α1 to sα2+α1 sα2+α1+α4 . Thus,

w = sα1 sα2 sα3 sα2+α1 sα2+α1+α4 sα2+α4+α3 .

Similarly, we replace sα3 sα2+α1 with sα2+α1 sα2+α1+α3 , we get

w = sα1 sα2 sα2+α1 sα2+α1+α3 sα2+α1+α4 sα2+α4+α3 .
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Finally, since sα2 sα2+α1 = sα1 sα2 , we have sα1 sα2 sα2+α1 = sα2 and

w = sα2 sα2+α1+α3 sα2+α1+α4 sα2+α4+α3 . (4.6)

Note that in Eq. (4.6), there are four mutually orthogonal roots:

α2, α2 + α1 + α3, α2 + α1 + α4, α2 + α4 + α3. (4.7)

The subset (4.7) is represented by 4 unconnected vertices, i.e., 4A1.

4.2 Conjugacy classes of W(D4) represented by signed cycle-types
In this section, we consider the representation of conjugacy classes 8–12 of Table 2 using
the signed cycle-types. According to Bourbaki’s notaion:

sα1 = se1–e2 , sα2 = se2–e3 , sα3 = se3–e4 , sα4 = se3+e4 .

We will use the following mappings:

sei–ej :

⎧
⎨

⎩
ei �−→ ej,

ej �−→ ei,
sei+ej :

⎧
⎨

⎩
ei �−→ –ej,

ej �−→ –ei,
sei–ej sei+ej :

⎧
⎨

⎩
ei �−→ –ei,

ej �−→ –ej,
(4.8)

see [2, Ch. VI, §4, n◦8].

4.2.1 Conjugacy class 8, signed cycle-type [21̄1̄]
Consider representative element sα1 sα3 sα4 . Let us find the signed cycle-type of this ele-
ment. By (4.8), se1–e2 permutes e1 and e2, i.e., se1–e2 acts as permutation (12). Further, the
product se3–e4 se3+e4 maps e3 to –e3 and e4 to –e4, i.e., acts as the pair of negative cycles [1̄1̄].
All together gives [21̄1̄].

4.2.2 Conjugacy class 9, signed cycle-type [2̄1̄1]
Here, the representative element is sα3 sα2 sα4 . By (4.8) sα2 permutes e2 and e3; sα3 permutes
e3 and e4. At last, sα4 maps e4 to –e3 and e3 to –e4. Then,

sα3 sα2 sα4 :

⎧
⎪⎪⎨

⎪⎪⎩

e2 �−→ e4,

e3 �−→ –e3,

e4 �−→ –e2.

The second mapping corresponds to the negative cycle [1̄]. The first and third mappings
form the cycle e2 �−→ e4 �−→ –e2, i.e., the negative cycle [2̄]. Thus, we get the signed cycle-
type [2̄1̄], or, that is the same, [2̄1̄1]. By [5, Prop. 25], [ī1̄] corresponds to the Carter diagram
Di+1. In our case, we get D3.
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4.2.3 Conjugacy class 10, signed cycle-type [3̄1̄]
The representative element

sα1 sα4 sα2 sα3 = se1–e2 se3+e4 se2–e3 se3–e4 (4.9)

acts as follows:

sα1 sα4 sα2 sα3 :

⎧
⎨

⎩
e1 �−→ e2, e3 �−→ –e3,

e2 �−→ –e4, e4 �−→ e1.

The mapping e3 �−→ –e3 corresponds to the negative cycle [1̄]. The remaining mappings
form the cycle e1 �−→ e2 �−→ –e4 �−→ –e1, i.e., the negative cycle [3̄]. So, we get the signed
cycle-type [3̄1̄]. As above, by [5, Prop. 25], the signed cycle-type [3̄1̄] corresponds to D4.

4.2.4 Conjugacy class 11, signed cycle-type [2̄2̄]
By (4.5), the representative element

sα2+α3+α1 sα1 sα4 sα2 = se1–e4 se1–e2 se3+e4 ee2–e3

acts as follows:

sα2+α3+α1 sα1 sα4 sα2 :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e1 �−→ e2,

e2 �−→ –e4 �−→ –e1,

e3 �−→ e4,

e4 �−→ –e3.

The first and second mappings form the cycle e1 �−→ e2 �−→ –e1, i.e., the negative cycle [2̄].
The third and fourth mappings form the cycle e3 �−→ e4 �−→ –e3, which is also the negative
cycle [2̄]. Thus, we get the signed cycle-type [2̄2̄].

4.2.5 Conjugacy class 12, signed cycle-type [1̄1̄1̄1̄]
By (4.6) the representative element is as follows

sα2 sα2+α1+α3 sα2+α1+α4 sα2+α4+α3 = ee2–e3 ee1–e4 ee1+e4 ee2+e3 .

Since sei–ej sei+ej maps ei to –ei and ej to –ej, we get

sα2 sα2+α1+α3 sα2+α1+α4 sα2+α4+α3 : ei �−→ –ei for i = 1, 2, 3, 4.

This corresponds to the signed cycle-type [1̄1̄1̄1̄].
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5 Weyl group D4. Partitioning by levels
See Tables 4–24.

Table 4 Weyl group D4, level 0, element e

No Weight Element Matrix

0 1, 1, 1, 1 e

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

Table 5 Weyl group D4, level 1, elements 0–3

No Weight Element Matrix No Weight Element Matrix

0 –1, 2, 1, 1 s1

⎡

⎢⎢⎣

–1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ 1 2, –1, 2, 2 s2

⎡

⎢⎢⎣

1 0 0 0
1 –1 1 1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

2 1, 2, –1, 1 s3

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 –1 0
0 0 0 1

⎤

⎥⎥⎦ 3 1, 2, 1, –1 s4

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 –1

⎤

⎥⎥⎦

Table 6 Weyl group D4, level 2, elements 0–8

No Weight Elem Matrix No Weight Elem Matrix

3
(0)a

–2, 1, 2, 2 s1s2

⎡

⎢⎢⎣

0 –1 1 1
1 –1 1 1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦
6
(4)

3, –2, 1, 3 s2s3

⎡

⎢⎢⎣

1 0 0 0
1 0 –1 1
0 1 –1 0
0 0 0 1

⎤

⎥⎥⎦

1
(1)

–1, 3, –1, 1 s1s3

⎡

⎢⎢⎣

–1 1 0 0
0 1 0 0
0 1 –1 0
0 0 0 1

⎤

⎥⎥⎦
8
(5)

3, –2, 3, 1 s2s4

⎡

⎢⎢⎣

1 0 0 0
1 0 –1 1
0 0 –1 0
0 1 0 1

⎤

⎥⎥⎦

2
(2)

–1, 3, 1, –1 s1s4

⎡

⎢⎢⎣

–1 1 0 0
0 1 0 0
0 0 1 0
0 1 0 –1

⎤

⎥⎥⎦
0
(3)

1, –2, 3, 3 s2s1

⎡

⎢⎢⎣

–1 1 0 0
–1 0 1 1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

4
(6)

2, 1, –2, 2 s3s2

⎡

⎢⎢⎣

1 0 0 0
1 –1 1 1
1 –1 0 1
0 0 0 1

⎤

⎥⎥⎦
5
(8)

2, 1, 2, –2 s4s2

⎡

⎢⎢⎣

1 0 0 0
1 –1 1 1
0 0 1 0
1 –1 1 0

⎤

⎥⎥⎦

7
(7)

1, 3, –1, –1 s3s4

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 –1 0
0 1 0 –1

⎤

⎥⎥⎦

aHereinafter, the number in this column without parentheses (resp. in parentheses) means the ordinal number of element
(resp. inverse element) in Tables 6–24.
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Table 7 Weyl group D4, level 3, elements 0–13

No Weight Element Matrix Inverse

0
(9)

1, 1, –3, 3 s3s2s1

⎡

⎢⎢⎣

–1 1 0 0
–1 0 1 1
–1 0 0 1
0 0 0 1

⎤

⎥⎥⎦ s1s2s3

1
(13)

1, 1, 3, –3 s4s2s1

⎡

⎢⎢⎣

–1 1 0 0
–1 0 1 1
0 0 1 0
–1 0 1 0

⎤

⎥⎥⎦ s1s2s4

2
(6)

2, –3, 2, 4 s2s3s1

⎡

⎢⎢⎣

–1 1 0 0
–1 1 –1 1
0 1 –1 0
0 0 0 1

⎤

⎥⎥⎦ s3s1s2

3
(3)

–1, 4, –1, –1 s4s3s1

⎡

⎢⎢⎣

–1 1 0 0
0 1 0 0
0 1 –1 0
0 1 0 –1

⎤

⎥⎥⎦ s4s3s1

4
(7)

2, –3, 4, 2 s2s4s1

⎡

⎢⎢⎣

–1 1 0 0
–1 1 1 –1
0 0 1 0
0 1 0 –1

⎤

⎥⎥⎦ s4s1s2

5
(5)

–1, –1, 3, 3 s2s1s2

⎡

⎢⎢⎣

0 –1 1 1
–1 0 1 1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ s2s1s2

6
(2)

–2, 3, –2, 2 s3s1s2

⎡

⎢⎢⎣

0 –1 1 1
1 –1 1 1
1 –1 0 1
0 0 0 1

⎤

⎥⎥⎦ s2s3s1

7
(4)

–2, 3, 2, –2 s4s1s2

⎡

⎢⎢⎣

0 –1 1 1
1 –1 1 1
0 0 1 0
1 –1 1 0

⎤

⎥⎥⎦ s2s4s1

8
(12)

2, 3, –2, –2 s4s3s2

⎡

⎢⎢⎣

1 0 0 0
1 –1 1 1
1 –1 0 1
1 –1 1 0

⎤

⎥⎥⎦ s2s4s3

9
(0)

–3, 1, 1, 3 s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
1 0 –1 1
0 1 –1 0
0 0 0 1

⎤

⎥⎥⎦ s3s2s1

10
(10)

3, –1, –1, 3 s3s2s3

⎡

⎢⎢⎣

1 0 0 0
1 0 –1 1
1 –1 0 1
0 0 0 1

⎤

⎥⎥⎦ s3s2s3

11
(14)

3, 1, 1, –3 s4s2s3

⎡

⎢⎢⎣

1 0 0 0
1 0 –1 1
0 1 –1 0
1 0 –1 0

⎤

⎥⎥⎦ s3s2s4

12
(8)

4, –3, 2, 2 s2s4s3

⎡

⎢⎢⎣

1 0 0 0
1 1 –1 –1
0 1 –1 0
0 1 0 –1

⎤

⎥⎥⎦ s4s3s2

13
(1)

–3, 1, 3, 1 s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
1 0 1 –1
0 0 1 0
0 1 0 –1

⎤

⎥⎥⎦ s4s2s1
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Table 8 Weyl group D4, level 3, elements 14–15

No Weight Element Matrix Inverse

14
(11)

3, 1, –3, 1 s3s2s4

⎡

⎢⎢⎣

1 0 0 0
1 0 1 –1
1 0 0 –1
0 1 0 –1

⎤

⎥⎥⎦ s4s2s3

15
(15)

3, –1, 3, –1 s4s2s4

⎡

⎢⎢⎣

1 0 0 0
1 0 1 –1
0 0 1 0
1 –1 1 0

⎤

⎥⎥⎦ s4s2s4

Table 9 Weyl group D4, level 4, elements 0–13

No Weight Element Matrix Inverse

0
(16)

1, 4, –3, –3 s4s3s2s1

⎡

⎢⎢⎣

–1 1 0 0
–1 0 1 1
–1 0 0 1
–1 0 1 0

⎤

⎥⎥⎦ s1s2s4s3

1
(13)

2, –1, –2, 4 s3s2s3s1

⎡

⎢⎢⎣

–1 1 0 0
–1 1 –1 1
–1 0 0 1
0 0 0 1

⎤

⎥⎥⎦ s3s1s2s3

2
(20)

2, 1, 2, –4 s4s2s3s1

⎡

⎢⎢⎣

–1 1 0 0
–1 1 –1 1
0 1 –1 0
–1 1 –1 0

⎤

⎥⎥⎦ s3s1s2s4

3
(9)

3, –4, 3, 3 s2s4s3s1

⎡

⎢⎢⎣

–1 1 0 0
–1 2 –1 –1
0 1 –1 0
0 1 0 –1

⎤

⎥⎥⎦ s4s3s1s2

4
(14)

2, 1, –4, 2 s3s2s4s1

⎡

⎢⎢⎣

–1 1 0 0
–1 1 1 –1
–1 1 0 –1
0 1 0 –1

⎤

⎥⎥⎦ s4s1s2s3

5
(21)

2, –1, 4, –2 s4s2s4s1

⎡

⎢⎢⎣

–1 1 0 0
–1 1 1 –1
0 0 1 0
–1 0 1 0

⎤

⎥⎥⎦ s4s1s2s4

6
(12)

–1, 2, –3, 3 s3s2s1s2

⎡

⎢⎢⎣

0 –1 1 1
–1 0 1 1
–1 0 0 1
0 0 0 1

⎤

⎥⎥⎦ s2s1s2s3

7
(19)

–1, 2, 3, –3 s4s2s1s2

⎡

⎢⎢⎣

0 –1 1 1
–1 0 1 1
0 0 1 0
–1 0 1 0

⎤

⎥⎥⎦ s2s1s2s4

8
(8)

1, –3, 1, 5 s2s3s1s2

⎡

⎢⎢⎣

0 –1 1 1
0 –1 0 2
1 –1 0 1
0 0 0 1

⎤

⎥⎥⎦ s2s3s1s2

9
(3)

–2, 5, –2, –2 s4s3s1s2

⎡

⎢⎢⎣

0 –1 1 1
1 –1 1 1
1 –1 0 1
1 –1 1 0

⎤

⎥⎥⎦ s2s4s3s1

10
(10)

1, –3, 5, 1 s2s4s1s2

⎡

⎢⎢⎣

0 –1 1 1
0 –1 2 0
0 0 1 0
1 –1 1 0

⎤

⎥⎥⎦ s2s4s1s2

11
(11)

5, –3, 1, 1 s2s4s3s2

⎡

⎢⎢⎣

1 0 0 0
2 –1 0 0
1 –1 0 1
1 –1 1 0

⎤

⎥⎥⎦ s2s4s3s2
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Table 9 (Continued)

No Weight Element Matrix Inverse

12
(6)

–2, –1, 2, 4 s2s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
–1 1 –1 1
0 1 –1 0
0 0 0 1

⎤

⎥⎥⎦ s3s2s1s2

13
(1)

–3, 2, –1, 3 s3s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
1 0 –1 1
1 –1 0 1
0 0 0 1

⎤

⎥⎥⎦ s3s2s3s1

Table 10 Weyl group D4, level 4, elements 14–22

No Weight Element Matrix Inverse

14
(4)

–3, 4, 1, –3 s4s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
1 0 –1 1
0 1 –1 0
1 0 –1 0

⎤

⎥⎥⎦ s3s2s4s1

15
(17)

3, 2, –1, –3 s4s3s2s3

⎡

⎢⎢⎣

1 0 0 0
1 0 –1 1
1 –1 0 1
1 0 –1 0

⎤

⎥⎥⎦ s3s2s4s3

16
(0)

–4, 1, 2, 2 s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
1 1 –1 –1
0 1 –1 0
0 1 0 –1

⎤

⎥⎥⎦ s4s3s2s1

17
(15)

4, –1, –2, 2 s3s2s4s3

⎡

⎢⎢⎣

1 0 0 0
1 1 –1 –1
1 0 0 –1
0 1 0 –1

⎤

⎥⎥⎦ s4s3s2s3

18
(22)

4, –1, 2, –2 s4s2s4s3

⎡

⎢⎢⎣

1 0 0 0
1 1 –1 –1
0 1 –1 0
1 0 –1 0

⎤

⎥⎥⎦ s4s3s2s4

19
(7)

–2, –1, 4, 2 s2s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
–1 1 1 –1
0 0 1 0
0 1 0 –1

⎤

⎥⎥⎦ s4s2s1s2

20
(2)

–3, 4, –3, 1 s3s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
1 0 1 –1
1 0 0 –1
0 1 0 –1

⎤

⎥⎥⎦ s4s2s3s1

21
(5)

–3, 2, 3, –1 s4s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
1 0 1 –1
0 0 1 0
1 –1 1 0

⎤

⎥⎥⎦ s4s2s4s1

22
(18)

3, 2, –3, –1 s4s3s2s4

⎡

⎢⎢⎣

1 0 0 0
1 0 1 –1
1 0 0 –1
1 –1 1 0

⎤

⎥⎥⎦ s4s2s4s3
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Table 11 Weyl group D4, level 5, elements 0–13

No Weight Element Matrix Inverse

0
(11)

5, –4, 1, 1 s2s4s3s2s1

⎡

⎢⎢⎣

–1 1 0 0
–2 1 0 0
–1 0 0 1
–1 0 1 0

⎤

⎥⎥⎦ s1s2s4s3s2

1
(20)

2, 3, –2, –4 s4s3s2s3s1

⎡

⎢⎢⎣

–1 1 0 0
–1 1 –1 1
–1 0 0 1
–1 1 –1 0

⎤

⎥⎥⎦ s3s1s2s4s3

2
(17)

3, –1, –3, 3 s3s2s4s3s1

⎡

⎢⎢⎣

–1 1 0 0
–1 2 –1 –1
–1 1 0 –1
0 1 0 –1

⎤

⎥⎥⎦ s4s3s1s2s3

3
(26)

3, –1, 3, –3 s4s2s4s3s1

⎡

⎢⎢⎣

–1 1 0 0
–1 2 –1 –1
0 1 –1 0
–1 1 –1 0

⎤

⎥⎥⎦ s4s3s1s2s4

4
(21)

2, 3, –4, –2 s4s3s2s4s1

⎡

⎢⎢⎣

–1 1 0 0
–1 1 1 –1
–1 1 0 –1
–1 0 1 0

⎤

⎥⎥⎦ s4s1s2s4s3

5
(19)

–1, 5, –3, –3 s4s3s2s1s2

⎡

⎢⎢⎣

0 –1 1 1
–1 0 1 1
–1 0 0 1
–1 0 1 0

⎤

⎥⎥⎦ s2s1s2s4s3

6
(16)

1, –2, –1, 5 s3s2s3s1s2

⎡

⎢⎢⎣

0 –1 1 1
0 –1 0 2
–1 0 0 1
0 0 0 1

⎤

⎥⎥⎦ s2s3s1s2s3

7
(25)

1, 2, 1, –5 s4s2s3s1s2

⎡

⎢⎢⎣

0 –1 1 1
0 –1 0 2
1 –1 0 1
0 –1 0 1

⎤

⎥⎥⎦ s2s3s1s2s4

8
(8)

3, –5, 3, 3 s2s4s3s1s2

⎡

⎢⎢⎣

0 –1 1 1
1 –2 1 1
1 –1 0 1
1 –1 1 0

⎤

⎥⎥⎦ s2s4s3s1s2

9
(18)

1, 2, –5, 1 s3s2s4s1s2

⎡

⎢⎢⎣

0 –1 1 1
0 –1 2 0
0 –1 1 0
1 –1 1 0

⎤

⎥⎥⎦ s2s4s1s2s3

10
(27)

1, –2, 5, –1 s4s2s4s1s2

⎡

⎢⎢⎣

0 –1 1 1
0 –1 2 0
0 0 1 0
–1 0 1 0

⎤

⎥⎥⎦ s2s4s1s2s4

11
(0)

–5, 2, 1, 1 s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
2 –1 0 0
1 –1 0 1
1 –1 1 0

⎤

⎥⎥⎦ s2s4s3s2s1

12
(13)

5, –2, –1, 1 s3s2s4s3s2

⎡

⎢⎢⎣

1 0 0 0
2 –1 0 0
1 0 0 –1
1 –1 1 0

⎤

⎥⎥⎦ s4s2s4s3s2

13
(12)

5, –2, 1, –1 s4s2s4s3s2

⎡

⎢⎢⎣

1 0 0 0
2 –1 0 0
1 –1 0 1
1 0 –1 0

⎤

⎥⎥⎦ s3s2s4s3s2
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Table 12 Weyl group D4, level 5, elements 14–27

No Weight Element Matrix Inverse

14
(14)

–2, 1, –2, 4 s3s2s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
–1 1 –1 1
–1 0 0 1
0 0 0 1

⎤

⎥⎥⎦ s3s2s1s2s3

15
(23)

–2, 3, 2, –4 s4s2s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
–1 1 –1 1
0 1 –1 0
–1 1 –1 0

⎤

⎥⎥⎦ s3s2s1s2s4

16
(6)

–1, –2, 1, 5 s2s3s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
0 –1 0 2
1 –1 0 1
0 0 0 1

⎤

⎥⎥⎦ s3s2s3s1s2

17
(2)

–3, 5, –1, –3 s4s3s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
1 0 –1 1
1 –1 0 1
1 0 –1 0

⎤

⎥⎥⎦ s3s2s4s3s1

18
(9)

1, –4, 5, 1 s2s4s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
0 1 –2 0
0 1 –1 0
1 0 –1 0

⎤

⎥⎥⎦ s3s2s4s1s2

19
(5)

–3, –1, 3, 3 s2s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
–1 2 –1 –1
0 1 –1 0
0 1 0 –1

⎤

⎥⎥⎦ s4s3s2s1s2

20
(1)

–4, 3, –2, 2 s3s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
1 1 –1 –1
1 0 0 –1
0 1 0 –1

⎤

⎥⎥⎦ s4s3s2s3s1

21
(4)

–4, 3, 2, –2 s4s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
1 1 –1 –1
0 1 –1 0
1 0 –1 0

⎤

⎥⎥⎦ s4s3s2s4s1

22
(22)

4, 1, –2, –2 s4s3s2s4s3

⎡

⎢⎢⎣

1 0 0 0
1 1 –1 –1
1 0 0 –1
1 0 –1 0

⎤

⎥⎥⎦ s4s3s2s4s3

23
(15)

–2, 3, –4, 2 s3s2s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
–1 1 1 –1
–1 1 0 –1
0 1 0 –1

⎤

⎥⎥⎦ s4s2s1s2s3

24
(24)

–2, 1, 4, –2 s4s2s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
–1 1 1 –1
0 0 1 0
–1 0 1 0

⎤

⎥⎥⎦ s4s2s1s2s4

25
(7)

1, –4, 1, 5 s2s3s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
0 1 0 –2
1 0 0 –1
0 1 0 –1

⎤

⎥⎥⎦ s4s2s3s1s2

26
(3)

–3, 5, –3, –1 s4s3s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
1 0 1 –1
1 0 0 –1
1 –1 1 0

⎤

⎥⎥⎦ s4s2s4s3s1

27
(10)

–1, –2, 5, 1 s2s4s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
0 –1 2 0
0 0 1 0
1 –1 1 0

⎤

⎥⎥⎦ s4s2s4s1s2
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Table 13 Weyl group D4, level 6, elements 0–13

No Weight Element Matrix Inverse

0
(0)

–5, 1, 1, 1 s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–2 1 0 0
–1 0 0 1
–1 0 1 0

⎤

⎥⎥⎦ s1s2s4s3s2s1

1
(11)

5, –3, –1, 1 s3s2s4s3s2s1

⎡

⎢⎢⎣

–1 1 0 0
–2 1 0 0
–1 1 0 –1
–1 0 1 0

⎤

⎥⎥⎦ s4s1s2s4s3s2

2
(10)

5, –3, 1, –1 s4s2s4s3s2s1

⎡

⎢⎢⎣

–1 1 0 0
–2 1 0 0
–1 0 0 1
–1 1 –1 0

⎤

⎥⎥⎦ s3s1s2s4s3s2

3
(22)

3, 2, –3, –3 s4s3s2s4s3s1

⎡

⎢⎢⎣

–1 1 0 0
–1 2 –1 –1
–1 1 0 –1
–1 1 –1 0

⎤

⎥⎥⎦ s4s3s1s2s4s3

4
(9)

4, –5, 2, 2 s2s4s3s2s1s2

⎡

⎢⎢⎣

0 –1 1 1
–1 –1 1 1
–1 0 0 1
–1 0 1 0

⎤

⎥⎥⎦ s2s1s2s4s3s2

5
(21)

1, 3, –1, –5 s4s3s2s3s1s2

⎡

⎢⎢⎣

0 –1 1 1
0 –1 0 2
–1 0 0 1
0 –1 0 1

⎤

⎥⎥⎦ s2s3s1s2s4s3

6
(16)

3, –2, –3, 3 s3s2s4s3s1s2

⎡

⎢⎢⎣

0 –1 1 1
1 –2 1 1
0 –1 1 0
1 –1 1 0

⎤

⎥⎥⎦ s2s4s3s1s2s3

7
(27)

3, –2, 3, –3 s4s2s4s3s1s2

⎡

⎢⎢⎣

0 –1 1 1
1 –2 1 1
1 –1 0 1
0 –1 0 1

⎤

⎥⎥⎦ s2s4s3s1s2s4

8
(23)

1, 3, –5, –1 s4s3s2s4s1s2

⎡

⎢⎢⎣

0 –1 1 1
0 –1 2 0
0 –1 1 0
–1 0 1 0

⎤

⎥⎥⎦ s2s4s1s2s4s3

9
(4)

–3, –2, 3, 3 s2s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 –2 1 1
1 –1 0 1
1 –1 1 0

⎤

⎥⎥⎦ s2s4s3s2s1s2

10
(2)

–5, 3, –1, 1 s3s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
2 –1 0 0
1 0 0 –1
1 –1 1 0

⎤

⎥⎥⎦ s4s2s4s3s2s1

11
(1)

–5, 3, 1, –1 s4s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
2 –1 0 0
1 –1 0 1
1 0 –1 0

⎤

⎥⎥⎦ s3s2s4s3s2s1

12
(12)

5, –1, –1, –1 s4s3s2s4s3s2

⎡

⎢⎢⎣

1 0 0 0
2 –1 0 0
1 0 0 –1
1 0 –1 0

⎤

⎥⎥⎦ s4s3s2s4s3s2

13
(19)

–2, 5, –2, –4 s4s3s2s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
–1 1 –1 1
–1 0 0 1
–1 1 –1 0

⎤

⎥⎥⎦ s3s2s1s2s4s3
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Table 14 Weyl group D4, level 6, elements 14–27

No Weight Element Matrix Inverse

14
(14)

–1, –1, –1, 5 s3s2s3s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
0 –1 0 2
–1 0 0 1
0 0 0 1

⎤

⎥⎥⎦ s3s2s3s1s2s3

15
(25)

–1, 3, 1, –5 s4s2s3s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
0 –1 0 2
1 –1 0 1
0 –1 0 1

⎤

⎥⎥⎦ s3s2s3s1s2s4

16
(6)

2, –5, 4, 2 s2s4s3s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
1 –1 –1 1
1 –1 0 1
1 0 –1 0

⎤

⎥⎥⎦ s3s2s4s3s1s2

17
(17)

1, 1, –5, 1 s3s2s4s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
0 1 –2 0
0 0 –1 0
1 0 –1 0

⎤

⎥⎥⎦ s3s2s4s1s2s3

18
(28)

1, –3, 5, –1 s4s2s4s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
0 1 –2 0
0 1 –1 0
–1 1 –1 0

⎤

⎥⎥⎦ s3s2s4s1s2s4

19
(13)

–3, 2, –3, 3 s3s2s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
–1 2 –1 –1
–1 1 0 –1
0 1 0 –1

⎤

⎥⎥⎦ s4s3s2s1s2s3

20
(24)

–3, 2, 3, –3 s4s2s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
–1 2 –1 –1
0 1 –1 0
–1 1 –1 0

⎤

⎥⎥⎦ s4s3s2s1s2s4

21
(5)

–1, –3, 1, 5 s2s3s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
0 1 0 –2
1 0 0 –1
0 1 0 –1

⎤

⎥⎥⎦ s4s3s2s3s1s2

22
(3)

–4, 5, –2, –2 s4s3s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
1 1 –1 –1
1 0 0 –1
1 0 –1 0

⎤

⎥⎥⎦ s4s3s2s4s3s1

23
(8)

–1, –3, 5, 1 s2s4s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
0 1 –2 0
0 1 –1 0
1 0 –1 0

⎤

⎥⎥⎦ s4s3s2s4s1s2

24
(20)

–2, 5, –4, –2 s4s3s2s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
–1 1 1 –1
–1 1 0 –1
–1 0 1 0

⎤

⎥⎥⎦ s4s2s1s2s4s3

25
(15)

1, –3, –1, 5 s3s2s3s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
0 1 0 –2
–1 1 0 –1
0 1 0 –1

⎤

⎥⎥⎦ s4s2s3s1s2s3

26
(26)

1, 1, 1, –5 s4s2s3s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
0 1 0 –2
1 0 0 –1
0 0 0 –1

⎤

⎥⎥⎦ s4s2s3s1s2s4

27
(7)

2, –5, 2, 4 s2s4s3s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
1 –1 1 –1
1 0 0 –1
1 –1 1 0

⎤

⎥⎥⎦ s4s2s4s3s1s2



Stekolshchik Fixed Point Theory Algorithms Sci Eng         (2023) 2023:15 Page 21 of 45

Table 15 Weyl group D4, level 6, elements 28–29

No Weight Element Matrix Inverse

28
(18)

–1, 3, –5, 1 s3s2s4s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
0 –1 2 0
0 –1 1 0
1 –1 1 0

⎤

⎥⎥⎦ s4s2s4s1s2s3

29
(29)

–1, –1, 5, –1 s4s2s4s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
0 –1 2 0
0 0 1 0
–1 0 1 0

⎤

⎥⎥⎦ s4s2s4s1s2s4

Table 16 Weyl group D4, level 7, elements 0–13

No Weight Element Matrix Inverse

0
(0)

–4, –1, 2, 2 s2s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 –1 1 1
–1 0 0 1
–1 0 1 0

⎤

⎥⎥⎦ s2s1s2s4s3s2s1

1
(2)

–5, 2, –1, 1 s3s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–2 1 0 0
–1 1 0 –1
–1 0 1 0

⎤

⎥⎥⎦ s4s1s2s4s3s2s1

2
(1)

–5, 2, 1, –1 s4s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–2 1 0 0
–1 0 0 1
–1 1 –1 0

⎤

⎥⎥⎦ s3s1s2s4s3s2s1

3
(10)

5, –2, –1, –1 s4s3s2s4s3s2s1

⎡

⎢⎢⎣

–1 1 0 0
–2 1 0 0
–1 1 0 –1
–1 1 –1 0

⎤

⎥⎥⎦ s4s3s1s2s4s3s2

4
(11)

4, –3, –2, 2 s3s2s4s3s2s1s2

⎡

⎢⎢⎣

0 –1 1 1
–1 –1 1 1
0 –1 1 0
–1 0 1 0

⎤

⎥⎥⎦ s2s4s1s2s4s3s2

5
(9)

4, –3, 2, –2 s4s2s4s3s2s1s2

⎡

⎢⎢⎣

0 –1 1 1
–1 –1 1 1
–1 0 0 1
0 –1 0 1

⎤

⎥⎥⎦ s2s3s1s2s4s3s2

6
(20)

3, 1, –3, –3 s4s3s2s4s3s1s2

⎡

⎢⎢⎣

0 –1 1 1
1 –2 1 1
0 –1 1 0
0 –1 0 1

⎤

⎥⎥⎦ s2s4s3s1s2s4s3

7
(12)

–3, 1, –3, 3 s3s2s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 –2 1 1
0 –1 1 0
1 –1 1 0

⎤

⎥⎥⎦ s2s4s3s2s1s2s3

8
(23)

–3, 1, 3, –3 s4s2s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 –2 1 1
1 –1 0 1
0 –1 0 1

⎤

⎥⎥⎦ s2s4s3s2s1s2s4

9
(5)

–2, –3, 2, 4 s2s3s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 –1 1 –1
1 0 0 –1
1 –1 1 0

⎤

⎥⎥⎦ s4s2s4s3s2s1s2

10
(3)

–5, 4, –1, –1 s4s3s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
2 –1 0 0
1 0 0 –1
1 0 –1 0

⎤

⎥⎥⎦ s4s3s2s4s3s2s1

11
(4)

–2, –3, 4, 2 s2s4s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 –1 –1 1
1 –1 0 1
1 0 –1 0

⎤

⎥⎥⎦ s3s2s4s3s2s1s2
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Table 16 (Continued)

No Weight Element Matrix Inverse

12
(7)

3, –5, 3, 1 s2s4s3s2s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
–1 0 –1 1
–1 0 0 1
–1 1 –1 0

⎤

⎥⎥⎦ s3s2s1s2s4s3s2

13
(18)

–1, 4, –1, –5 s4s3s2s3s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
0 –1 0 2
–1 0 0 1
0 –1 0 1

⎤

⎥⎥⎦ s3s2s3s1s2s4s3

Table 17 Weyl group D4, level 7, elements 14–27

No Weight Element Matrix Inverse

14
(14)

2, –1, –4, 2 s3s2s4s3s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
1 –1 –1 1
0 0 –1 0
1 0 –1 0

⎤

⎥⎥⎦ s3s2s4s3s1s2s3

15
(25)

2, –3, 4, –2 s4s2s4s3s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
1 –1 –1 1
1 –1 0 1
0 –1 0 1

⎤

⎥⎥⎦ s3s2s4s3s1s2s4

16
(21)

1, 2, –5, –1 s4s3s2s4s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
0 1 –2 0
0 0 –1 0
–1 1 –1 0

⎤

⎥⎥⎦ s3s2s4s1s2s4s3

17
(17)

–3, 5, –3, –3 s4s3s2s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
–1 2 –1 –1
–1 1 0 –1
–1 1 –1 0

⎤

⎥⎥⎦ s4s3s2s1s2s4s3

18
(13)

–1, –2, –1, 5 s3s2s3s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
0 1 0 –2
–1 1 0 –1
0 1 0 –1

⎤

⎥⎥⎦ s4s3s2s3s1s2s3

19
(24)

–1, 2, 1, –5 s4s2s3s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
0 1 0 –2
1 0 0 –1
0 0 0 –1

⎤

⎥⎥⎦ s4s3s2s3s1s2s4

20
(6)

1, –5, 3, 3 s2s4s3s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
1 0 –1 –1
1 0 0 –1
1 0 –1 0

⎤

⎥⎥⎦ s4s3s2s4s3s1s2

21
(16)

–1, 2, –5, 1 s3s2s4s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
0 1 –2 0
0 0 –1 0
1 0 –1 0

⎤

⎥⎥⎦ s4s3s2s4s1s2s3

22
(27)

–1, –2, 5, –1 s4s2s4s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
0 1 –2 0
0 1 –1 0
–1 1 –1 0

⎤

⎥⎥⎦ s4s3s2s4s1s2s4

23
(8)

3, –5, 1, 3 s2s4s3s2s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
–1 0 1 –1
–1 1 0 –1
–1 0 1 0

⎤

⎥⎥⎦ s4s2s1s2s4s3s2

24
(19)

1, 2, –1, –5 s4s3s2s3s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
0 1 0 –2
–1 1 0 –1
0 0 0 –1

⎤

⎥⎥⎦ s4s2s3s1s2s4s3

25
(15)

2, –3, –2, 4 s3s2s4s3s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
1 –1 1 –1
0 –1 1 0
1 –1 1 0

⎤

⎥⎥⎦ s4s2s4s3s1s2s3
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Table 17 (Continued)

No Weight Element Matrix Inverse

26
(26)

2, –1, 2, –4 s4s2s4s3s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
1 –1 1 –1
1 0 0 –1
0 0 0 –1

⎤

⎥⎥⎦ s4s2s4s3s1s2s4

27
(22)

–1, 4, –5, –1 s4s3s2s4s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
0 –1 2 0
0 –1 1 0
–1 0 1 0

⎤

⎥⎥⎦ s4s2s4s1s2s4s3

Table 18 Weyl group D4, level 8, elements 0–13

No Weight Element Matrix Inverse

0
(4)

–4, 1, –2, 2 s3s2s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 –1 1 1
0 –1 1 0
–1 0 1 0

⎤

⎥⎥⎦ s2s4s1s2s4s3s2s1

1
(2)

–4, 1, 2, –2 s4s2s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 –1 1 1
–1 0 0 1
0 –1 0 1

⎤

⎥⎥⎦ s2s3s1s2s4s3s2s1

2
(1)

–3, –2, 1, 3 s2s3s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 0 1 –1
–1 1 0 –1
–1 0 1 0

⎤

⎥⎥⎦ s4s2s1s2s4s3s2s1

3
(3)

–5, 3, –1, –1 s4s3s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–2 1 0 0
–1 1 0 –1
–1 1 –1 0

⎤

⎥⎥⎦ s4s3s1s2s4s3s2s1

4
(0)

–3, –2, 3, 1 s2s4s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 0 –1 1
–1 0 0 1
–1 1 –1 0

⎤

⎥⎥⎦ s3s2s1s2s4s3s2s1

5
(9)

4, –1, –2, –2 s4s3s2s4s3s2s1s2

⎡

⎢⎢⎣

0 –1 1 1
–1 –1 1 1
0 –1 1 0
0 –1 0 1

⎤

⎥⎥⎦ s2s4s3s1s2s4s3s2

6
(15)

–3, 4, –3, –3 s4s3s2s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 –2 1 1
0 –1 1 0
0 –1 0 1

⎤

⎥⎥⎦ s2s4s3s2s1s2s4s3

7
(13)

–2, –1, –2, 4 s3s2s3s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 –1 1 –1
0 –1 1 0
1 –1 1 0

⎤

⎥⎥⎦ s4s2s4s3s2s1s2s3

8
(21)

–2, 1, 2, –4 s4s2s3s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 –1 1 –1
1 0 0 –1
0 0 0 –1

⎤

⎥⎥⎦ s4s2s4s3s2s1s2s4

9
(5)

–1, –4, 3, 3 s2s4s3s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 0 –1 –1
1 0 0 –1
1 0 –1 0

⎤

⎥⎥⎦ s4s3s2s4s3s2s1s2

10
(12)

–2, 1, –4, 2 s3s2s4s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 –1 –1 1
0 0 –1 0
1 0 –1 0

⎤

⎥⎥⎦ s3s2s4s3s2s1s2s3

11
(20)

–2, –1, 4, –2 s4s2s4s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 –1 –1 1
1 –1 0 1
0 –1 0 1

⎤

⎥⎥⎦ s3s2s4s3s2s1s2s4
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Table 18 (Continued)

No Weight Element Matrix Inverse

12
(10)

3, –2, –3, 1 s3s2s4s3s2s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
–1 0 –1 1
0 0 –1 0
–1 1 –1 0

⎤

⎥⎥⎦ s3s2s4s1s2s4s3s2

13
(7)

3, –4, 3, –1 s4s2s4s3s2s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
–1 0 –1 1
–1 0 0 1
0 –1 0 1

⎤

⎥⎥⎦ s3s2s3s1s2s4s3s2

Table 19 Weyl group D4, level 8, elements 14–22

No Weight Element Matrix Inverse

14
(17)

2, 1, –4, –2 s4s3s2s4s3s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
1 –1 –1 1
0 0 –1 0
0 –1 0 1

⎤

⎥⎥⎦ s3s2s4s3s1s2s4s3

15
(6)

2, –5, 2, 2 s2s4s3s2s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
–1 1 –1 –1
–1 1 0 –1
–1 1 –1 0

⎤

⎥⎥⎦ s4s3s2s1s2s4s3s2

16
(16)

–1, 3, –1, –5 s4s3s2s3s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
0 1 0 –2
–1 1 0 –1
0 0 0 –1

⎤

⎥⎥⎦ s4s3s2s3s1s2s4s3

17
(14)

1, –2, –3, 3 s3s2s4s3s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
1 0 –1 –1
0 0 –1 0
1 0 –1 0

⎤

⎥⎥⎦ s4s3s2s4s3s1s2s3

18
(22)

1, –2, 3, –3 s4s2s4s3s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
1 0 –1 –1
1 0 0 –1
0 0 0 –1

⎤

⎥⎥⎦ s4s3s2s4s3s1s2s4

19
(19)

–1, 3, –5, –1 s4s3s2s4s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
0 1 –2 0
0 0 –1 0
–1 1 –1 0

⎤

⎥⎥⎦ s4s3s2s4s1s2s4s3

20
(11)

3, –4, –1, 3 s3s2s4s3s2s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
–1 0 1 –1
0 –1 1 0
–1 0 1 0

⎤

⎥⎥⎦ s4s2s4s1s2s4s3s2

21
(8)

3, –2, 1, –3 s4s2s4s3s2s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
–1 0 1 –1
–1 1 0 –1
0 0 0 –1

⎤

⎥⎥⎦ s4s2s3s1s2s4s3s2

22
(18)

2, 1, –2, –4 s4s3s2s4s3s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
1 –1 1 –1
0 –1 1 0
0 0 0 –1

⎤

⎥⎥⎦ s4s2s4s3s1s2s4s3
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Table 20 Weyl group D4, level 9, elements 0–13

No Weight Element Matrix Inverse

0
(3)

–4, 3, –2, –2 s4s3s2s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 –1 1 1
0 –1 1 0
0 –1 0 1

⎤

⎥⎥⎦ s2s4s3s1s2s4s3s2s1

1
(5)

–3, –1, –1, 3 s3s2s3s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 0 1 –1
0 –1 1 0
–1 0 1 0

⎤

⎥⎥⎦ s4s2s4s1s2s4s3s2s1

2
(2)

–3, 1, 1, –3 s4s2s3s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 0 1 –1
–1 1 0 –1
0 0 0 –1

⎤

⎥⎥⎦ s4s2s3s1s2s4s3s2s1

3
(0)

–2, –3, 2, 2 s2s4s3s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 1 –1 –1
–1 1 0 –1
–1 1 –1 0

⎤

⎥⎥⎦ s4s3s2s1s2s4s3s2s1

4
(4)

–3, 1, –3, 1 s3s2s4s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 0 –1 1
0 0 –1 0
–1 1 –1 0

⎤

⎥⎥⎦ s3s2s4s1s2s4s3s2s1

5
(1)

–3, –1, 3, –1 s4s2s4s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 0 –1 1
–1 0 0 1
0 –1 0 1

⎤

⎥⎥⎦ s3s2s3s1s2s4s3s2s1

6
(6)

1, –4, 1, 1 s2s4s3s2s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
0 –1 0 0
0 –1 1 0
0 –1 0 1

⎤

⎥⎥⎦ s2s4s3s2s1s2s4s3s2

7
(13)

–2, 3, –2, –4 s4s3s2s3s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 –1 1 –1
0 –1 1 0
0 0 0 –1

⎤

⎥⎥⎦ s4s2s4s3s2s1s2s4s3

8
(11)

–1, –1, –3, 3 s3s2s4s3s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 0 –1 –1
0 0 –1 0
1 0 –1 0

⎤

⎥⎥⎦ s4s3s2s4s3s2s1s2s3

9
(15)

–1, –1, 3, –3 s4s2s4s3s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 0 –1 –1
1 0 0 –1
0 0 0 –1

⎤

⎥⎥⎦ s4s3s2s4s3s2s1s2s4

10
(12)

–2, 3, –4, –2 s4s3s2s4s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 –1 –1 1
0 0 –1 0
0 –1 0 1

⎤

⎥⎥⎦ s3s2s4s3s2s1s2s4s3

11
(8)

3, –1, –3, –1 s4s3s2s4s3s2s1s2s3

⎡

⎢⎢⎣

0 0 –1 1
–1 0 –1 1
0 0 –1 0
0 –1 0 1

⎤

⎥⎥⎦ s3s2s4s3s1s2s4s3s2

12
(10)

2, –3, –2, 2 s3s2s4s3s2s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
–1 1 –1 –1
0 0 –1 0
–1 1 –1 0

⎤

⎥⎥⎦ s4s3s2s4s1s2s4s3s2

13
(7)

2, –3, 2, –2 s4s2s4s3s2s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
–1 1 –1 –1
–1 1 0 –1
0 0 0 –1

⎤

⎥⎥⎦ s4s3s2s3s1s2s4s3s2
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Table 21 Weyl group D4, level 9, elements 14–15

No Weight Element Matrix Inverse

14
(14)

1, 1, –3, –3 s4s3s2s4s3s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
1 0 –1 –1
0 0 –1 0
0 0 0 –1

⎤

⎥⎥⎦ s4s3s2s4s3s1s2s4s3

15
(9)

3, –1, –1, –3 s4s3s2s4s3s2s1s2s4

⎡

⎢⎢⎣

0 0 1 –1
–1 0 1 –1
0 –1 1 0
0 0 0 –1

⎤

⎥⎥⎦ s4s2s4s3s1s2s4s3s2

Table 22 Weyl group D4, level 10, elements 0–8

No Weight Element Matrix Inverse

0
(0)

–1, –3, 1, 1 s2s4s3s2s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
0 –1 0 0
0 –1 1 0
0 –1 0 1

⎤

⎥⎥⎦ s2s4s3s2s1s2s4s3s2s1

1
(3)

–3, 2, –1, –3 s4s3s2s3s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 0 1 –1
0 –1 1 0
0 0 0 –1

⎤

⎥⎥⎦ s4s2s4s3s1s2s4s3s2s1

2
(4)

–2, –1, –2, 2 s3s2s4s3s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 1 –1 –1
0 0 –1 0
–1 1 –1 0

⎤

⎥⎥⎦ s4s3s2s4s1s2s4s3s2s1

3
(1)

–2, –1, 2, –2 s4s2s4s3s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 1 –1 –1
–1 1 0 –1
0 0 0 –1

⎤

⎥⎥⎦ s4s3s2s3s1s2s4s3s2s1

4
(2)

–3, 2, –3, –1 s4s3s2s4s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 0 –1 1
0 0 –1 0
0 –1 0 1

⎤

⎥⎥⎦ s3s2s4s3s1s2s4s3s2s1

5
(5)

1, –3, –1, 1 s3s2s4s3s2s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
0 –1 0 0
0 0 –1 0
0 –1 0 1

⎤

⎥⎥⎦ s3s2s4s3s2s1s2s4s3s2

6
(6)

1, –3, 1, –1] s4s2s4s3s2s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
0 –1 0 0
0 –1 1 0
0 0 0 –1

⎤

⎥⎥⎦ s4s2s4s3s2s1s2s4s3s2

7
(8)

–1, 2, –3, –3 s4s3s2s4s3s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
1 0 –1 –1
0 0 –1 0
0 0 0 –1

⎤

⎥⎥⎦ s4s3s2s4s3s2s1s2s4s3

8
(7)

2, –1, –2, –2 s4s3s2s4s3s2s1s2s4s3

⎡

⎢⎢⎣

0 1 –1 –1
–1 1 –1 –1
0 0 –1 0
0 0 0 –1

⎤

⎥⎥⎦ s4s3s2s4s3s1s2s4s3s2
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Table 23 Weyl group D4, level 11, elements 0–3

No Weight Element Matrix Inverse

0
(0)

–1, –2, –1, 1 s3s2s4s3s2s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
0 –1 0 0
0 0 –1 0
0 –1 0 1

⎤

⎥⎥⎦ s3s2s4s3s2s1s2s4s3s2s1

1
(1)

–1, –2, 1, –1 s4s2s4s3s2s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
0 –1 0 0
0 –1 1 0
0 0 0 –1

⎤

⎥⎥⎦ s4s2s4s3s2s1s2s4s3s2s1

2
(2)

–2, 1, –2, –2 s4s3s2s4s3s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
–1 1 –1 –1
0 0 –1 0
0 0 0 –1

⎤

⎥⎥⎦ s4s3s2s4s3s1s2s4s3s2s1

3
(3)

1, –2, –1, –1 s4s3s2s4s3s2s1s2s4s3s2

⎡

⎢⎢⎣

1 –1 0 0
0 –1 0 0
0 0 –1 0
0 0 0 –1

⎤

⎥⎥⎦ s4s3s2s4s3s2s1s2s4s3s2

Table 24 Weyl group D4, level 12, one element

No Weight Element Matrix Inverse

0
(0)

–1, –1, –1, –1 s4s3s2s4s3s2s1s2s4s3s2s1

⎡

⎢⎢⎣

–1 0 0 0
0 –1 0 0
0 0 –1 0
0 0 0 –1

⎤

⎥⎥⎦ itself
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6 Thirteen conjugacy classes of W(D4)
See Tables 25–37.

Table 25 Weyl group D4, conjugacy class 0, order 1

No in CCL Element Level No in Level

1 e 0 1

Table 26 Weyl group D4, conjugacy class 1, order 2

No in CCL Element Level No in Level

1 s1 1 1
2 s2 1 2
3 s3 1 3
4 s4 1 4
5 s2s1s2 3 6
6 s3s2s3 3 11
7 s4s2s4 3 16
8 s3s2s1s2s3 5 15
9 s4s3s2s4s3 5 23
10 s4s2s1s2s4 5 25
11 s4s3s2s1s2s4s3 7 18
12 s2s4s3s2s1s2s4s3s2 9 7

Table 27 Weyl group D4, conjugacy class 2, order 3

No in CCL Element Level No in Level

1 s2s1 2 0
2 s1s2 2 3
3 s3s2 2 4
4 s4s2 2 5
5 s2s3 2 6
6 s2s4 2 8
7 s3s2s3s1 4 1
8 s4s2s4s1 4 5
9 s3s2s1s2 4 6
10 s4s2s1s2 4 7
11 s2s1s2s3 4 12
12 s3s1s2s3 4 13
13 s4s3s2s3 4 15
14 s3s2s4s3 4 17
15 s4s2s4s3 4 18
16 s2s1s2s4 4 19
17 s4s1s2s4 4 21
18 s4s3s2s4 4 22
19 s4s3s2s4s3s1 6 3
20 s4s3s2s1s2s3 6 13
21 s3s2s1s2s4s3 6 19
22 s4s2s1s2s4s3 6 20
23 s4s3s1s2s4s3 6 22
24 s4s3s2s1s2s4 6 24
25 s4s3s2s4s3s2s1s2 8 5
26 s4s3s2s1s2s4s3s2 8 6
27 s3s2s3s1s2s4s3s2 8 7
28 s2s4s3s1s2s4s3s2 8 9
29 s4s2s4s1s2s4s3s2 8 11
30 s4s2s4s3s2s1s2s3 8 13
31 s2s4s3s2s1s2s4s3 8 15
32 s3s2s4s3s2s1s2s4 8 20
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Table 28 Weyl group D4, conjugacy class 3, order 2

No in CCLElement LevelNo in Level

1 s3s1 2 1
2 s2s3s1s2 4 8
3 s3s2s3s1s2s3 6 14
4 s4s2s3s1s2s4 6 26
5 s4s3s2s3s1s2s4s3 8 16
6 s4s2s4s3s2s1s2s4s3s210 6

Table 29 Weyl group D4, conjugacy class 4, order 2

No in CCL Element Level No in Level

1 s4s1 2 2
2 s2s4s1s2 4 10
3 s4s2s4s1s2s4 6 29
4 s3s2s4s1s2s3 6 17
5 s4s3s2s4s1s2s4s3 8 19
6 s3s2s4s3s2s1s2s4s3s2 10 5

Table 30 Weyl group D4, conjugacy class 5, order 2

No in CCL Element Level No in Level

1 s4s3 2 7
2 s2s4s3s2 4 11
3 s1s2s4s3s2s1 6 0
4 s4s3s2s4s3s2 6 12
5 s4s3s1s2s4s3s2s1 8 3
6 s2s4s3s2s1s2s4s3s2s1 10 0
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Table 31 Weyl group D4, conjugacy class 6, order 4

No in CCL Element Level No in Level

1 s3s2s1 3 0
2 s2s3s1 3 2
3 s3s1s2 3 6
4 s1s2s3 3 9
5 s4s2s4s3s1 5 3
6 s4s3s2s4s1 5 4
7 s3s2s3s1s2 5 6
8 s4s2s3s1s2 5 7
9 s2s3s1s2s3 5 16
10 s4s1s2s4s3 5 21
11 s2s3s1s2s4 5 25
12 s4s3s1s2s4 5 26
13 s3s2s4s3s2s1s2 7 4
14 s3s2s1s2s4s3s2 7 7
15 s2s4s1s2s4s3s2 7 11
16 s2s4s3s2s1s2s3 7 12
17 s4s3s2s3s1s2s3 7 13
18 s3s2s3s1s2s4s3 7 18
19 s4s2s3s1s2s4s3 7 19
20 s4s3s2s3s1s2s4 7 24
21 s4s3s2s3s1s2s4s3s2 9 7
22 s4s2s4s3s1s2s4s3s2 9 9
23 s4s2s4s3s2s1s2s4s3 9 13
24 s4s3s2s4s3s2s1s2s4 9 15

Table 32 Weyl group D4, conjugacy class 7, order 4

No in CCL Element Level No in Level

1 s4s2s1 3 1
2 s2s4s1 3 4
3 s4s1s2 3 7
4 s1s2s4 3 13
5 s4s3s2s3s1 5 1
6 s3s2s4s3s1 5 2
7 s3s2s4s1s2 5 9
8 s4s2s4s1s2 5 10
9 s4s3s1s2s3 5 17
10 s2s4s1s2s3 5 18
11 s3s1s2s4s3 5 20
12 s2s4s1s2s4 5 27
13 s4s2s4s3s2s1s2 7 5
14 s4s2s1s2s4s3s2 7 8
15 s2s3s1s2s4s3s2 7 9
16 s4s3s2s4s1s2s3 7 16
17 s3s2s4s1s2s4s3 7 21
18 s4s2s4s1s2s4s3 7 22
19 s2s4s3s2s1s2s4 7 23
20 s4s3s2s4s1s2s4 7 27
21 s3s2s4s3s1s2s4s3s2 9 8
22 s4s3s2s4s1s2s4s3s2 9 10
23 s4s3s2s4s3s2s1s2s3 9 11
24 s3s2s4s3s2s1s2s4s3 9 12
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Table 33 Weyl group D4, conjugacy class 8, order 2

No in CCL Element Level No in Level

1 s4s3s1 3 3
2 s2s4s3s1s2 5 8
3 s2s1s2s4s3s2s1 7 0
4 s3s2s4s3s1s2s3 7 14
5 s4s2s4s3s1s2s4 7 26
6 s4s2s3s1s2s4s3s2s1 9 2
7 s3s2s4s1s2s4s3s2s1 9 4
8 s4s3s2s4s3s1s2s4s3 9 14
9 s3s2s4s3s2s1s2s4s3s2s1 11 0
10 s4s2s4s3s2s1s2s4s3s2s1 11 1
11 s4s3s2s4s3s1s2s4s3s2s1 11 2
12 s4s3s2s4s3s2s1s2s4s3s2 11 3

Table 34 Weyl group D4, conjugacy class 9, order 4

No in CCL Element Level No in Level

1 s4s3s2 3 8
2 s4s2s3 3 11
3 s2s4s3 3 12
4 s3s2s4 3 14
5 s2s4s3s2s1 5 0
6 s4s3s2s1s2 5 5
7 s1s2s4s3s2 5 11
8 s3s2s4s3s2 5 12
9 s4s2s4s3s2 5 13
10 s4s2s1s2s3 5 15
11 s2s1s2s4s3 5 19
12 s3s2s1s2s4 5 23
13 s3s1s2s4s3s2s1 7 1
14 s4s1s2s4s3s2s1 7 2
15 s4s3s2s4s3s2s1 7 3
16 s4s3s2s4s3s1s2 7 6
17 s4s3s1s2s4s3s2 7 10
18 s4s2s4s3s1s2s3 7 15
19 s2s4s3s1s2s4s3 7 20
20 s3s2s4s3s1s2s4 7 25
21 s4s3s2s1s2s4s3s2s1 9 0
22 s3s2s3s1s2s4s3s2s1 9 1
23 s2s4s3s1s2s4s3s2s1 9 3
24 s4s2s4s1s2s4s3s2s1 9 5
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Table 35 Weyl group D4, conjugacy class 10, order 6

No in CCL Element Level No in Level

1 s4s3s2s1 4 0
2 s4s2s3s1 4 2
3 s2s4s3s1 4 3
4 s3s2s4s1 4 4
5 s4s3s1s2 4 9
6 s4s1s2s3 4 14
7 s1s2s4s3 4 16
8 s3s1s2s4 4 20
9 s2s4s3s2s1s2 6 4
10 s3s2s4s3s1s2 6 6
11 s4s2s4s3s1s2 6 7
12 s2s1s2s4s3s2 6 9
13 s2s4s3s1s2s3 6 16
14 s2s4s3s1s2s4 6 27
15 s3s2s1s2s4s3s2s1 8 0
16 s4s2s1s2s4s3s2s1 8 1
17 s2s3s1s2s4s3s2s1 8 2
18 s2s4s1s2s4s3s2s1 8 4
19 s4s2s3s1s2s4s3s2 8 8
20 s3s2s4s1s2s4s3s2 8 10
21 s3s2s4s3s2s1s2s3 8 12
22 s4s3s2s4s3s1s2s3 8 14
23 s3s2s4s3s1s2s4s3 8 17
24 s4s2s4s3s1s2s4s3 8 18
25 s4s2s4s3s2s1s2s4 8 21
26 s4s3s2s4s3s1s2s4 8 22
27 s4s3s2s3s1s2s4s3s2s1 10 1
28 s3s2s4s3s1s2s4s3s2s1 10 2
29 s4s2s4s3s1s2s4s3s2s1 10 3
30 s4s3s2s4s1s2s4s3s2s1 10 4
31 s4s3s2s4s3s1s2s4s3s2 10 7
32 s4s3s2s4s3s2s1s2s4s3 10 8

Table 36 Weyl group D4, conjugacy class 11, order 4

No in CCL Element Level No in Level

1 s3s2s4s3s2s1 6 1
2 s4s2s4s3s2s1 6 2
3 s4s3s2s3s1s2 6 5
4 s4s3s2s4s1s2 6 8
5 s3s1s2s4s3s2 6 10
6 s4s1s2s4s3s2 6 11
7 s4s2s3s1s2s3 6 15
8 s4s2s4s1s2s3 6 18
9 s2s3s1s2s4s3 6 21
10 s2s4s1s2s4s3 6 23
11 s3s2s3s1s2s4 6 25
12 s3s2s4s1s2s4 6 28

Table 37 Weyl group D4, conjugacy class 12, order 2

No in CCL Element Level No in Level

1 s4s3s2s4s3s2s1s2s4s3s2s1 12 0
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Appendix A: Some properties of weights
This section lists some properties of finite Weyl groups, weights related to Lie algebras
and Weyl groups, as well as some other concepts related to weights.

A.1 Fundamental Weyl chamber
Let Φ be a root system, W be the Weyl group associated to Φ , 
 be the set of the simple
roots, Φ+ (resp. Φ–) be the set of positive (resp. negative) roots, 
 = {α1, . . . ,αl}, and E
be the linear space spanned by roots of 
. For any root α ∈ Φ , let Hα be the hyperplane
{x ∈ E | (α, x) = 0}. There is the finite number of the connected components of

E –
⋃

α∈Φ

Hα .

These components are called the open Weyl chambers. There is the unique chamber C
such that for any ξ ∈ C, the following inequality holds:

(ξ ,αi) > 0 for all αi ∈ 
, (A.1)

where (·, ·) is the Cartan–Killing bilinear form. The unique Weyl chamber C is called the
fundamental Weyl chamber.3

Equation (A.1) is equivalent to each of the following two statements:

(ξ ,α) > 0 for all α ∈ Φ+,

(ξ ,α) < 0 for all α ∈ Φ–.
(A.2)

Theorem A.1 ([2, ch. VI, §1, n◦5, Th. 2])
(i) The Weyl group acts simply-transitively on the Weyl chambers. Thus, the order of the

Weyl group is equal to the number of Weyl chambers.
(ii) Each ξ ∈ E is conjugate to a unique point in the closure C of the fundamental Weyl

chamber (i.e. C is a fundamental domain for W ).

The word “conjugate” means “in the same Weyl group orbit”.

A.2 Dominant weights
For any vectors α,β ∈ Φ , let us define 〈α,β〉 as follows:

〈α,β〉 :=
2(α,β)
(β ,β)

. (A.3)

For the simply-laced Dynkin diagrams, if β is a root, then 〈α,β〉 = (α,β). A weight (resp.
dominant weight) is an element λ ∈ E such that

〈λ,α〉 ∈ Z
(
resp. 〈λ,α〉 ∈ Z and 〈λ,α〉 ≥ 0

)
for all α ∈ 
. (A.4)

3The fundamental domains of usual and affine Weyl groups (Weyl chambers) were first described by E. Cartan in 1927,
[4], see [1, p.62].
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The set of weights � forms a subgroup of E containing the root system Φ , i.e. Φ ⊂
� ⊂ E . The concept of a dominant weight was introduced by Cartan in [3], however his
definition was differ from the definition (A.4), see [6, p. 311].

A.2.1 Partial ordering on the set of weights
Consider two weights μ and λ. We say that μ is higher than λ, and we write μ ≥ λ if μ – λ

is expressible as a linear combination of positive roots with non-negative real coefficients.
This order is only partial.

Proposition A.2 ([2, ch. VI, §1, n◦6, Prop. 18]) The weight λ is dominant if and only if

λ ≥ wλ for any w ∈ W . (A.5)

The set of dominant vectors is denoted by �+. We have

�+ = � ∩ C. (A.6)

Proposition A.3 Any weight is conjugate to unique dominant weight.

For details, see [2, Ch. VI, §1, n◦10].

A.2.2 Fundamental dominant weights
The weights ω̄i satisfying the following relations

〈ω̄i,αj〉 = δij, where i, j ∈ {1, . . . , l} (A.7)

are called fundamental dominant weights. Any weight λ ∈ E can be written as an inte-
gral linear combination of the vectors {ω̄1, . . . , ω̄l}. The basis of the fundamental dominant
weights is dual to the basis of simple roots on E relative to the bilinear form Cartan–
Killing.

A.3 The action of the Weyl group on the the weights
A.3.3 Length l(w)
Each element w in the Weyl group W is the product of reflections si, where

si(x) = x – 〈x,αi〉αi. (A.8)

The minimal number of simple reflections si in the decomposition

w = si1 · · · sin

is called the length of the element w and is denoted by l(w).

Proposition A.4 ([7, p. 1.7, Corollary]) The length of w is equal to the number of positive
roots, which are transformed to negative roots under w.

The reflection si transforms αi to –αi and permutes the other positive roots, then by
Proposition A.4, we have the following
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Theorem A.5 ([7, p. 1.6, Lemma])

l(siw) =

⎧
⎨

⎩
l(w) + 1, if w–1(αi) ∈ Φ+,

l(w) – 1, if w–1(αi) ∈ Φ–.

A.3.4 The element of the maximal length
Proposition A.6 ([2, ch. VI, §1, no6, Corollary 3]) There exists the unique element w0 of
the maximal length in the Weyl group W . Length l(w0) is equal to the number of positive
roots.

A.3.5 The action si on a weight
Let us expand an arbitrary vector λ ∈ E in the basis consisting of all fundamental dominant
weights {ω̄1, . . . , ω̄l}:

λ =
l∑

i=1

miω̄i. (A.9)

Here, (m1, . . . , ml) are the coordinates of the weight λ in the basis {ω̄1, . . . , ω̄l}. By (A.7) we
have mj = 〈λ,αj〉 for any j ∈ {1, . . . , l}. If λ is one of roots, i.e., λ = αj, then

αj =
l∑

i=1

cijω̄i, (A.10)

where cij = 〈αi,αj〉. Let ci = (ci1, . . . , cil) be the ith row of the Cartan matrix (〈αi,αj〉)l
i,j=1. The

vector ci is the root αi in the basis of fundamental weights. Then

si(λ) = λ – 〈λ,αi〉αi = λ – mi(ci1, . . . , cil), i.e.,

si(λ) = (m1 – mici1, . . . , ml – micil).
(A.11)

Equation (A.11) is the main formula of Snow’s algorithm.

A.3.6 Dual bases and the Cartan matrix
The Cartan matrix B = {cij} relates dual bases {ω̄} = {ω̄i}i=1,...,l and {α} = {αi}i=1,...,l as follows:

ω̄i = B–1αi for i = 1, . . . , l, (A.12)

see (A.7), (A.10). In other words, B is the transition matrix from the basis of the funda-
mental weights {ω̄} to the basis of the simple roots {α}.

Let s be a reflection in the basis {α}. Since elements of the Weyl group preserve the
Cartan–Killing bilinear form, for any vectors u, v ∈ E , we have

(su, v) = (u, sv), i.e.,

〈Bsu, v〉 = 〈Bu, sv〉 =
〈tsBu, v

〉
,

(A.13)



Stekolshchik Fixed Point Theory Algorithms Sci Eng         (2023) 2023:15 Page 36 of 45

where ts is the transposed matrix for the reflection matrix s. Then,

Bs = tsB, or BsB–1 = ts. (A.14)

Here, BsB–1 is the reflection s in the basis of {ω̄}, we get the following

Proposition A.7 If s is the reflection matrix in the basis {α}, the transposed matrix ts is
the reflection matrix s in the basis of the fundamental weights {ω̄}.

Let s{ω̄} (resp. s{ᾱ) be the representation of the matrix s in the basis {ω̄} (resp. {ᾱ}). By
Proposition A.7, the action of any reflection s on the column vector v in the basis {ω̄} is as
follows:

s(v){ω̄} = s{ω̄}v{ω̄} = ts{ᾱ}v{ω̄} = t(v̄s{ᾱ}), (A.15)

where v̄ = tv{ω̄} is the row vector in the basis {ω̄}. On the left of (A.15), we have the column
vector. Transpose this vector as follows:

t(s(v){ω̄}
)

= v̄s{ᾱ} = tv{ω̄}s{α}, (A.16)

where the vector on the left and the vector v̄ are row vectors. This means that instead of
using the column vector v{ω̄} and the reflection in the basis {ω̄}, we can use the row vector
tv{ω̄} and the reflection in the basis {α}.

Equation (A.16) is another form of Eq. (A.11), which is the main formula of Snow’s al-
gorithm.

A.4 Representation and weight space
Let g be a Lie algebra over C, and h be a Cartan subalgebra of g (a maximal abelian sub-
algebra). The roots are defined as the nonzero eigenvalues of h acting on g via the adjoint
representation:

α : h−→ C, [h, x] = α(h)x for all h ∈ h, (A.17)

where x ∈ g is a corresponding eigenvector. The roots are considered as linear functionals
on h, they span a real space E in the dual space h∗.

Let V be a representation of g over C (not necessarily adjoint). A weight λ of the repre-
sentation V with the weight space of Vλ is a linear functional on h given as follows:

Vλ :=
{

x ∈ V , h · x = λ(h)x for all h ∈ h
}

(A.18)

A.5 Theorem of highest weight
Let g be a finite-dimensional semisimple complex Lie algebra. A weight λ of a representa-
tion V of g is called a highest weight if μ ≤ λ for every other weight μ of V , see Sect. A.2.1.

In 1913 the theorem of highest weight for representations of simple Lie algebras was
completed by E. Cartan.
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Theorem A.8 (E. Cartan, [3])
(i) If V is a finite-dimensional irreducible representation of g, then V has a unique

highest weight, and this highest weight is dominant integral.
(ii) If two finite-dimensional irreducible representations have the same highest weight,

they are isomorphic.
(iii) For each dominant integral weight λ, there exists a finite-dimensional irreducible

representation with highest weight λ.

A.6 Fundamental weights in the case D4

The dependencies of simple roots {α1,α2,α3,α4} and elements of the canonical basis
{e1, e2, e3, e4} are as follows:

α1 = e1 – e2, α2 = e2 – e3, α3 = e3 – e4, α4 = e3 + e4,

e1 = α1 + α2 +
α3 + α4

2
, e2 = α2 +

α3 + α4

2
,

e3 =
α3 + α4

2
, e4 =

α4 – α4

2
.

(A.19)

By [2, Table IV], the fundamental weights {ω̄1, ω̄2, ω̄3, ω̄4} can be calculated by the fol-
lowing formulas:

ω̄1 = e1 = α1 + α2 +
α3 + α4

2
,

ω̄2 = e1 + e2 = a1 + 2α2 + α3 + α4,

ω̄3 =
1
2

(e1 + e2 + e3 – e4) =
1
2

(a1 + 2α2 + 2α3 + α4),

ω̄4 =
1
2

(e1 + e2 + e3 + e4) =
1
2

(a1 + 2α2 + α3 + 2α4).

(A.20)

Let B denote the Cartan matrix. Then formulas (A.20) can also be obtained using the
inverse of Cartan matrix B–1 as follows:

ω̄i = B–1αi, (A.21)

see [2, Ch. VI, (14)]. For the case D4:

B =

⎡

⎢⎢⎢⎣

2 –1 0 0
–1 –2 –1 –1
0 –1 2 0
0 –1 0 2

⎤

⎥⎥⎥⎦ , B–1 =

⎡

⎢⎢⎢⎣

1 1 1/2 1/2
1 2 1 1

1/2 1 1 1/2
1/2 1 1/2 1

⎤

⎥⎥⎥⎦ (A.22)

Appendix B: The Python implementation
B.7 Root system, generators and number of levels
The file below (reflections_D4.py) contains information related to the current root system:
reflections, the Cartan matrix and number of levels. You can change to a different root
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system only by modifying this file. The root system is given as string “D4”, “B5”, “E6”, etc.
The generators of the Weyl group are given as the matrices of the faithful representation.
The number of levels is equal to the number of positive roots plus one, see Proposition
(A.4).

B.8 Data structure
The class Element contains all the information related to the given element (and its in-
verse) of the Weyl group. Consider, for example, the first element in Table (13)

s1s2s4s3s2s1. (B.1)
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The name of the element (B.1) in the class is the following string:

s1.s2.s4.s3.s2.s1. (B.2)

The information added during the extended Snow’s algorithm is the name of the inverse
element, its matrix, and its location in “level”. This information is needed to calculate con-
jugacy classes.

B.9 Calculation of all levels
This section contains the main implementation file of the extended Snow’s algorithm, in-
cluding the search for inverse elements. To move to another root system, you need to
change the inclusion from reflections_D4 to the appropriate one, see Sect. B.7.
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B.10 Sample output: file containing one level

For the root system D4, we get 13 files corresponding to 13 levels. Here is the file containing

level 2 consisting of 9 elements.
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Appendix C: Procedure for obtaining CCLs
This section describes an example algorithm (using pseudocode) for obtaining CCLs. This
algorithm uses information about the inverse elements found by ESA.

First, read all elements of all levels into 2-dimensional list ‘list_of_levels’. Add to each
element information about its inverse element.

Further, create a dictionary ‘dictAllElems’ containing information on each element. The
Python dictionary used here is similar to the dictionary in ESA, see Sect. 3.2.

If some element is not yet included in any CCL (“elem.ccl” is –1), then a new conjugacy
class “oneCCL” is created. Each candidate to be included in “oneCCL” is checked to see if it
has been included before. The function “createCCL” is executed in a loop for all elements
not yet covered.
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