
Fixed Point Theory and Algorithms
for Sciences and Engineering

Belhenniche et al. Fixed Point Theory Algorithms Sci Eng         (2022) 2022:24 
https://doi.org/10.1186/s13663-022-00736-5

R E S E A R C H Open Access

Solving nonlinear and dynamic
programming equations on extended
b-metric spaces with the fixed-point
technique
Abdelkader Belhenniche1,2*, Liliana Guran3, Sfya Benahmed4 and Fernando Lobo Pereira2ˆ

In memory of Prof. Fernando Lobo Pereira

*Correspondence:
belhenniche@fe.up.pt
1École Supérieure de Commerce,
Laboratoire des Études Pratiques en
Sciences de Gestion et Sciences
Commerciales, 42003 Kolea, Tipaza,
Algeria
2SYSTEC, Faculty of Engineering and
Institute for Systems and Robotics,
Porto University, Rua Dr. Roberto
Frias s/n, 4200-465, Porto, Portugal
Full list of author information is
available at the end of the article
ˆDeceased

Abstract
In this article, we present an approach to solve a wide range of nonlinear equations
formulated in extended b-metric spaces based on a new fixed-point theorem on
these spaces. This research effort was motivated by challenges arising in solving
pattern problems efficiently that can not be addressed by using standard metric
spaces. Our approach relies on a novel common fixed-point theorem for Ćirić-type
operators on extended b-metric spaces requiring only very weak assumptions that
we present and derive in this article. The proposed approach is illustrated by
applications asserting the existence and uniqueness of the solutions to Bellman
equations, Volterra integral equations, and fractional differential equations formulated
in extended b-metric spaces. Moreover, the obtained results provide general
constructive recursive procedures to solve the above types of nonlinear equations.

Keywords: Single-valued mappings; Extended b-metric spaces; Common fixed
point; Nonlinear integral equations; Fractional differential equations system; Bellman’s
equation

1 Introduction
This article concerns generalized contractive mappings of Ćirić type in extended b-metric
spaces, and, our main result concerns the existence of a common fixed point in this con-
text. The relevance of this result is that it can be applied to address practical problems
whose formulation is not possible in the usual metric spaces and may even involve dis-
continuous operators.

One important general class of problems consists in, for example, reinforcement learn-
ing iterative schemes for optimal control problems with state constraints for which the
value function is merely lower semicontinuous. This has been addressed in [7], extending
the applicability of well-known dynamic programming results for optimal control [9–12],
in which fixed-point theory-based methods were used. Given the wide range of appli-
cations, there has been an intense research effort in extending the well-known Banach
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Figure 1 Matching pattern for which the triangle inequality does not hold but the relaxed triangle inequality
does

contraction principle to various generalized metric spaces and classes of contractive op-
erators, [1, 3, 14, 16, 23, 41, 47].

A significant application challenge motivating the research reported in this article con-
cerns the problem of optimally managing the storage and retrieval of data, notably, digital
images from databases by using the QBIC (“Query by Image Content”) system, [37]. The
key difficulty is to define a mathematical framework that enables the optimization of the
performance of this class of systems. A comparison of methods on how well the human
perceptual differences are matched is provided in [45], and, in [19], a nonlinear elastic
matching (NEM) distance measure is introduced. However, this measure does not sat-
isfy either the triangle inequality, or the relaxed triangle inequality property. In order to
address this difficulty, a revised version of NEM, designated by NEMr , was designed by
[38], and it is currently widely used in the QBIC systems. Essentially, NEMr consists in
stretching r times the NEM distance, and adding it to the distance itself so that the two
boundaries are matched. Of crucial relevance, it satisfies the relaxed triangle inequality
for any r > 0 and bounded set S. For a clearer understanding, just consider the example
depicted in Fig. 1. It is clear that while the distance from the Girl to the TV, and the one
from the TV to the Robot are small, the distance from the Girl to the Robot is large, and
such that NEM(Girl, TV ) + NEM(TV , Robot) < NEM(Girl, Robot).

Thus, it makes sense to apply NEMr measure that is a weaker form of the NEM distance,
and satisfies the relaxed triangle inequality: NEMr(Girl, Robot) ≤ c(NEMr(Girl, TV ) +
NEMr(TV , Robot)), for some constant c. Clearly, this is a context for which it is critical to
consider a b-metric space, which was further exploited in many works. In [25], the authors
computed the form dissimilarity ratio of a given image with respect to dataset samples in
the IBM QBIC database system, and devised schemes to retrieve the image with the closest
shape. Since then, many works concerned the calculation of the ratio for other dissimilar-
ities emerged (see, e.g., [2, 48]), and were further extended to exploit the relaxed triangle
inequality in order to increase the efficiency of algorithms solving the traveling-salesman
problem (TSP).

In [24], further extension of the relaxed triangle inequality coefficient to address the en-
tire family of dissimilarities was developed by using supplementary information enclosed
in the boundary matching between two shapes, i.e., in addition to the NEMr distance ob-
tained from the boundary matching. Now, c becomes a function, and the measure used
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for the distance between shapes in QBIC system turning the space of shapes into an ex-
tended b-metric space. Thus, the amount of stretching required is the extra information
leading to consider the ratio of the triangle inequality as a function that is weaker than the
addressed by NEMr . This measure is denoted by NEMσ (xi ,yj), where σ : X × X → [0, +∞).
The practical relevance of this measure is that it can be used even in shapes that have
variant sample points enabling us to consider distances between two shapes that do not
depend on the starting points on the boundaries of two shapes, and it satisfies the relaxed
triangle inequality; that is, for all x, y, z ∈ X,

NEMσ (x,z) ≤ θ (x, z)(NEMσ (x,y) + NEMσ (y,z)).

This means that, if the function θ (xi, yi) depends on the length of the sequences A, B, C,
then the number of sample points varies from shape to shape.

Let us consider Fig. 1 again. If the girl starts moving with random velocity, if someone
controls the TV remotely, and the robot is made to move in the same direction with ran-
dom velocity, then:

1 As the three shapes are approaching and moving away at random speeds from one
another, then they do not depend on the starting point in the boundaries of two
shapes.

2 The relaxed triangle inequality holds here but the ratio this time is a function θ (·, ·)
that depends on the element x, y, z of the sequences A, B, C, respectively, and the
velocities of the shapes themselves.

3 The supplementary information required to perform the required extent of stretching
is very large compared with the previous one, thus we consider a function σ (·, ·)
instead of r.

Moreover, the consideration of extended b-metric spaces raises technical challenges
inherent to the fact that, in general, they are non-Hausdorff spaces where examples of
convergent sequences with distinct limits and of compact subsets whose intersection is
not compact, can be found. Recall that the statements “convergent sequences have single
limits” and “the intersection of compact subsets is compact” are both valid in Hausdorff
spaces.

This article is organized as follows. In Section, 2, concepts and results for b-metric, and
extended b-metric spaces are presented. Then, in Sect. 3, the main results of this article,
the existence of common fixed points for Ćirić operators, are presented and proved. These
results will be applied to show the existence of solution to three quite different types of
equations. In Sect. 4, Volterra-type integral equations are considered. The existence of
a common solution for a system of nonlinear fractional differential equations system is
shown in Sect. 5. In Sect. 6, the existence of a solution to a very general Bellman equation
is shown. Finally, in Sect. 7 some brief conclusions and prospective research are outlined.

2 Preliminary concepts and results
The well-known Banach contraction principle, states that if (X, d) is a complete metric
space, and T : X → X is a mapping satisfying

d
(
T(x), T(y)

) ≤ σd(x, y), (2.1)
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for some σ ∈ (0, 1) and for all x, y ∈ X, then T has a unique fixed point x∗, and the sequence
{xn} generated by the iterative process xn+1 = Txn converges to x∗ for some x∗ ∈ X.

A generalized class of contractive mappings was first introduced in the context of metric
spaces by Ćirić in [18]. A self-map T : X → X on a metric space (X, d) is said to be a Ćirić
mapping if, for some σ ∈ (0, 1), it satisfies the following inequality, for all x, and y in X,

d(Tx, Ty) ≤ σ max

{
d(x, y), d(x, Tx), d(y, Ty),

1
2
(
d(x, Ty) + d(y, Tx)

)
}

. (2.2)

To see the relevance of this extension, just consider the following very simple example
of a Ćirić contractive mapping that it is not a contraction. Let T : X → X, defined by

Tx =

⎧
⎨

⎩

3x
5 for x ∈ X1,

x
8 for x ∈ X2,

(2.3)

where:

X1 =
{

m
n

: m = 0, 1, 3, 9, . . . ; n = 1, 4, . . . 3k + 1, . . .
}

,

X2 =
{

m
n

: m = 1, 3, 9, 27, . . . ; n = 2, 5, . . . , 3k + 2, . . .
}

and X = X1 ∪ X2. The mapping T is Ćirić with σ = 3
5 . Indeed, if both x, and y are in X1 or

in X2. Then,
if x > 5

24 y, then d(Tx, Ty) = 3
5 |x – 5

24 y| ≤ 3
5 |x – 1

8 y| = 3
5 d(x, Ty), and

if x > 5
24 y, then d(Tx, Ty) = 3

5 | 5
24 y – x| ≤ 3

5 |y – x| = 3
5 d(x, y).

Therefore, T satisfies the condition:

d(Tx, Ty) ≤ 3
5

max
{

d(x, y), d(x, Ty), d(y, Tx)
}

and, hence, (2.2).
To show that T is not a Banach contraction on X, we just produce a counter example:

Let x = 1, and y = 1
2 . Then, we have d(x, y) = |1 – 1

2 |, and also d(Tx, Ty) = 43
80 . Thus, we

obtain d(Tx, Ty) = 43
80 > σ 1

2 , for any σ ∈ (0, 1). Hence, the Banach contraction is obviously
not satisfied.

A Ćirić mapping does not need to be continuous in general, but it is always continuous
at a fixed point.

The notion of b-metric was introduced in [6, 20] to address problems formulated in
spaces whose associated notion of metric requires a relaxed version of the triangle in-
equality. In these, and other articles (see, for example, [6, 17, 21, 27, 33, 36]), fixed-point
theorems have been proved, and applications have been considered.

Let us define some notation, and recall definitions that will play a key role in the deriva-
tion of our results.

Definition 2.1 ([6, 21]) Let X be a nonempty set, and let s ≥ 1 be a given real number.
A functional d : X × X → [0,∞) is said to be a b-metric if the following conditions are
satisfied:
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1 d(x, y) = 0 if and only if x = y;
2 d(x, y) = d(y, x);
3 d(x, z) ≤ s[d(x, y) + d(y, z)];

for all x, y, z ∈ X. A pair (X, d) is called a b-metric space.

Example 2.2 ([43]) Let (X, d) be a metric space, and ρ(x, y) = (d(x, y))p, where p ≥ 1 is a
real number. Then, (X,ρ) is a b-metric space with s = 2p–1.

It is clear that a b-metric space becomes a metric space if we take s = 1. This shows
clearly that the class of b-metric spaces is larger than that of metric spaces.

In [28], Kamran and coauthors introduced the concept of an extended b-metric space
that generalizes the concept of a b-metric space. Later, Kiran et. al. discussed in [32] few
problems for the case of multivalued operators in extended b-metric space.

Definition 2.3 Let X be a nonempty, and θ : X × X → [1, +∞). A function bθ : X × X →
[0, +∞) is an extended b-metric if, for all x, y, z ∈ X, it satisfies:

1) bθ (x, y) = 0 if and only if x = y;
2) bθ (x, y) = bθ (y, x);
3) bθ (x, z) ≤ θ (x, z)[bθ (x, y) + bθ (y, z)].

The pair (X, bθ ) is called an extended b-metric space.
Denote the open ball (the closed ball, respectively) of radius r > 0 about x as the set:

Br(x) =
{

x ∈ X : bθ (x, y) < r
}

,
(
Br[x] =

{
x ∈ X : bθ (x, y) ≤ r

})
.

Remark 2.4 If θ (x, y) = s for s ≥ 1, then (X, bθ ) satisfies the definition of a b-metric space.

Example 2.5 Let X = [0, +∞), and mappings bθ and θ with θ : X × X → [1, +∞), defined
by bθ (x, y) = (x – y)2 and θ (x, y) = x + y + 2. Then, (X, bθ ) is an extended b-metric space.

Example 2.6 Let X = C([a, b],R) be the space of all continuous real-valued functions de-
fined on [a, b]. Let bθ (x, y) = supt∈[a,b]{|x(t) – y(t)|2}, and θ : X × X → [1, +∞) defined by
θ (x, y) := |x(t)| + |y(t)| + 2, then (X, bθ ) is a complete extended b-metric space.

Definition 2.7 Let (X, bθ ) be an extended b-metric space.
(i) A sequence {xn}n∈N in X converges to x ∈ X if, for every ε > 0, there exists N = N(ε) ∈

N such that

bθ (xn, x) < ε

for all n ≥ N . Alternatively, we may write limn→∞ xn = x.
(ii) A sequence {xn}n∈N in X is Cauchy, if for every ε > 0, there exists N = N(ε) ∈N such

that

bθ (xm, xn) < ε,

for all m, n ≥ N .

Definition 2.8 An extended b-metric space (X, bθ ) is complete if every Cauchy sequence
in X is convergent.
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An extended b-metric space is not necessarily Hausdorff. Indeed, let us consider the
following example:

Example 2.9 Let X = [0, +∞), θ : X ×X → [1, +∞), bθ (x, y) = (x – y)2, and θ (x, y) = x + y + 2.
Clearly, (X, bθ ) is an extended b-metric space. Moreover, it is not Hausdorff since there
does not exist r, r′ > 0 such that:

Br(x) ∩ Br′ (y) = ∅.

Indeed, we have Br(x) ⊂ [0,
√

r + |z|), and Br′ (x) ⊂ [0,
√

r′ + |z′|). Thus,

Br(x) ∩ Br′ (y) �= ∅ ∀z, z′ ∈ X.

3 Common fixed points for Ćirić-type operators
First, let us recall some lemmas given in [36] for the case of extended b-metric spaces,
which will be useful in proving our first common fixed-point result.

Lemma 3.1 ([36]) For every sequence {xn}n∈N of elements from an extended b-metric space
(X, bθ ), the inequality

bθ (x0, xk) ≤
k–1∑

i=0

bθ (xi, xi+1)
i∏

l=0

θ (xl, xk)

holds for every k ∈N.

Lemma 3.2 ([36]) Every sequence {xn}n∈N of elements from an extended b-metric space
(X, bθ ), satisfying the property

∃γ ∈ [0, 1) such that bθ (xn+1, xn) ≤ γ bθ (xn, xn–1) for every n ∈N,

is a Cauchy sequence.

Now, we present the main result of our paper, a common fixed-point result for Ćirić-type
operators in the case of extended b-metric spaces.

Theorem 3.3 Let (X, bθ ) be a complete extended b-metric space such that bθ is continuous
and let F1, F2 : X → X be two self-operators such that

bθ (F1x, F2y) (3.1)

≤ γ max

{
bθ (x, y), bθ (x, F1x), bθ (y, F2y),

1
2
(
bθ (x, F2y) + bθ (y, F1x)

)}

for all x, y ∈ X, where 0 < γ < 1, is such that, for each x0 ∈ X, and any convergent sequence
{xn},

γ lim
n,m→+∞ θ (xn, xm) < 1.

Then, the operators F1, and F2 have a unique common fixed point.
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Remark 3.4 This result is very general since it applies to a very large class of operators
as continuity is not required. Examples of such operators appear, for example, in optimal
control problem with state constraints for which the value function is only lower semi-
continuous.

Remark 3.5 This result may, with a simple recursive argument, be easily generalized for
any finite set of operators {Fi : i = 1 . . . , N}, with N ∈N of operators.

The proof is organized in two stages. In the first stage we assume that the operators F1,
and F2 are continuous, while, in a second stage, we lift this assumption. Given the interest
in its own right of the result in the first stage, we explicitly formalize it in this article.

Theorem 3.6 Let the space (X, bθ ), and the operators F1, and F2 be as in Theorem 3.3.
Moreover, assume that F1 and F2 are continuous.

Then, the operators F1, and F2 have a unique common fixed point.

Proof Let x0 be an arbitrary point in X, and define a sequence {xn} as follows

x2n+1 = F1x2n, and x2n+2 = F2x2n+1, n = 0, 1, 2, . . . . (3.2)

Then, by (3.1) and (3.2), we obtain

bθ (x2n+1, x2n+2) = bθ (F1x2n, F2x2n+1)

≤ γ max

{
bθ (x2n, x2n+1), bθ (x2n, F1x2n), bθ (x2n+1, F2x2n+1),

1
2
(
bθ (x2n, F2x2n+1) + bθ (x2n+1, F1x2n)

)
}

≤ γ max

{
bθ (x2n, x2n+1), bθ (x2n, x2n+1), bθ (x2n+1, x2n+2),

1
2
(
bθ (x2n, x2n+2) + bθ (x2n+1, x2n+1)

)}

= γ max

{
bθ (x2n, x2n+1), bθ (x2n+1, x2n+2),

1
2

bθ (x2n, x2n+2)
}

.

The following cases can be considered:
• Case I.

If max{bθ (x2n, x2n+1), bθ (x2n+1, x2n+2), 1
2 bθ (x2n, x2n+2)} = bθ (x2n+1, x2n+2), then we have

bθ (x2n+1, x2n+2) ≤ γ bθ (x2n+1, x2n+2).

This entails that γ ≥ 1 and, hence, a contradiction.
• Case II.

If max{bθ (x2n, x2n+1), bθ (x2n+1, x2n+2), 1
2 bθ (x2n, x2n+2)} = bθ (x2n, x2n+1), then we have

bθ (x2n+1, x2n+2) ≤ γ bθ (x2n, x2n+1). (3.3)
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For the next step we have

bθ (x2n+2, x2n+3)

≤ γ max

{
bθ (x2n+1, x2n+2), bθ (x2n+2, x2n+3),

1
2

bθ (x2n+1, x2n+3)
}

.

Then, we have to consider the following cases:
– Case IIa.

bθ (x2n+2, x2n+3) ≤ γ bθ (x2n+2, x2n+3),

which implies γ ≥ 1, and, thus, a contradiction.
– Case IIb.

bθ (x2n+2, x2n+3) ≤ γ bθ (x2n+1, x2n+2). (3.4)

Then, from (3.3) and (3.4), for all n ∈N, we obtain

bθ (xn+1, xn+2) ≤ γ bθ (xn, xn+1).

Thus, the conditions of Lemma 3.2 hold for all terms of the sequence {xn}n∈N
and, hence, the generated sequence is Cauchy.

– Case IIc

bθ (x2n+2, x2n+3) ≤ γ
1
2

bθ (x2n+1, x2n+3),

1
2

bθ (x2n+1, x2n+3) ≤ 1
2
θ (x2n+1, x2n+3)

(
bθ (x2n+1, x2n+2)

+ bθ (x2n+2, x2n+3)
)
.

In this case, we obtain

bθ (x2n+2, x2n+3) ≤ θ (x2n+1, x2n+3)γ
2

(
bθ (x2n+1, x2n+2)

+ bθ (x2n+2, x2n+3)
)
,

and, hence,

(
1 –

θ (x2n+1, x2n+3)γ
2

)
bθ (x2n+2, x2n+3)

≤ γ θ (x2n+1, x2n+3)
2

bθ (x2n+1, x2n+2).

Thus, we conclude that

bθ (x2n+2, x2n+3) ≤ γ θ (x2n+1, x2n+3)
2 – γ θ (x2n+1, x2n+3)

bθ (x2n+1, x2n+2). (3.5)
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Thus, from (3.3) and (3.5), it follows that bθ (xn+1, xn+2) ≤ ηbθ (xn, xn+1), where
η := max{ γ θ (xn ,xn+2)

2–γ θ (xn ,xn+2) ,γ }. Now, we show that there exists Nη ∈N such that
η = η(Nη) < 1, for all n > Nη .

Since γ limn,m→+∞ θ (xn, xm) < 1, we have 2 – γ limn,m→∞ θ (xn, xm) > 1. From this,
it follows that

γ lim
n,m→+∞ θ (xn, xm) ≤ 2 – γ lim

n,m→+∞ θ (xn, xm),

and, thus, η < 1. By applying Lemma 3.2 we conclude that {xn}n∈N is a Cauchy
sequence.

• Case III.
If max{bθ (x2n, x2n+1), bθ (x2n+1, x2n+2), 1

2 bθ (x2n, x2n+2)} = 1
2 bθ (x2n, x2n+2), then we have

1
2

bθ (x2n, x2n+2) ≤ 1
2

bθ (x2n, x2n+2) (3.6)

≤ 1
2
θ (x2n, x2n+2)

(
bθ (x2n, x2n+1) + bθ (x2n+1, x2n+2)

)
.

In this case, we obtain

bθ (x2n+1, x2n+2) ≤ θ (x2n, x2n+2)γ
2

(
bθ (x2n, x2n+1) + bθ (x2n+1, x2n+2)

)
,

and, hence,

(
1 –

θ (x2n, x2n+2)γ
2

)
bθ (x2n+1, x2n+2) ≤ γ θ (x2n, x2n+2)

2
bθ (x2n, x2n+1).

Thus, we conclude that

bθ (x2n+1, x2n+2) ≤ γ θ (x2n, x2n+2)
2 – γ θ (x2n, x2n+2)

bθ (x2n, x2n+1). (3.7)

For the next step, we obtain

bθ (x2n+2, x2n+3)

≤ γ max

{
bθ (x2n+1, x2n+2), bθ (x2n+2, x2n+3),

1
2

bθ (x2n+1, x2n+3)
}

.

Then, we have three cases:
– Case IIIa.

bθ (x2n+2, x2n+3) ≤ γ bθ (x2n+2, x2n+3).

This leads to γ ≥ 1 and, thus, a contradiction.
– Case IIIb.

bθ (x2n+2, x2n+3) ≤ γ bθ (x2n+1, x2n+2). (3.8)
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Then, by (3.7) and (3.3) it follows that

bθ (xn+1, xn+2) ≤ η(n)bθ (xn, xn+1),

where η(n) is defined by η(n) := γ θ (xn ,xn+2)
2–γ θ (xn,xn+2) . Thus, the conditions of Lemma 3.2

hold for all terms of the sequence {xn}n∈N and, hence, the generated sequence is
Cauchy.

– Case IIIc

bθ (x2n+2, x2n+3) ≤ γ
1
2

bθ (x2n+1, x2n+3).

After simple calculations we obtain:

bθ (x2n+2, x2n+3) ≤ γ θ (x2n+1, x2n+3)
2 – γ θ (x2n+1, x2n+3)

bθ (x2n+1, x2n+2). (3.9)

By (3.7) and (3.9), it follows that bθ (xn+1, xn+2) ≤ ηbθ (xn, xn+1), where

0 < η(n) :=
γ θ (xn, xn+2)

2 – γ θ (xn, xn+2)
< 1.

By applying Lemma 3.2, we conclude that {xn}n∈N is a Cauchy sequence.
From the above, we have that, for all the three cases, {xn}n∈N is a Cauchy sequence. Since

X is complete, there exists x∗ ∈ X such that bθ (xn, x∗) → 0 as n → ∞. Then, it follows that
bθ (x2n, x∗) → 0 as n → ∞.

From the continuity of F1, we have that x2n+1 = F1x2n → F1x∗ as n → ∞ and, from the
uniqueness of the limit, we conclude that x∗ = F1x∗.

At the same time, we have bθ (x2n+1, x∗) → 0 as n → ∞. From the continuity of F2, it
follows that x2n+2 = F2x2n+1 → F2x∗ as n → ∞ and, from the uniqueness of the limit, we
obtain x∗ = F2x∗. Thus, we conclude that x∗ is a common fixed point of the pair (F1, F2).

It remains to show the uniqueness of x∗. Assume that y∗ ∈ X is another common fixed
point for the pair (F1, F2). Then,

bθ

(
x∗, y∗)

= bθ

(
F1x∗, F2y∗)

≤ γ max

{
bθ

(
x∗, y∗), bθ

(
x∗, F1x∗), bθ

(
y∗, F2y∗),

1
2
(
bθ

(
x∗, F2y∗) + bθ

(
y∗, F1x∗))

}

≤ γ max

{
bθ

(
x∗, y∗), bθ

(
x∗, x∗), bθ

(
y∗, y∗),

1
2
(
bθ

(
x∗, y∗) + bθ

(
y∗, x∗))

}

= γ bθ

(
x∗, y∗).

This implies that x∗ = y∗. The proof is complete. �

Now, by using Theorem 3.6, we proceed to complete the proof of Theorem 3.3 by drop-
ping the continuity assumption of the operators F1 and F2.
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Proof Let the Cauchy sequence {xn}n∈N be constructed as in Theorem 3.3. Since X is com-
plete, there exists x∗ ∈ X such that bθ (xn, x∗) → 0 as n → ∞.

Since F1 and F2 are not continuous let us assume that bθ (x∗, F1x∗) = r > 0. Then, we may
write the following estimates

r = bθ

(
x∗, F1x∗)

≤ θ
(
x∗, F1x∗)(bθ

(
x∗, x2k+2

)
+ bθ

(
x2k+2, F1x∗))

≤ θ
(
x∗, F1x∗)bθ

(
x∗, x2k+2

)
+ θ

(
x∗, Sx∗)bθ

(
F2x2k+1, F1x∗)

≤ θ
(
x∗, F1x∗)bθ

(
x∗, x2k+2

)
+ θ

(
x∗, F1x∗)γ max

{
bθ

(
x2k+1, x∗), bθ (x2k+1, F2x2k+1),

bθ

(
x∗, F1x∗),

1
2
(
bθ

(
x2k+1, F1x∗) + bθ

(
x∗, F2x2k+1

))}

≤ θ
(
x∗, F1x∗)bθ

(
x∗, x2k+2

)
+ θ

(
x∗, F1x∗)γ max

{
bθ

(
x2k+1, x∗), bθ (x2k+1, x2k+2),

bθ

(
x∗, F1x∗),

1
2
(
bθ

(
x2k+1, F1x∗) + bθ

(
x∗, x2k+2

))
}

≤ θ
(
x∗, F1x∗)bθ

(
x∗, x2k+2

)
+ γ θ

(
x∗, F1x∗)bθ

(
x∗, F1x∗)

≤ θ
(
x∗, F1x∗)bθ

(
x∗, xk+2

)
+ θ

(
x∗, F1x∗)γ r.

From the last inequality we obtain

r ≤ θ
(
x∗, F1x∗)(bθ

(
x∗, x2k+2

)
+ γ r

)
.

Since this inequality has to hold for all situations, by considering θ (x∗, F1x∗) = 1 and
limk→∞ bθ (x∗, x2k+2) = 0, it follows that γ ≥ 1 and, hence, a contradiction. Then, we have
x∗ = F1x∗.

In the same way, we obtain x∗ = F2x∗. Hence, x∗ is a common fixed point for the pair
(F1, F2). For the uniqueness of the common fixed point x∗, we use arguments similar to
those in the proof of Theorem 3.3. �

If we take F1 = F2 = F we obtain the following generalization of Ćirić operators in an
extended b-metric space.

Theorem 3.7 Let (X, bθ ) be a complete extended b-metric space such that bθ is continuous
and F : X → X is a continuous mapping satisfying

bθ (Fx, Fy) ≤ γ max

{
bθ (x, y), bθ (x, Fx), bθ (y, Fy),

1
2
(
bθ (x, Fy) + bθ (y, Fx)

)}
, (3.10)

for all x, y ∈ X, where 0 < γ < 1, and, for each x0 ∈ X, γ limn,m→+∞ θ (xn, xm) < 1.
Then, F has a unique fixed point.

Let us give now an illustrative example for our results.
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Example 3.8 Let X = [0,∞), and define bθ : X × X →R, and θ : X × X → [1,∞) by:

bθ (x, y) := (x – y)2, θ (x, y) := x + y + 1.

Then, (X, bθ ) is a complete extended b-metric space.
Define F1 and F2 : X → X by F1x = x

2 , F2x = x
4 . We have

bθ (F1x, F2y) = bθ

(
x
2

,
y
4

)
=

(
x
2

–
y
4

)2

=
x2

4
+

y2

16
–

xy
4

.

Define M(x, y) := max{bθ (x, y), bθ (x, F1x), bθ (y, F2y), 1
2 (bθ (x, F2y)+bθ (y, F1x))}. Since we have

1
2 (bθ (x, F2y) + bθ (y, F1x)) = 5x2

8 + 17y2

32 – 3xy
4 , we may write

bθ (F1x, F2y) =
x2

4
+

y2

16
–

xy
4

=
1
2

(
x2

2
+

y2

8
–

xy
2

)

≤ 1
2

(
1
2
(
bθ (x, F2y) + bθ (y, F1x)

)
)

≤ 1
2

M(x, y).

Since, we also have 1
23n x0 = x2n, and 1

23n+1 x0 = x2n+1, we obtain

lim
n,m→∞ θ (xn, xm) = lim

n,m→∞ θ

(
x0

23n +
x0

23m + 1
)

= 1.

Therefore, all conditions of Theorem 3.3 are satisfied. Hence, 0 is a common fixed point
for F1 and F2.

4 Existence of a solution for Volterra-type integral equations
The theory of integral equations has an important place in Applied Mathematics. Initiated
in the nineteenth century, it underwent a rapid expansion in the last century in whose de-
velopments a variety of methods from Fixed-Point Theory, Variational Analysis, Approx-
imation Theory, and Numeric Analysis consolidated their role. Vito Volterra introduced
the notion of Volterra integral equations at the end of the nineteenth century, which were
further investigated by Traian Lalescu, in 1912, who published the first book about integral
equations, [34].

Volterra integral equations have applications in many physical domains such as demog-
raphy, viscoelastic materials, actuarial sciences, potential theory and Dirichlet problems,
electrostatics, mathematical problems of radiative equilibrium, particle-transport prob-
lems of astrophysics and reactor theory, radiative heat-transfer problems, [22, 35, 42, 49,
50], among others. Recently, some interesting methods for solving Volterra integral equa-
tions have been introduced, for example: the power-series method [46], Adomain’s de-
composition method [5], the homotopy perturbation method [15, 51], the block by block
method [30], and the expansion method [40].

Let us consider the following Volterra-type integral equation

x(t) =
∫ t

0
P
(
t, s, x(s)

)
ds + g(t), t ∈ [0, 1]. (4.1)
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The purpose of this section is to prove the existence of a solution to the equation (4.1) by
applying Theorem 3.3.

Let us define the operator F : C([0, 1],Rn) → C([0, 1],Rn) as follows:

Fx(t) =
∫ t

0
P
(
t, s, x(s)

)
ds + g(t), t ∈ [0, 1].

Theorem 4.1 Assume that the data of the integral equation (4.1) satisfies the following
conditions:

i) P : [0, 1] × [0, 1] ×R
n → R

n and g : [0, 1] →R
n are continuous;

ii) P(t, s, ·) : Rn →R
n is increasing for each t, and s ∈ [0, 1];

iii) For all t, and s ∈ [0, 1], there exists γ ∈ (0, 1) such that

P(t, s, u) – P(t, s, v) ≤ γ Q(u, v),

where Q(a, b) = max{|a – b|, |a – Fa|, |b – Fb|, 1
2 (|a – Fb| + |b – Fa|)} for each

t, s ∈ [0, 1].
Then, the integral equation (4.1) has a unique solution in C([0, 1],Rn).

Proof Let X = C([0, 1],Rn) be an extended b-metric space endowed with the extended
b-metric bθ (x, y) = ‖x – y‖C = supt∈[0,1] ‖x(t) – y(t)‖2. Note that X is a complete extended
b-metric space with θ : X × X → [1,∞) defined by θ (x, y) := 2‖x(t)‖ + 3‖y(t)‖ + 1.

First, note that from the common inequality (a – b)2 ≥ 0, we readily obtain

1
4
(
a2 + b2) ≥ 1

2
ab. (4.2)

We shall prove that the operator S satisfies all the conditions of Theorem 3.7. We have
the following estimate:

∣∣Fx(t) – Fy(t)
∣∣2 ≤

∫ t

0

∣∣P
(
t, s, x(s)

)
– P

(
t, s, y(s)

)∣∣2 ds

≤ γ 2
∫ t

0
max

{∣
∣x(s) – y(s)

∣
∣2,

∣
∣x(s) – Fx(s)

∣
∣2,

∣
∣y(s) – Fy(s)

∣
∣2,

1
4
[∣∣x(s) – Fy(s)

∣
∣ +

∣
∣y(s) – Fx(s)

∣
∣]2

}
ds

≤ γ 2
∫ t

0
max

{∣∣x(s) – y(s)
∣∣2,

∣∣x(s) – Fx(s)
∣∣2,

∣∣y(s) – Fy(s)
∣∣2,

1
4
(
x(s) – Fy(s)

)2 +
1
2

(
(
x(s) – Fy(s)

)(
y(s) – Fx(s)

)

1
4
(
y(s) – Fx(s)

)2
}

ds

≤ γ 2
∫ t

0
max

{∣∣x(s) – y(s)
∣∣2,

∣∣x(s) – Fx(s)
∣∣2,

∣∣y(s) – Fy(s)
∣∣2,

1
2
(∣∣x(s) – Fy(s)

∣
∣2 +

∣
∣y(s) – Fx(s)

∣
∣2)

}
ds,



Belhenniche et al. Fixed Point Theory Algorithms Sci Eng         (2022) 2022:24 Page 14 of 22

where the last inequality follows by using (4.2). By denoting ‖x‖C = supt∈[0,1]{|x(t)|}, we
have

∣
∣Fx(t) – Fy(t)

∣
∣2

≤ γ 2
∫ t

0
max

{
‖x – y‖2

C ,‖x – Fx‖2
C ,‖y – Fy‖2

C ,
1
2
‖x – Fy‖2

C + ‖y – Fx‖2
C

}

≤ γ 2 max

(
bθ (x, y), bθ (x, Fx), bθ (y, Fy),

1
2
(
bθ (x, Fy) + bθ (y, Fx)

))

≤ γ 2M(x, y).

For α such that 0 < α = γ 2 < 1, we have

bθ (Fx, Fy) = ‖Fx – Fy‖C ≤ αM(x, y)

for each x, y ∈ X. Since limn,m→∞ θ (xn, xm)1, the conclusion follows from Theorem 3.7. �

Now, we consider a numerical example illustrating the use of our results to compute the
solution of a simple instance of a Volterra equation.

Let us consider the following Volterra integral equation

x(t) = t +
∫ t

0
(s – t)x(s) ds. (4.3)

First, note that, since we have (s – t)x(s) – (s – t)y(s) ≤ |t – s||x(s) – y(s)| for t, s ∈ [0, 1), then
there exist α ∈ (0, 1) satisfying |t – s||x(s) – y(s)| ≤ αM(x, y). Thus, the Ćirić operator F
defined by:

Fx(t) = t +
∫ t

0
(s – t)x(s) ds. (4.4)

It can be easily checked that x(t) = sin(t) is the exact solution to Equation (4.3). The itera-
tion method to compute the value of the integral is

xn+1(t) = Fxn(t) = t +
∫ t

0
(s – t)xn(s) ds = xn(t) +

n∏

k=2

(
–1

(2k – 1)(2k – 2)

)
t2n–1.

In Table 1 we illustrate the approximations of the exact solution of the operator F .

Table 1 For t = 0.2 rad, the exact solution is x(0.2) = 0.198669331

n xn(0.2) Approximate Solution Absolute Error

0 x0(0.2) 0 1.986693 ∗ 10–1

1 x1(0.2) 0.2 1.330669 ∗ 10–3

2 x2(0.2) 0.198666667 2.66413 ∗ 10–6

3 x3(0.2) 0.198669333 2.53827 ∗ 10–9
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5 Existence of a common solution for a system of nonlinear fractional
differential equations

Fractional differential calculus is a strong tool in the world of mathematics due to the re-
quirements of many real-world applications. In the last century, fractional calculus found
its way to address many challenging applications in modeling, control and optimization in
a wide variety of domains, comprising, but not limited to, fluid flow, heat transfer, electro-
magnetism, biology, engineering, and economics. Fractional calculus is still continuously
expanding. At the same time, the fixed-point theory is also used to prove the existence
and uniqueness of a solution of integral equations, ordinary differential equations, partial
differential equations, and functional equations.

In this section, we prove an existence and uniqueness theorem for a nonlinear fractional
differential equation system, of the Caputo type, by using our main common fixed-point
result, Theorem 3.3.

For a continuous function g : [0,∞) → R we recall the Caputo derivative of order β > 0
of the functional g as follows (see [31, 44])

CDβ
(
g(t)

)
:=

1
�(n – β)

∫ t

0
(t – s)n–β–1g(n)(s) ds (n – 1 < β < n, n = [β] + 1), (5.1)

where [β], � denote the integer part of the positive real number and gamma function,
respectively.

In this section, we present the application of Theorem 3.6 to prove the existence of at
least a common solution for the nonlinear fractional differential equation system

⎧
⎨

⎩

CDβ (x(t)) + f1(t, x(t)) = 0,
CDβ (y(t)) + f2(t, y(t)) = 0

(5.2)

for 0 ≤ t ≤ 1, β < 1, with the boundary conditions

⎧
⎨

⎩
x(0) = 0 = x(1),

y(0) = 0 = y(1),
(5.3)

where x ∈ C([0, 1],R) and C([0, 1],R) is the set of all continuous functions from [0, 1] to R,
f1, f2 : [0, 1] ×R → R are continuous functions (see [39]), and CDβ is the Caputo derivative
of order β . Further, we present the Green function associated with the system (5.2) as
follows

G(t, s) =

⎧
⎨

⎩
(t(1 – s))α–1 – (t – s)α–1 if 0 ≤ s ≤ t ≤ 1,
(t(1–s))α–1

�(α) if 0 ≤ t ≤ s ≤ 1.

Let us state the main existence result of this section.

Theorem 5.1 Given the nonlinear fractional differential equation (5.2), and a function
μ : R×R →R such that the following assumptions hold:

(i) There exists x0 ∈ C([0, 1],R) such that μ(x0(t),
∫ 1

0 F1x0(t)) ≥ 0, and μ(x0(t),
∫ 1

0 F2x0(t)) ≥ 0 for all t ∈ [0, 1], where F1, F2 : C([0, 1],R) → C([0, 1],R) are defined
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as follows:

⎧
⎨

⎩
F1x =

∫ 1
0 G(t, s)f1(s, x(s)) ds,

F2y =
∫ 1

0 G(t, s)f2(s, y(s)) ds;
(5.4)

(ii) |f (t, a) – f (t, b)| ≤ 1
τ

M(a, b) ∀t ∈ [0, 1], τ > 1, and a, b ∈R with μ(a, b) ≥ 0, where

M(a, b) = max

{
bθ (a, b), bθ (a, F1a), bθ (b, F2b),

1
2
(
bθ (a, F2b) + bθ (b, F1a)

)}
;

(iii) if {xn} is a sequence in C([0, 1],R) such that xn → x in C([0, 1],R), and, for each
t ∈ [0, 1], μ(xn(t), xn+1(t)) ≥ 0 for all n ∈N, then μ(xn(t), x(t)) ≥ 0 for all n ∈N.

Then, the system (5.2) has at least one common solution.

Proof Let X = C([0, 1],R) be endowed with the Bielecki norm

bθ (x, y) = ‖x‖B = sup
t∈[0,1]

{∣∣x(t)
∣∣e–τ t} with τ > 1

and θ : X × X → [1,∞) is given by θ (x, y) = |x(t)| + 2|y(t)| + 1. It is straightforward to
conclude that (X, bθ ) is a complete extended b-metric space.

It is obvious that x∗ ∈ X is a common solution for the system (5.2) if and only if x∗ ∈ X
is a common solution of the system (5.3), for all t ∈ [0, 1]. Then, the problem (5.2) can be
reduced to finding an element x∗ ∈ X that is a common fixed point for the operators F1

and F2.
Let x and y ∈ X such that μ(x(t), y(t)) ≥ 0 for all t ∈ [0, 1]. By (i) and (ii) we obtain the

following estimate

∣∣F1x(t) – F2y(t)
∣∣2 =

∣
∣∣∣

∫ 1

0
G(t, s)

[
f1

(
t, s, x(s)

)
– f2

(
t, s, y(s)

)]
ds

∣
∣∣∣

2

≤
(∫ 1

0
G(t, s) ds

)2 ∫ 1

0

∣
∣f1

(
t, s, x(s)

)
– f2

(
t, s, y(s)

)∣∣2 ds

≤ 1
τ 2

∣
∣M(x, y)e–τ t∣∣2e2τ t

(∫ 1

0
G(t, s) ds

)2

.

Then, we obtain

∣
∣[F1x(t) – F2y(t)

]
e–τ t∣∣2 ≤ 1

τ 2

∣
∣M(x, y)e–τ t∣∣2

(∫ 1

0
G(t, s) ds

)2

. (5.5)

By taking the supremum over time of the above inequality, we obtain

∣∣
∣ sup
t∈[0,1]

{(
F1x(t) – F2y(t)

)
e–τ t}

∣∣
∣
2 ≤ 1

τ 2 sup
t∈[0,1]

∣∣M(x, y)e–τ t∣∣2
sup

t∈[0,1]

{(∫ 1

0
G(t, s) ds

)2}

≤ 1
τ 2 sup

t∈[0,1]

{∣∣M(x, y)e–τ t∣∣2}.
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Then, we have

‖F1x – F2y‖B ≤ 1
τ

∥∥M(x, y)
∥∥

B. (5.6)

Since limn,m→∞ θ (xn, xm) = 1 < τ , for 0 < γ = 1
τ

< 1, we may apply Theorem 3.3 that yields
the existence of x∗ ∈ X as a common fixed point of the operators F1 and F2. Then, the
system (5.2) has at least one common solution. �

6 Application to dynamic programming
In this section we investigate the application of t́he Cirić fixed-point theorem to prove the
existence and uniqueness results of the solution of the dynamic programming Bellman’s
equation under assumptions that are significantly weaker than the ones generally consid-
ered in the literature, [10]. The relevance of this application is that it allows us to weaken
the continuity assumption on the “reward” operator required by the Banach fixed-point
theorem, to merely lower semicontinuity.

Our results enable us to further extend the power of an already extremely relevant class
of approaches to solve a vast array of optimization problems, notably optimal control,
that features a long history. Indeed, in [8], Bellman introduced Dynamic Programming
(DP) whose key idea consists in solving a large decision problem by organizing it into
simpler nested subproblems that are solved recursively over time. The effectiveness of
dynamic programming techniques in optimization connected with feedback control has
been extremely relevant, and, since then, expanded to a large variety of control problems,
notably, impulsive control (see [4, 26], and references therein) [29]. A disruptive devel-
opment emerged in [13] with the introduction of the class of Reinforcement Learning
algorithms of which Value Iteration (VI) and Policy Iteration (PI) are well known. More
recently, Bertsekas in [12] shows that the Bellman equation, and the optimality condition
stated in terms of the well posedness of the compact operator that plays a central role in
the algorithm that is that DP theory is intimately connected with the theory of abstract
mappings and their fixed points, as well as a more unified, economical, and streamlined
analysis.

We consider the state space X and the set of control values U(x) ⊂ U . We denote by
M the set of all functions μ : X → U with μ(x) ∈ U(x) for all x ∈ X, by M that we refer
to as “stationary policy”. Let R(X) be the set of real-valued functions J : X → R. We have
a mapping H : X × U × R(X) → R and each policy μ ∈ M, we consider the mapping
Fμ : R(X) →R(X) defined by

FμJ(x) = H
(
x,μ(x), J

) ∀x ∈ X.

We also consider the mapping F : R(X) →R(X) given by

FJ(x) = inf
u∈U(x)

{
H

(
x,μ(x), J

)}
= min

μ∈M
{

FμJ(x)
} ∀x ∈ X.

Now, let B(X) denote the set of all bounded real-valued function on X. The pair
(B(X),‖ · ‖θ ), where

‖J‖θ = sup
x∈X

∣
∣J(x)

∣
∣2, J ∈ B(X) (6.1)

is a complete extended b-metric space.
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Our goal is to find an optimal cost function J∗ ∈ B(X) such that

J(x) = inf
u∈U(x)

{
H(x, u, J)

} ∀x ∈ X. (6.2)

This is the so-called Bellman Equation. The purpose of this section is to find the unique
fixed point of F within B(X), which is the optimal cost function and a unique solution to the
Bellman Equation (6.2), by applying Theorem 3.7. We require the following assumptions

A1 (Well posedness). For all J ∈ B(X), and ∀μ ∈M, we have that FμJ ∈ B(X) and
FJ ∈ B(X).

A2 (Monotonicity). If J , J ′ ∈R(x), and J ≤ J ′, then

H(x, u, J) ≤ H
(
x, u, J ′) ∀x ∈ X, u ∈ U(x).

A3 (Attainability). For all J ∈ B(X), there exists μ ∈M, such that: FμJ = FJ .

Theorem 6.1 Assume that the data of the Bellman Equation (6.2) satisfies the following
assumptions:

i) Fμ and F are monotone;
ii) Fμ : B(X) → B(X) is a Ćirić operator.

Then, the Bellman Equation (6.2) has a unique solution in B(X).

Proof Let B(X) be an extended b-metric space endowed with the extended b-metric ‖J‖ =
supx∈X{|J(x)|2}. Note that X is a complete extended b-metric space with θ : X ×X → [1,∞)
defined by θ (J , J ′) := 2|J(x)| + 3|J ′(x)| + 1.

Let us define the operator F : B(X) → B(X) as follows

FJ(x) = inf
u∈U(x)

{
H(x, u, J)

} ∀x ∈ X.

First, note that from the common inequality (a – b)2 ≥ 0, we readily obtain

1
4
(
a2 + b2) ≥ 1

2
ab. (6.3)

We shall prove that the operator F satisfies all the conditions of Theorem 3.7. We have
the following estimation

∣∣FJ(x) – FJ ′(x)
∣∣2 ≤ ∣∣H(x, u, J) – H(x, u, J ′∣∣2

≤ γ 2
∣
∣∣
∣max

{∣∣J(x) – J ′(x)
∣∣,

∣∣J(x) – FμJ(x)
∣∣,

∣∣J ′(x) – FμJ ′(x)
∣∣,

1
2
(∣∣J(x) – FμJ ′(x)

∣
∣ +

∣
∣J ′(x) – FμJ(x)

∣
∣)

}∣∣
∣∣

2

ds

≤ γ 2
∣
∣∣
∣max

{∣∣J(x) – J ′(x)
∣∣2,

∣∣J(x) – FμJ(x)
∣∣2,

∣∣J ′(x) – FμJ ′(x)
∣∣2,

|1
2
(∣∣J(x) – FμJ ′(x)

∣∣ +
∣∣J ′(x) – FμJ(x)

∣∣)∣∣2
}

ds

≤ γ 2 max

{∣
∣J(x) – J ′(x)

∣
∣2∣∣J(x) – FμJ(x)

∣
∣2,

∣
∣J ′(x) – FμJ ′(x)

∣
∣2,
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1
4
[(

J(x) – FμJ ′(x)
)2 +

(
J ′(x) – FμJ(x)

)2

+ 2
(
J(x) – FμJ ′(x)

)(
J ′(x) – FμJ(x)

)]
}

≤ γ 2 max

{∣∣J(x) – J ′(x)
∣∣2,

∣∣J(x) – FμJ(x)
∣∣2,

∣∣J ′(x) – FμJ ′(x)
∣∣2,

1
4
[(

J(x) – FμJ ′(x)
)2 +

(
J ′(x) – FμJ(x)

)2]

+
1
2
[(

J(x) – FμJ ′(x)
)(

J ′(x) – FμJ(x)
)]}

.

Moreover, from the above, by using FμJ(x) ≥ FJ(x), and (6.3), we obtain

∣∣FJ(x) – FJ ′(x)
∣∣2 ≤ γ 2 max

{∣∣J(x) – J ′(x)
∣∣2,

∣∣J(x) – FμJ(x)
∣∣2,

∣∣J ′(x) – FμJ ′(x)
∣∣2,

1
2
[∣∣J(x) – FμJ ′(x)

∣∣2 +
∣∣J ′(x) – FμJ(x)

∣∣2]
}

≤ γ 2 max

{∥
∥J – J ′∥∥

θ
,‖J – FμJ‖θ ,

∥
∥J ′ – FμJ ′∥∥

θ
,

1
2
(∥∥J – FμJ ′∥∥

θ
+

∥
∥J ′ – FμJ

∥
∥

θ

)}

≤ γ 2 max

{∥∥J – J ′∥∥
θ
,‖J – FJ‖θ ,

∥∥J ′ – FJ ′∥∥
θ
,

1
2
(∥∥J – FJ ′∥∥

θ
+

∥∥J ′ – FJ
∥∥

θ

)
}

≤ γ 2 max

{∥∥J – J ′∥∥
θ
,‖J – TJ‖θ ,

∥∥J ′ – TJ ′∥∥
θ
,

1
2
(∥∥J – TJ ′∥∥

θ
+

∥
∥J ′ – TJ

∥
∥

θ

)}

≤ γ 2M
(
J , J ′),

for any x ∈ X. For α such that 0 < α = γ 2 < 1 we have

∥∥FJ – FJ ′∥∥
θ

=‖ FJ – FJ ′ ‖∞≤ αM
(
J , J ′)

∀J , J ′ ∈ B(X).
Since limn,m→∞ θ (Jn, J ′

m) = 1, the conclusion follows from Theorem 3.7. �

7 Conclusions and prospective research work
In this article we proved a common fixed-point theorem for generalized contractive map-
pings of Ćirić type in extended b-metric spaces and illustrated them with a simple exam-
ple, as well as with three diverse classes of applications. More precisely, with the result
we proved the existence of solutions to Volterra equations, to a system of fractional dif-
ferential equations, and to the Bellman equations. The relevance of our main result of
this article is twofold: It handles classes of operators that fail to be continuous, as well
as spaces endowed with a metric that satisfies only a relaxed triangle inequality. This is a



Belhenniche et al. Fixed Point Theory Algorithms Sci Eng         (2022) 2022:24 Page 20 of 22

great advantage relative to other results of this type since it allows us to enlarge the class
of applications.

In what concerns the Bellman Equation, Value Iterative methods associated with Re-
inforcement Learning schemes for optimal control problems with state constraints is an
important instance as the value function is merely lower semicontinuous. We envisage fu-
ture work along two directions: investigation of ways of generalizing and strengthening the
main result proved here, and exploit the possibilities of applying this and related results in
solving significant applied problems arising in various areas, notably, in optimal control
with state constraints as well as optimization problems formulated in spaces appropriated
for the operation on data sets. In particular, we will seek to extend the application of ap-
propriate fixed-point results to match the shapes under conditions that are weaker than
those addressed so far in the literature by resorting to á Cirić contractive operator on an
extended b-metric space.
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