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available at the end of the article point theorem of single-valued continuous condensing mappings in locally p-convex

spaces as the starting point, we first establish best approximation results for
(single-valued) continuous condensing mappings, which are then used to develop
new results for three classes of nonlinear mappings consisting of 1) condensing;

2) 1-set contractive; and 3) semiclosed 1-set contractive mappings in locally p-convex
spaces. Next they are used to establish the general principle for nonlinear alternative,
Leray-Schauder alternative, fixed points for nonself mappings with different
boundary conditions for nonlinear mappings from locally p-convex spaces, to
nonexpansive mappings in uniformly convex Banach spaces, or locally convex spaces
with the Opial condition. The results given by this paper not only include the
corresponding ones in the existing literature as special cases, but are also expected to
be useful tools for the development of new theory in nonlinear functional analysis
and applications to the study of related nonlinear problems arising from practice
under the general framework of p-vector spaces for0<p < 1.

Finally, the work presented by this paper focuses on the development of nonlinear
analysis for single-valued (instead of set-valued) mappings for locally p-convex
spaces. Essentially, it is indeed the continuation of the associated work given recently
by Yuan (Fixed Point Theory Algorithms Sci. Eng. 2022:20, 2022); therein, the attention
is given to the study of nonlinear analysis for set-valued mappings in locally p-convex
spacesforO<p<1.
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1 Introduction

It is known that the class of p-seminorm spaces (0 < p < 1) is an important generalization
of usual normed spaces with rich topological and geometrical structures, and related study
has received a lot of attention, e.g., see work by Alghamdi et al. [4], Balachandran [6], Bay-
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oumi [7], Bayoumi et al. [8], Bernuées and Pena [10], Ding [29], Ennassik and Taoudi [32],
Ennassik et al. [31], Gal and Goldstein [38], Gholizadeh et al. [39], Jarchow [52], Kalton
[53, 54], Kalton et al. [55], Machrafi and Oubbi [72], Park [89], Qiu and Rolewicz [98],
Rolewicz [102], Silva et al. [111], Simons [112], Tabor et al. [115], Tan [116], Wang [119],
Xiao and Lu [122], Xiao and Zhu [123, 124], Yuan [134], and many others. However, to
the best of our knowledge, the corresponding basic tools and associated results in the
category of nonlinear functional analysis for p-vector spaces have not been well devel-
oped, in particular for the three classes of (single-valued) continuous nonlinear mappings,
which are: 1) condensing; 2) 1-set contractive; and 3) semiclosed 1-set contractive opera-
tors under locally p-convex spaces. Our goal in this paper is to develop some fundamen-
tal and important nonlinear analysis for single-valued mappings under the framework of
p-vector spaces, in particular, for locally p-convex spaces for 0 < p < 1. More precisely,
based on the fixed point theorem of single-valued continuous condensing mappings in
locally p-convex spaces as the starting point, we first establish best approximation results
for (single-valued) continuous condensing mappings, which are then used to develop new
results for three classes of nonlinear mappings, which are 1): condensing; 2): 1-set contrac-
tive; and 3): semiclosed 1-set contractive in locally p-convex spaces. Then these new re-
sults are used to establish the general principle for nonlinear alternative, Leray—Schauder
alternative, fixed points for nonself mappings with different boundary conditions for non-
linear mappings from locally p-convex spaces, to nonexpansive mappings in uniformly
convex Banach spaces, or locally convex spaces with the Opial condition. The results given
by this paper not only include the corresponding results in the existing literature as spe-
cial cases, but are also expected to be useful tools for the development of new theory in
nonlinear functional analysis and applications to the study of related nonlinear problems
arising from practice under the general framework of p-vector spaces for 0 < p < 1.

In addition, we would like to point out that the work presented by this paper focuses on
the development of nonlinear analysis for single-valued (instead of set-valued) mappings
for locally p-convex spaces; essentially, it is very important. It is also the continuation of
the work given recently by Yuan [134]; therein, the attention was given to establishing
new results on fixed points, the principle of nonlinear alternative for nonlinear mappings
mainly on set-valued (instead of single-valued) mappings developed in locally p-convex
spaces for 0 < p < 1. Although some new results for set-valued mappings in locally p-
convex spaces have been developed (see Gholizadeh et al. [39], Park [89], Qiu and Rolewicz
[98], Xiao and Zhu [123, 124], Yuan [134], and others), we still would like to emphasize that
results obtained for set-valued mappings for p-vector spaces may face some challenges
in dealing with true nonlinear problems. One example is that the assumption used for
“set-valued mappings with closed p-convex values” seems too strong, as it always means
that the zero element is a trivial fixed point of the set-valued mappings, and this was also
discussed in pp. 40—-41 by Yuan [134] for O< p < 1.

On the development since 1920s and, in particular, on the fixed points for nonself map-
pings, best approximation method, and on some key aspects of nonlinear analysis related
to Birkhoff-Kellogg problems, nonlinear alternative, Leray—Schauder alternative, KKM
principle, best approximation, and related topics, readers can find some most important
contributions by Birkhoff and Kellogg [11] in 1920s, Leray and Schauder [65] in 1934, Fan
[34] in 1969; plus the related comprehensive references given by Agarwal et al. [1], Bern-
stein [9], Chang et al. [22], Granas and Dugundji [46], Isac [51], Park [87], Singh et al. [113],
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Zeidler [136]; and also see work contributed by Agarwal and O’Regan [2, 3], Furi and Pera
[37], Park [87], O’Regan [80], O'Regan and Precup [82]), Poincare [96], Rothe [103, 104],
Yuan [132-134], Zeidler [136].

It is well known that the best approximation is one of very important aspects for the
study of nonlinear problems related to the problems on their solvability for partial dif-
ferential equations, dynamic systems, optimization, mathematical program, operation re-
search; and in particular, it is the one approach well accepted for studying nonlinear prob-
lems in optimization, complementarity problems, variational inequality problems, and so
on, strongly based on the so-called Fan’s best approximation theorem given by Fan [33-36]
in 1969, which acts as a very powerful tool in nonlinear analysis (see also the book of Singh
et al. [113] for the related discussion and study on the fixed point theory and best approx-
imation with the KKM-map principle). Among them, the related tools are Rothe type and
the principle of Leray—Schauder alterative in topological vector spaces (TVS) and locally
convex topological vector spaces (LCS), which are comprehensively studied by Chang et
al. [22], Chang et al. [23—25], Carbone and Conti [18], Ennassik and Taoudi [32], Ennassik
et al. [31], Isac [51], Granas and Dugundji [46], Kirk and Shahzad [58], Liu [70], Park [90],
Rothe [103, 104], Shahzad [109, 110], Xu [126], Yuan [132—134], Zeidler [136], and the
references therein.

On the other hand, the celebrated KKM principle established in 1929 in [60] was based
on the celebrated Sperner combinatorial lemma and first applied to a simple proof of the
Brouwer fixed point theorem. Later it became clear that these three theorems are mutu-
ally equivalent, and they were regarded as a sort of mathematical trinity (Park [90]). Since
Fan extended the classical KKM theorem to infinite-dimensional spaces in 1961 [34-36],
there have been a number of generalizations and applications in numerous areas of non-
linear analysis, and fixed points in TVS and LCS as developed by Browder [12-17] and
related references therein. Among them, Schauder’s fixed point theorem [106] in normed
spaces is one of the powerful tools in dealing with nonlinear problems in analysis. Most
notably, it has played a major role in the development of fixed point theory and related
nonlinear analysis and mathematical theory of partial and differential equations and oth-
ers. A generalization of Schauder’s theorem from normed spaces to general topological
vector spaces is an old conjecture in fixed point theory, which is explained by Problem 54
of the book “The Scottish Book” by Mauldin [74] stated as Schauder’s conjecture: “Every
nonempty compact convex set in a topological vector space has the fixed point property,
or in its analytic statement, does a continuous function defined on a compact convex sub-
set of a topological vector space to itself have a fixed point?” Recently, this question has
been answered by the work of Ennassik and Taoudi [32] by using p-seminorm methods
under locally p-convex spaces! See also the related work in this direction given by Askoura
and Godet-Thobie [5], Cauty [19, 20], Chang [21], Chang et al. [22], Chen [27], Dobrowol-
ski [30], Gholizadeh et al. [39], Gérniewicz [44], Gérniewicz et al. [45], Isac [51], Li [68],
Li et al. [67], Liu [70], Nhu [76], Okon [78], Park [89-91], Reich [99], Smart [114], Weber
[120, 121], Xiao and Lu [122], Xiao and Zhu [123, 124], Xu [129], Xu et al. [130], Yuan
[132-134], and the related references therein under the general framework of p-vector
spaces, in particular, locally p-convex spaces for nonself mappings with various boundary
conditions for 0 < p < 1.

The goal of this paper is to establish the general new tools of nonlinear analysis under the
framework of general locally p-convex space (p-seminorm spaces) for general condensing
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mappings, 1-set contractive mappings, and semiclosed mappings (here 0 < p < 1), and
we do wish these new results such as best approximation, theorems of Birkhoff-Kellogg
type, nonlinear alternative, fixed point theorems for nonself (single-valued) continuous
operators with various boundary conditions, Rothe, Petryshyn type, Altman type, Leray—
Schedule types, and other related nonlinear problems would play important roles for the
nonlinear analysis of p-seminorm spaces for 0 < p < 1. In addition, our results also show
that fixed point theorem for condensing continuous mappings for closed p-convex sub-
sets provides solutions for Schauder’s conjecture since 1930s in the affirmative way under
the general setting of p-vector spaces (which may not be locally convex, see the related
study given by Ennassik and Taoudi [32], Kalton [53, 54], Kalton et al. [55], Jarchow [52],
Roloewicz [102] in this direction).

The paper has ten sections. Section 1 is the introduction. Section 2 describes general
concepts for the p-convex subsets of topological vector spaces (0 < p < 1). In Sect. 3,
some basic results of the KKM principle related to abstract convex spaces are given. In
Sect. 4, as the application of the KKM principle in abstract convex spaces, which includes
p-convex vector spaces as a special class (0 < p < 1), by combining the embedding lemma
for compact p-convex subsets from topological vector spaces into locally p-convex spaces,
we provide general fixed point theorems for condensing continuous mappings for both
a single-valued version in topological vector spaces and an upper semicontinuous set-
valued version in locally convex spaces defined on closed p-convex subsets for 0 < p < 1.
Sections 5, 6, and 7 mainly focus on the study of nonlinear analysis for 1-set contractive
(single-valued) continuous mappings in locally p-convex vector spaces to establish general
existence theorems for solutions of the Birkhoff—Kellogg (problem) alternative, the gen-
eral principle of nonlinear alterative, including Leray—Schauder alternative, Rothe type,
Altman type associated with different boundary conditions. Sections 8, 9, and 10 mainly
focus on the study of new results based on semiclosed 1-set contractive (single-valued)
continuous mappings related to nonlinear alternative principles, Birkhoff-Kellogg theo-
rems, Leray—Schauder alternative, and nonself operations from general locally p-convex
spaces to uniformly convex Banach spaces for nonexpansive mappings, or locally convex
topological spaces with the Opial condition.

For the convenience of our discussion, throughout this paper, we always assume that all
p-vector spaces are Hausdorff for 0 < p < 1 unless specified otherwise; and we also denote
by N the set of all positive integers, i.e., N:={1,2,...,}.

2 Some basic results for p-vector spaces

For the convenience of self-reading, we recall some notions and definitions for p-convex
vector spaces below as summarized by Yuan [134] (see also Balachandran [6], Bayoumi 7],
Jarchow [52], Kalton [53], Rolewicz [102], Gholizadeh et al. [39], Ennassik and Taoudi [32],
Ennassik et al. [31], Xiao and Lu [122], Xiao and Zhu [124], and the references therein).

Definition 2.1 A set A in a vector space X is said to be p-convex for 0 < p <1 if for any
x,y €A, 0<st<1withs” +t” = 1, we have s'/7x + t//Py € A; and if A is 1-convex, it is
simply called convex (for p = 1) in general vector spaces; the set A is said to be absolutely
p-convex if s'7x + tYPy € A for 0 < |s|, |£| < 1 with |s|? + |¢t]? < 1.

Definition 2.2 If A is a subset of a topological vector space X, the closure of A is denoted
by A, then the p-convex hull of A and its closed p-convex hull are denoted by C,(A4) and
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C,(A), respectively, which are the smallest p-convex set containing A and the smallest
closed p-convex set containing A, respectively.

Definition 2.3 Let A be p-convex and x,...,x, € A,and t; > 0, Y | #/ = 1. Then ) | t;x;
is called a p-convex combination of {x;} for i =1,2,...,n. If > "7 |&P < 1, then > ] t;x; is
called an absolutely p-convex combination. It is easy to see that Y | ¢;x; € A for a p-convex
set A.

Definition 2.4 A subset A of a vector space X is called circled (or balanced) if A\A C A
holds for all scalars A satisfying |A| < 1. We say that A is absorbing if for each x € X, there
is a real number p, > 0 such that Ax € A for all A > 0 with |A| < px.

By Definition 2.4, it is easy to see that the system of all circled subsets of X is easily seen
to be closed under the formation of linear combinations, arbitrary unions, and arbitrary
intersections. In particular, every set A C X determines the smallest circled subset A of
X in which it is contained: A is called the circled hull of A. It is clear that A = Upj<1 24

holds, so that A is circled if and only if (in short, iff) A =A. We use A to denote the closed
circled hull of A C X.

In addition, if X is a topological vector space, we use the int(A) to denote the (relative
topological) interior of set A C X and if 0 € int(A), then int(A) is also circled, and we use
dA to denote the (relative topological) boundary of A in X unless specified otherwise.

Definition 2.5 A topological vector space is said to be locally p-convex if the origin has
a fundamental set of absolutely p-convex 0-neighborhoods. This topology can be deter-
mined by p-seminorms which are defined in the obvious way (see p. 52 of Bayoumi [7],
Jarchow [52], or Rolewicz [102]).

Definition 2.6 Let X be a vector space and R* be a nonnegative part of a real line R.
Then a mapping P: X — R* is said to be a p-seminorm if it satisfies the requirements for
(O<p=1)
(i) P(x)>0forallx e X;
(if) P(Ax) = |APP(x) forallx € X and A € R;
(ili) P(x+y) <P(x) + P(y) forallx,y € X.

A p-seminorm P is called a p-norm if x = 0 whenever P(x) = 0, so a vector space with a
specific p-norm is called a p-normed space, and of course if p = 1, X is a normed space as
discussed before (e.g., see Jarchow [52]).

By Lemma 3.2.5 of Balachandran [6], the following proposition gives a necessary and

sufficient condition for a p-seminorm to be continuous.

Proposition 2.1 Let X be a topological vector space, P be a p-seminorm on X, and V :=
{x € X : P(x) < 1}. Then P is continuous if and only if 0 € int(V'), where int(V) is the interior
of V.

Now, given a p-seminorm P, the p-seminorm topology determined by P (in short, the
p-topology) is the class of unions of open balls B(x, €) := {y € X : P(y —x) < €} for x € X and
€>0.
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Definition 2.7 A topological vector space X is said to be locally p-convex if it has a 0-
basis consisting of p-convex neighborhoods for (0 < p < 1). If p = 1, then X is a usual
locally convex space.

We also need the following notion for the so-called p-gauge (see Balachandran [6]).

Definition 2.8 Let A be an absorbing subset of a vector space X. Forx € X and 0 <p <1,
1

set P4 = inf{o > 0: x € o? A}, then the nonnegative real-valued function P4 is called the

p-gauge (gauge if p = 1). The p-gauge of A is also known as the Minkowski p-functional.

By Proposition 4.1.10 of Balachandran [6], we have the following proposition.

Proposition 2.2 Let A be an absorbing subset of X. Then the p-gauge P4 has the following
properties:
(i) P4(0)=0;
(i) PA(x) = [APPAG) if 3 = O;
(ili) P4(Ax) = |APP4(x) for all A € R provided A is circled,;
(iv) Pa(x+y) < Pa(x) + Pa(y) for all x,y € A provided A is p-convex.
In particular, P4 is a p-seminorm if A is absolutely p-convex (and also absorbing).

As mentioned above, a given p-seminorm is said to be a p-norm if x = 0 whenever P(x) =
0. A vector space with a specific p-norm is called a p-normed space. The p-norm of an
element x € E will usually be denoted by ||x|,. If p = 1, then X is a usual normed space.
If X is a p-normed space, then (X, d,) is a metric linear space with a translation invariant
metric d, such that d, = d,(x,y) = ||lx—y||, for x,y € X. We point out that p-normed spaces
are very important in the theory of topological vector spaces. Specifically, a Hausdorff
topological vector space is locally bounded if and only if it is a p-normed space for some
p-norm || - ||,, where 0 < p <1 (see p. 114 of Jarchow [52]). We also note that examples
of p-normed spaces include L?(u)-spaces and Hardy spaces H,, 0 < p < 1, endowed with
their usual p-norms.

Remark 2.1 We would like to make the following two important points:

(1) First, by the fact that (e.g., see Kalton et al. [55] or Ding [29]), there is no open
convex nonvoid subset in L?[0, 1] (for 0 < p < 1) except L?[0, 1] itself. This means
that p-normed paces with 0 < p < 1 are not necessarily locally convex. Moreover, we
know that every p-normed space is locally p-convex; and incorporating Lemma 2.3,
it seems that a p-vector space (for 0 < p < 1) is a nicer space as we can use the
p-vector space to approximate (Hausdorff) topological vector spaces (TVS) in terms
of Lemma 2.1 (ii) for the convex subsets in TVS by using bigger p-convex subsets in
p-vector spaces for p € (0,1) by also considering Lemma 2.3. In this way, P-vector
spaces seem to have better properties in terms of p-convexity than the usually (1-)
convex subsets used in TVS with p = 1.

(2) Second, it is worthwhile noting that a 0-neighborhood in a topological vector space
is always absorbing by Lemma 2.1.16 of Balachandran [6] or Proposition 2.2.3 of
Jarchow [52].

Now, by Proposition 4.1.12 of Balachandran [6], we also have the following Proposi-
tion 2.3 and Remark 2.2 (which is Remark 2.3 of Ennassik and Taoudi [32]).
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Proposition 2.3 Let A be a subset of a vector space X, which is absolutely p-convex (0 <
p < 1) and absorbing. Then, we have that
(i) The p-gauge Py is a p-seminorm such that if By := {x € X : P4(x) < 1} and
By = {x € X : P4(x) < 1}, then B; C A C By; in particular, ker Py C A, where
kerPy := {x € X : P4(x) = 0}.
(ii) A = B, or By according to whether A is open or closed in the P4-topology.

Remark 2.2 Let X be a topological vector space, and let Ubean open absolutely p-convex
neighborhood of the origin, and let € be given. If y € EP U, theny = EP u for some u € U and
Py(y) = Pu(ell’ u) = €Py(u) < € (as u € U implies that Py (1) < 1). Thus, Py, is continuous at
zero, and therefore, Py, is continuous everywhere. Moreover, we have U = {x € X : Py(x) <
1}.

Indeed, since U is open and the scalar multiplication is continuous, we have that, for
any x € U, there exists 0 < ¢ < 1 such that x € t117 U, and so Py (x) < t < 1. This shows that
U C {x € X : Py(x) < 1}. The conclusion follows by Proposition 2.3.

The following result is a very important and useful result, which allows us to make the
approximation for convex subsets in topological vector spaces by p-convex subsets in p-
convex vector spaces. For the readers self-contained in reading, we provide a sketch of
proof below (see also Lemma 2.1 of Ennassik and Taoudi [31], Remark 2.1 of Qiu and
Rolewicz [98]).

Lemma 2.1 Let A be a subset of a vector space X, then we have
i) IfAis p-convex withO<p <1, then ax € A foranyx € Aand any O <a < 1;
(i) IfA is convex and 0 € A, then A is p-convex for any p € (0,1];
(iii) IfA is p-convex for some p € (0,1), then A is s-convex for any s € (0, p].

Proof (i) As r < 1, the fact that “for all x € A and all o € [2("”)(1_}7), 2"(1_%’)], we
have ax € A” is true for all integer n > 0. Taking into account the fact that (0,1] =
Upsol2"*” 10-5) 2"1-p)] e obtain the result.

(ii) Assume that A is a convex subset of X with 0 € A and take a real number s € (0, 1].
We show that A is s-convex. Indeed, let x,y € A and «, 8 > 0 with o + 87 = 1. Since A is
convex, then a"Tﬂx + %y € A. Keeping in mind that 0 < o + 8 < & + 87 = 1, it follows that
ax+ By =(« +,3)(#x+ %y)+(1—a—,3)0 cA.

(iil) Now, assume that A is r-convex for some p € (0,1) and pick up any real s € (0, p].
We show that A is s-convex. To see this, let x,y € A and «, 8 > 0 such that o® + 8° = 1. First
notice that 0 < o'7. <landO< ,31% <1, which imply that @7 xeAand ﬁ[%y € A.Bythe
p-convexity of A and the equality (a!i’ Y+ (/31% ) =1, it follows that ax + By = ar (a%x) +
,B2 (B 2 y) € A. This completes the sketch of the proof. O

Remark 2.3 We would like to point out that results (i) and (iii) of Lemma 2.1 do not hold
for p = 1. Indeed, any singleton {x} C X is convex in topological vector spaces; but if x # 0,

then it is not p-convex for any p € (0,1).

We also need the following proposition, which is Proposition 6.7.2 of Jarchow [52].
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Proposition 2.4 Let K be compact in a topological vector X and (1 < p < 1). Then the
closure C,(K) of a p-convex hull and the closure AC,(K) of an absolutely p-convex hull of
K are compact if and only if C,(K) and AC,(K) are complete, respectively.

We also need the following fact, which is a special case of Lemma 2.4 of Xiao and Zhu
[124].

Lemma 2.2 Let C be a bounded closed p-convex subset of p-seminorm X with 0 € intC,

X, where Pc is

max(L,(Pc(x))? }
the Minkowski p-functional of C. Then C is a retract of X and r : X — C is continuous such

that
(1) ifx e C, then r(x) = x;
(2) ifx ¢ C, then r(x) € 9C;
(3) ifx ¢ C, then the Minkowski p-functional Pc(x) > 1.

where (0 < p < 1). For every x € X, define an operator by r(x) :=

Proof Taking s = p in Lemma 2.4 of Xiao and Zhu [124], Proposition 2.3, and Remark 2.2,

we complete the proof. d

Remark 2.4 As discussed by Remark 2.2, Lemma 2.2 still holds if “the bounded closed
p-convex subset C of the p-normed space (X, | - [|,)” is replaced by “X is a p-seminorm

vector space and C is a bounded closed absorbing p-convex subset with 0 € int C of X”.

Before we close this section, we would like to point out that the structure of p-convexity
when p € (0, 1) is really different from what we normally have for the concept of “convexity”
used in topological vector spaces (T'VS). In particular, maybe the following fact is one of
the reasons for us to use better (p-convex) structures in p-vector spaces to approximate
the corresponding structure of the convexity used in TVS (i.e., the p-vector space when
p = 1). Based on the discussion in p. 1740 of Xiao and Zhu [124](see also Bernués and Pena
[10] and Sezer et al. [107]), we have the following fact, which indicates that each p-convex

subset is “bigger” than the convex subset in topological vector spaces for 0 < p < 1.

Lemma 2.3 Let x be a point of p-vector space E, where assume 0 < p < 1, then the p-convex

hull and the closure of {x} are given by

: 0,1]}, i 0,
Cp({x}) = ig re @1 szo (1)

and

{tx:t€[0,1]}, ifx#O,
{0}, ifx=0.

Cp(fx}) = 2)

But note that if x is a given one point in p-vector space E, when p = 1, we have that C,({x}) =
C1({x}) = {x}. This shows significantly different for the structure of p-convexity between p =
landp #1!
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As an application of Lemma 2.3, we have the following fact for (set-valued) mappings
with nonempty closed p-convex values in p-vector spaces for p € (0,1), which are truly
different from any (set-valued) mappings defined in topological vector spaces (i.e., for a
p-vector space with p = 1).

Lemma 2.4 Let U be a nonempty subset of a p-vector space E (where 0 < p < 1) with zero
0 € U, and assume that a (set-valued) mapping T : U — 2F is with nonempty closed p-
convex values. Then T has at least one fixed point in U, which is the element zero, i.e.,

0€ Ny Tx) #0.

Proof For each x € U, as T(x) is nonempty closed p-convex, by Lemma 2.3, we have at
least 0 € T(x). It implies that 0 € (),;; T(x), and thus zero of E is a fixed point of T This
completes the proof. d

Remark 2.5 We would like to point out that Lemma 2.4 shows that any set-valued map-
ping with closed p-convex values in p-spaces for 0 < p < 1 has the zero point as its trivial
fixed point, thus it is very important to study the fixed point and related principle of non-
linear analysis for single-valued (instead of set-valued) mappings for p-vector spaces (for
0 < p < 1), as pointed out in the discussion given in pp. 40—41 by Yuan [134]. Thus the
newest results established in this paper are for the three classes of (single-valued) con-
tinuous mappings, which are: 1) condensing; 2) 1-set contractive; and 3) semiclosed 1-set
contractive mappings. This is a key difference from those results obtained by Yuan [134]
recently for the study of set-valued mappings in p-vector spaces for 0 < p < 1.

By following Definitions 2.5 and 2.6, the discussion given by Proposition 2.3, and re-
marks thereafter, each given (open) p-convex subset U in a p-vector space E with the zero
0 € int(U) always corresponds to a p-seminorm Py, which is indeed the Minkowski p-
functional of U in E, and Py, is continuous in E. In particular, a topological vector space is
said to be locally p-convex if the origin 0 of E has a fundamental set (denoted by) 4, which
is a family of absolutely p-convex 0-neighborhoods (each denoted by U). This topology
can be determined by p-seminorm Py, which is indeed the family {Py}ycs, where Py is
just the Minkowski p-functional for each U € {lin E (see also p. 52 of Bayoumi [7], Jarchow
[52], or Rolewicz [102]).

Throughout this paper, by following Remark 2.5, without loss of generality, unless
specified otherwise, for a given p-vector space E, where p € (0,1], we always denote by
i the base of the p-vector space E’s topology structure, which is the family of its O-
neighborhoods. For each U € 4, its corresponding P-seminorm Py is the Minkowski
p-functional of U in E. For a given point x € E and a subset C C E, we denote by
dp, (%, C) := inf{Py(x — y) : y € C} the distance of x and C by the seminorm Py, where
Py, is the Minkowski p-functional for each U/ € {lin E.

3 The KKM principle in convex vector spaces

Since Knaster, Kuratowski, and Mazurkiewicz (in short, KKM) [60] in 1929 obtained the
so-called KKM principle (theorem) to give a new proof for the Brouwer fixed point theo-
rem in finite dimensional spaces, and later in 1961, Fan [36] (see also Fan [35]) extended
the KKM principle (theorem) to any topological vector spaces and applied it to various
results including the Schauder fixed point theorem, there have appeared a large number
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of works devoted to applications of the KKM principle (theorem). In 1992, such research
field was called the KKM theory for the first time by Park [84]. Then the KKM theory has
been extended to general abstract convex spaces by Park [88] (see also Park [89] and [90]),
which actually include locally p-convex spaces (0 < p < 1) as a special class. Same as in the
last section, for the convenience of self-reading, we recall some notions and definitions
for the KKM principle in convex vector spaces, which include p-vector spaces as a special
class, as summarized by Yuan [134] below.

Here we first give some notions and definitions on the abstract convex spaces which play
an important role in the development of the KKM principle and related applications. Once
again, for the corresponding comprehensive discussion on KKM theory and its various
applications to nonlinear analysis and related topics, we refer to Mauldin [74], Granas and
Dugundji [46], Park [90] and [91], Yuan [133, 134], and related comprehensive references
therein.

Let (D) denote the set of all nonempty finite subsets of a given nonempty set D, and
let 2P denote the family of all subsets of D. We have the following definition for abstract
convex spaces essentially by Park [88].

Definition 3.1 An abstract convex space (E,D;I") consists of a topological space E, a
nonempty set D, and a set-valued mapping I' : (D) — 2F with nonempty values I'4 := '(4)
for each A € (D), such that the I'-convex hull of any D' C D is denoted and defined by
corD':= | J{T'4lA € (D)} CE.

A subset X of E is said to be a I'-convex subset of (E, D;I") relative to D)’ if for any N €
(D), we have I'y C X, that is, cor D’ C X. For the convenience of our discussion, in the
case E = D, the space (E, E; ") is simply denoted by (E;I") unless specified otherwise.

Definition 3.2 Let (E, D; ") be an abstract convex space and Z be a topological space. For
a set-valued mapping (or, say, multimap) F : E — 2Z with nonempty values, if a set-valued
mapping G : D — 27 satisfies F(I'4) C G(A) := |, ., G(y) for all A € (D), then G is called
a KKM mapping with respect to F. A KKM mapping G : D — 2F is a KKM mapping with

yeA
respect to the identity map 1.

Definition 3.3 The partial KKM principle for an abstract convex space (E, D; I') is that, for
any closed-valued KKM mapping G : D — 2%, the family {G(y)},ep has the finite intersec-
tion property. The KKM principle is that the same property also holds for any open-valued
KKM mapping.

An abstract convex space is called a (partial) KKM space if it satisfies the (partial) KKM
principle (resp.). We now give some known examples of (partial) KKM spaces (see Park
[88] and also [89]) as follows.

Definition 3.4 A ¢4-space (X, D; {¢4}ac(p)) consists of a topological space X, a nonempty
set D, and a family of continuous functions ¢4 : A, — 2% (that is, singular n-simplices)
for A € {D} with |A| = n + 1. By putting I'4 := ¢4(A,,) for each A € (D), the triple (X,D;T")
becomes an abstract convex space.

Remark 3.1 Fora¢a-space (X, D;{p4}), we see easily that any set-valued mapping G : D —
2X satisfying ¢4(A;) C G(J) for each A € (D) and J € (A) is a KKM mapping.
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By the definition, it is clear that every ¢,4-space is a KKM space, thus we have the fol-
lowing fact (see Lemma 1 of Park [89]).

Lemma 3.1 Let (X,D;T) be a ¢p4-space and G : D — 2X be a set-valued (multimap) with
nonempty closed [resp. open] values. Suppose that G is a KKM mapping, then {G(a)}.ep
has the finite intersection property.

By following Definition 2.7, we recall that a topological vector space is said to be locally
p-convex if the origin has a fundamental set of absolutely p-convex 0-neighborhoods. This
topology can be determined by p-seminorms which are defined in the obvious way (see
Jarchow [52] or p. 52 of Bayoumi [7]).

Now we have a new KKM space as follows inducted by the concept of p-convexity (see
Lemma 2 of Park [89]).

Lemma 3.2 Suppose that X is a subset of topological vector space E and p € (0,1], and D
is a nonempty subset of X such that C,(D) C X. Let T'y := C,(N) for each N € (D). Then
(X,D;T) is a ¢p4-space.

Proof Since C,(D) C X, T'y is well defined. For each N = {x¢,x1,...,%,} C D, we define ¢y :
A, — Ty by Y 0 tiei—> Y o (t) %x,-. Then, clearly, (X, D;T") is a ¢4 -space. This completes
the proof. O

4 Fixed point theorems for condensing mappings in locally p-convex vector
spaces

In this section, we establish fixed point theorems for upper semicontinuous, single-valued
continuous condensing mappings for p-convex subsets under the general framework of
p-vector spaces, which will be a tool used in Sects. 5 and 6 to establish the best approx-
imation, fixed points, the principle of nonlinear alternative, Birkhoff-Kellogg problems,
Leray—Schauder alternative, which would be useful tools in nonlinear analysis for the study
of nonlinear problems arising from theory to practice. Here, we first gather together nec-
essary definitions, notations, and known facts needed in this section.

Definition 4.1 Let X and Y be two topological spaces. A set-valued mapping (also saying,
multifunction) 7 : X — 2Y is a point to set function such that, for each x € X, T(x) is
a subset of Y. The mapping T is said to be upper semicontinuous (USC) if the subset
TY(B):={x € X: T(x) N B # W} (resp., the set {x € X : T(x) C B}) is closed (resp., open)
for any closed (resp., open) subset B in Y. The function T : X — 2! is said to be lower
semicontinuous (LSC) if the set T~(A) is open for any open subset A in Y.

As an application of the KKM principle for general abstract convex spaces with the help
of embedding lemma for Hausdorff compact p-convex subsets from topological vector
spaces (T'VS) into locally p-convex vector spaces, we have the following general existence
result for the “approximation” of fixed points for upper and lower semicontinuous set-
valued mappings in p-convex vector spaces for 0 < p <1 (see the corresponding related
results given by Theorem 2.7 of Gholizadeh et al. [39], Theorem 5 of Park [89], and related
discussion therein).

The following result was originally given by Yuan [134]; here we provide the sketch of
its proof for the purpose of self-contained reading.
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Theorem 4.1 Let A be a p-convex compact subset of a locally p-convex vector space X,
where 0 < p < 1. Suppose that T : A — 24 is lower (resp. upper) semicontinuous with
nonempty p-convex values. Then, for any given U which is a p-convex neighborhood of
zero in X, there exists xy; € A such that T (xy) N (xy + U) # 9.

Proof Suppose that U is any given element of 4, there is a symmetric open neighborhood
V of zero for which V + V C U in locally p-convex neighborhood of zero. We prove the
results by two cases: T is lower semicontinuous (LSC) and upper semicontinuous (USC).

Case 1, by assuming 7 is lower semicontinuous: As X is a locally p-convex vector space,
suppose that 4l is the family of neighborhoods of 0 in X. For any element U of 4, there
is a symmetric open neighborhood V of zero for which V + V C U. Since A is compact,
so there exist x9,%1,...,%, in A such that A C [J_,(x; + V). By using the fact that A4 is p-
convex, we find D := {by, b, ...,b,} C A for which b; —x; € V foralli € {0,1,...,n}, and we
define C by C:= C,(D) C A. By the fact that T is LSC, it follows that the subset F(b;) := {c €
C:T(c)N(x;+ V) =0} is closed in C (as the set x; + V is open) for each i € {0,1,...,n}. For
any ce C,wehave # # T(c) NA C T(c) NJLy(x; + V), it follows that (), F(b;) = 8. Now,
applying Lemma 3.1 and Lemma 3.2 implies that there is N := {b;), b;,,...,b; } € (D) and
xu € Cyo(N) C A for which wy; ¢ F(N), and so T'(x,) N (xi]. +V)#@forallje{01,...,k}.
As b —x; € V and V + V C U, which imply that Xij + V C b,-/. + U, which means that
T(xu) N (b + U) # 9, it follows that N C {c € C: T'(xy) N (c + U) # ¥}. By the fact that
the subsets C, T'(xy;) and U are p-convex, we have that x;; € {c € C: T'(xy) N (c+ U) # 0},
which means that T'(x;;) N (xy + U) # .

Case 2, by assuming T is upper semicontinuous: We define F(b;) :={ce€ C: T(c) N (x; +
V) = @}, which is then open in C (as the subset x; + V is closed) for each i = 0,1,...,7. Then
the argument is similar to the proof for the case T is USC, and by applying Lemma 3.1 and
Lemma 3.2 again, it follows that there exists x;; € A such that T'(x;) N (xy; + U) # @. This
completes the proof. O

By Theorem 4.1, we have the following Fan—Glicksberg fixed point theorems (Fan [33])
in locally p-convex vector spaces for (0 < p < 1), which also improve or generalize the
corresponding results given by Yuan [133], Xiao and Lu [122], Xiao and Zhu [123, 124]
into locally p-convex vector spaces.

Theorem 4.2 Let A be a p-convex compact subset of a locally p-convex vector space X,
where0 < p < 1. Supposethat T : A — 24 is upper semicontinuous with nonempty p-convex
closed values. Then T has at least one fixed point.

Proof Assume that il is the family of open p-convex neighborhoods of 0 in X, and U € 4,
by Theorem 4.1, there exists x;; € A such that T'(xy) N (xy + U) # ¥. Then there exist
ay, by € A for which by € T(ay) and by € ay + U. Now, two nets {ay} and {by} in
Graph(T), which is a compact graph of mapping T as A is compact and 7 is semicon-
tinuous, we may assume that a;; has a subnet converging to a, and {b;;} has a subnet
converging to b. As 4l is the family of neighborhoods for 0, we should have a = b (e.g., by
the Hausdorff separation property) and a = b € T(b) due to the fact that Graph(T) is close
(e.g., see Lemma 3.1.1 in p. 40 of Yuan [132]), thus the proof is complete. O

For a given set A in vector space X, we denote by “lin(4)” the “linear hull” of A in X.
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Definition 4.2 Let A be a subset of a topological vector space X, and let Y be another
topological vector space. We shall say that A can be linearly embedded in Y if there is a
linear map L : lin(A) — Y (not necessarily continuous) whose restriction to A is a home-
omorphism.

The following embedded Lemma 4.1 is a significant result due to Theorem 1 of Kalton
[53], which says that although not every compact convex set can be linearly embedded in
a locally convex space (e.g., see Kalton et al. [55], and Roberts [100]), but when 0 < p < 1,
each compact p-convex set in topological vector spaces can be considered as a subset of a
locally p-convex vector space, hence every such set has sufficiently many p-extreme points.

Secondly, by property (ii) of Lemma 2.1, each convex subset of a topological vector space
containing zero is always p-convex for 0 < p < 1. Thus it is possible for us to transfer
the problem involving p-convex subsets from topological vector spaces into the locally
p-convex vector spaces, which indeed allows us to establish the existence of fixed points
for upper semicontinuous set-valued mappings for compact p-convex subsets in locally
convex spaces for 0 < p < 1. But we note that by Lemma 2.4 any set-valued mapping with
closed p-convex values in p-spaces for 0 < p < 1 has the zero point as its trivial fixed point,
thus it is essential to study the fixed point and related principle of nonlinear analysis for
single-valued (instead of set-valued) mappings in p-vector spaces as pointed out by Re-
mark 2.5 (see also the discussion in pp. 40—41 given by Yuan [134]).

Indeed, a fixed point theorem for a topological vector space for (single-valued) contin-
uous and condensing mappings given by Theorem 4.5, which will be proved below (also
see Theorem 4.3 essentially due to Ennassik and Taoudi [32]), provides the answer for
Schauder’s conjecture in the affirmative.

Lemma 4.1 Let K be a compact p-convex subset (0 < p < 1) of a topological vector space X.
Then K can be linearly embedded in a locally p-convex topological vector space.

Proof Tt is Theorem 1 of Kalton [53], which completes the proof. g

Remark 4.1 At this point, it is important to note that Lemma 4.1 does not hold for p = 1.
By Theorem 9.6 of Kalton et al. [55], it was shown that the spaces L, = L,(0,1), where
0 < p < 1, contain compact convex sets with no extreme points, which thus cannot be
linearly embedded in a locally convex space, see also Roberts [100].

Now we give the following fixed point theorem for single-valued continuity mappings,
which are essentially Theorem 3.1 and Theorem 3.3 given first by Ennassik and Taoudi
[32]. Here we include the argument for the second part of the conclusions below only.

Theorem 4.3 If K is a nonempty compact p-convex subset of a locally p-convex space E
for 0 < p <1, then the (single-valued) continuous mapping T : K — K has at least a fixed
point. Secondly, if K is a nonempty compact p-convex subset of a Hausdorff topological
vector space E, then the (single-valued) continuous mapping T : K — K has at least a fixed
point.

Proof The first part is Theorem 3.1 of Ennassik and Taoudi [32], and the second part is
indeed Theorem 3.3 of Ennassik and Taoudi [32], but here we include their very smart
proof as follows.
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Case 1: For 0 < p < 1, K is a nonempty compact p-convex subset of a topological vector
space X for 0 < p < 1. By Lemma 4.1, it follows that K can be linearly embedded in a locally
p-convex space E, which means that there exists a linear map L : lin(K) — E whose restric-
tion to K is a homeomorphism. Define the mapping S : L(K) — L(K) by S(x) := L(Tx) for
x € X. This mapping is easily checked to be well defined. The mapping S is continuous
since L is a (continuous) homeomorphism and 7 is continuous on K. Furthermore, the
set L(K) is compact, being the image of a compact set under a continuous mapping L. It
is also p-convex since it is the image of a p-convex set under a linear mapping. Then, by
the conclusion in the first part (see also Theorem 3.1 in [32]), there exists x € K such that
Lx = S(Lx) = L(Tx), thus it implies that x = T'(x) since L is a homeomorphism, which is the
fixed point of 7.

Case 2: For p = 1, taking any point x, € K, let Ky := K — {x}. Now define a new mapping
To : Ko — Ko by To(x) = T(x) — xo for each x € Kj. By the fact that now Kj is p-convex for
any 0 < p <1 by Lemma 2.1(ii), the T} has a fixed point in Ky by the proof in Case 1,so T
has a fixed point in K. The proof is complete. O

Remark4.2 Theorem 4.3 isindeed the result of Theorem 3.1 and Theorem 3.3 (of Ennassik
and Taoudi [32]) for 0 < p < 1 which provides an answer to Schauder’s conjecture under
the TVS. Here we also mention a number of related works and discussion by authors in this
direction, see Mauldin [74], Granas and Dugundji [46], Park [90, 91], and the references
therein.

We recall that for two given topological spaces X and Y, a set-valued mapping 7" : X —
2Y is said to be compact if there is a compact subset set C in Y such that F(X)(= {y €
F(X),x € X}) is contained in C, i.e., F(X) C C. Now we have the following noncompact
version of fixed point theorems for compact set-valued mappings defined on a general
p-convex subset in p-vector spaces for 0 < p < 1.

As an immediate consequence of Theorem 4.2 for p = 1, we have following result for an
upper semicontinuous version in locally convex spaces (LCS).

Theorem 4.4 If K is a nonempty compact convex subset of a locally convex space X, then
any upper semicontinuous set-valued mapping T : K — 25 with nonempty closed convex

values has at least a fixed point.
Proof Apply Theorem 4.2 with p = 1, this completes the proof. d

Theorem 4.4 also improves or unifies corresponding results given by Askoura and
Godet-Thobie [5], Cauty [19], Cauty [20], Chen [27], Isac [51], Li [68], Nhu [76], Okon
[78], Park [91], Reich [99], Smart [114], Yuan [133], Theorem 3.14 of Gholizadeh et al. [39],
Xiao and Lu [122], Xiao and Zhu [123, 124] under the framework of LCS for set-valued
mappings instead of single-valued functions.

In order to establish fixed point theorems for the classes of 1-set contractive and con-
densing mappings in p-vector spaces by using the concept of the measure of noncompact-
ness (or the noncompactness measures), which was introduced and widely accepted in
mathematical community by Kuratowski [63], Darbo [28], and related references therein,
we first need to have a brief introduction for the concept of noncompactness measures
for the so-called Kuratowski or Hausdorff measures of noncompactness in normed spaces
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(see Alghamdi et al. [4], Machrafi and Oubbi [72], Nussbaum [77], Sadovskii [105], Silva et
al. [111], Xiao and Lu [122] for the general concepts under the framework of p-seminorm
or just for locally convex p-convex settings for 0 < p < 1, which will be discussed below,
too).

For a given metric space (X, d) (or a p-normed space (X, || - ||,)), we recall the notions of
completeness, boundedness, relative compactness, and compactness as follows. Let (X, d)
and (Y, d) be two metric spaces and T': X — Y be a mapping (or operator). Then: 1) T is
said to be bounded if for each bounded set A C X, T(A) is bounded set of Y; 2) T is said
to be continuous if for every x € X, the lim,_, » x,, = x implies that lim,_, o T'(x,,) = T; and
3) T is said to be completely continuous if T is continuous and T'(4) is relatively compact
for each bounded subset A of X.

Let A1, Ay C X be bounded of a metric space (X, d), we also recall that the Hausdorff
metric dp(A;,A,) between A; and A; is defined by

dp(Aq,A) = max{ sup inf d(x,y), sup inf d(x,y)}.

xeA) YEA2 yeAy ¥EA1

The Hausdorff and Kuratowski measures of noncompactness (denoted by By and Bk, re-
spectively) for a nonempty bounded subset D in X are the nonnegative real numbers (D)
and Bk (D) defined by

Br (D) :=inf{e > 0: D has a finite €-net},

and

n
Bi(D) := inf[e >0:DC UDi,where D; is bounded and diamD; <e,
i=1

n is an integer } .

Here diam D; means the diameter of the set D;, and it is well known that 8y < Bx < 28y.
We also point out that the notions above can be well defined under the framework of p-
seminorm spaces (E, || - |,)pe by following the similar idea and method used by Chen and
Singh [26], Ko and Tasi [61], Kozlov et al. [62] (see the references therein for more details).

Let T be a mapping from D C X to X. Then we have that: 1) T is said to be a k-
set contraction with respect to Bx (or Bp) if there is a number k € (0,1] such that
Bi(T(A)) < kBi(A) (or By(T(A)) < kBy(A)) for all bounded sets A in D; and 2) T is said
to be Bx-condensing (or B -condensing) if (Bx(T(A)) < Bx(A)) (or Bu(T(A)) < Bu(A)) for
all bounded sets A in D with Bx(A) > 0 (or By (A) > 0).

For the convenience of our discussion, throughout the rest of this paper, if a mapping
“is Bi-condensing (or B -condensing)’, we simply say it is “a condensing mapping” unless
specified otherwise.

Moreover, it is easy to see that: 1) if T'is a compact operator, then T is a k-set contraction;
and 2) if T is a k-set contraction for k € (0,1), then T is condensing.

In order to establish the fixed points of set-valued condensing mappings in p-vector
spaces for 0 < p < 1, we need to recall some notions introduced by Machrafi and Oubbi
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[72] for the measure of noncompactness in locally p-convex vector spaces, which also sat-
isfies some necessary (common) properties of the classical measures of noncompactness
such as S and By mentioned above introduced by Kuratowski [63], Sadovskii [105](see
also related discussion by Alghamdi et al. [4], Nussbaum [77], Silva et al. [111], Xiao and
Lu [122], and the references therein). In particular, the measures of noncompactness in
locally p-vector spaces (for 0 < p < 1) should have the stable property, which means the
measure of noncompactness A is the same by transition to the (closure) for the p-convex
hull of subset A.

For the convenience of discussion, we follow up to use & and S to denote the Kuratowski
and the Hausdorff measures of noncompactness in topological vector spaces, respectively
(see the same way used by Machrafi and Oubbi [72]), unless otherwise stated. The E is used
to denote a Hausdorff topological vector space over the field K € {R,Q}, here R denotes
all real numbers and Q all complex numbers, and p € (0, 1]. Here, the base set of family of
all balanced zero neighborhoods in E is denoted by Y.

We recall that U € % is said to be shrinkable if it is absorbing, balanced, and rli C U
for all € (0, 1), and we know that any topological vector space admits a local base at zero
consisting of shrinkable sets (see Klee [59] or Jarchow [52] for details).

Recall again that a topological vector space E is said to be a locally p-convex space if E has
a local base at zero consisting of p-convex sets. The topology of a locally p-convex space
is always given by an upward directed family P of p-seminorms, where a p-seminorm on
E is any nonnegative real-valued and subadditive functional | - ||, on E such that ||Ax]|, =
[A1P]lx]|, for eachx € Eand A € R (i.e,, the real number line). When E is Hausdorff, then for
every x # 0, there is some p € P such that P(x) # 0. Whenever the family P is reduced to a
singleton, one says that (E, || - ||) is a p-seminormed space. A p-normed space is a Hausdorff
p-seminormed space, and when p = 1, it is the usual locally convex case. Furthermore, a
p-normed space is a metric vector space with the translation invariant metric d,(x,y) :=
lloe — 1|, for all %, ¥ € E, which is the same notation used above.

By Remark 2.5, if P is a continuous p-seminorm on E, then the ball B,(0,s) := {x € E :
P(x) < s} is shrinkable for each s > 0. Indeed, if r € (0,1) and x € m, then there exists a
net (x;);cr C B,(0,s) such that rx; converges to x. By the continuity of P, we get P(x) < r’s <
s, which means that rm C Bp(0,s). In general, it can be shown that every p-convex
U € %Y, is shrinkable.

We recall that given such neighborhood U, a subset A C E is said tobe U-smallif A—A C
U (or small of order U by Robertson [101]). Now, by following the idea of Kaniok [56] in
the setting of a topological vector space E, we use zero neighborhoods in E instead of
seminorms to define the measure of noncompactness in (local convex) p-vector spaces
(0 < p < 1) as follows: For each A C E, the U/-measures of noncompactness «(A) and
Bu(A) for A are defined by:

ay(A) := inf{: r > 0: A is covered by a finite number of rU-small sets A;

fori=1,2,...,n}

and

Bu(A) :=inf{ r > 0: there exists x1,...,x, € E such that A C U(xi +rl) ¢,
i=1
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here we set inf@ := co.

By the definition above, it is clear that when E is a normed space and U is the closed unit
ball of E, oy and B, are nothing else but the Kuratowski measure Sx and Hausdorff mea-
sure By of noncompactness, respectively. Thus, if { denotes a fundamental system of bal-
anced and closed zero neighborhoods in E and §y is the space of all functions ¢ : 4 — R,
endowed with the pointwise ordering, then the ay; (resp., B;) measures for noncompact-
ness introduced by Kaniok [56] can be expressed by the Kuratowski (resp., the Hausdorft)
measure of noncompact «(A) (resp., B(A)) for a subset A of E as the function defined from
$linto [0, 00) by

a(A)U):=auy(d)  (resp., BA)U) = Bu(A)).

By following Machrafi and Oubbi [72], in order to define the measure of noncompact-
ness in (locally convex) p-vector space E, we need the following notions of basic and suf-
ficient collections for zero neighborhoods in a topological vector space. To do this, let us
introduce an equivalence relation on V; by saying that U is related to V, written URV, if
and only if there exist r,s > 0 such that v/ C V C sU. We now have the following defini-

tion.

Definition 4.3 (BCZN) We say that 8 C U, is a basic collection of zero neighborhoods
(in short, BCZN) if it contains at most one representative member from each equivalence
class with respect to fR. It will be said to be sufficient (in short, SCZN) if it is basic and, for
every V € U, there exist some U € B and some r > 0 such that vt/ C V.

Remark 4.3 By Remark 2.5, it follows that for a locally p-convex space E, its base set 1, the
family of all open p-convex subsets for 0 is BCZB. We also note that: 1) In the case E is a
normed space, if f is a continuous functional on E, U := {x € E : |f(x)| < 1}, and V is the
open unit ball of E, then {U/} is basic but not sufficient, but {V'} is sufficient; 2) Secondly, if
(E, 7) is a locally convex space whose topology is given by an upward directed family P of
seminorms, so that no two of them are equivalent, the collection (B,),cp is an SCZN, where
B, is the open unit ball of p. Further, if 20 is a fundamental system of zero neighborhoods
in a topological vector space E, then there exists an SCZN consisting of 20 members; and
3) By following Oubbi [83], we recall that a subset A of E is called uniformly bounded
with respect to a sufficient collection B of zero neighborhoods if there exists r > 0 such
that A C 7V for all V' € *B. Note that in the locally convex space C.(X) := C.(X, K), the set
By :={f € C(X) : |[flloo <1} is uniformly bounded with respect to the SCZN {By, k € K},

where By is the (closed or) open unit ball of the seminorm Py, where k € K.

Now we are ready to give the definition for the measure of noncompactness in a (locally

p-convex) topological vector space E as follows.

Definition 4.4 Let B be an SCZN in E. For each A C E, we define the measure of non-
compactness of A with respect to B by ag (A) := sup, o du(4).

By the definition above, it is clear that: 1) The measure of noncompactness 8 holding
the semi-additivity, i.e., g (A U B) = max{ap (A), v (B)}; and 2) an(A) = 0 if and only if



Yuan Fixed Point Theory Algorithms Sci Eng (2022) 2022:26 Page 18 of 61

A is a precompact subset of E (for more properties in detail, see Proposition 1 and the
related discussion by Machraf and Oubbi [83]).

As we know, under the normed spaces (and even seminormed spaces), Kuratowski [63],
Darbo [28], and Sadovskii [105] introduced the notions of k-set-contractions for k € (0,1)
and the condensing mappings to establish fixed point theorems in the setting of Banach
spaces, normed, or seminormed spaces. By following the same idea, if E is a Hausdorff
locally p-convex space, we have the following definition for general (nonlinear) mappings.

Definition 4.5 A mapping T : C — 2€ is said to be a k-set contraction (resp., condensing)
if there is some SCZN ‘B in E consisting of p-convex sets, such that (resp., condensing)
for any U € B, there exists k € (0, 1) (resp., condensing) such that o (T(A)) < ko (A) for
A C C (resp., ay(T(A)) < ay(A) for each A C C with ay(A) > 0).

It is clear that a contraction mapping on C is a k-set contraction mapping (where we
always mean k € (0,1)), and a k-set contraction mapping on C is condensing; and they
all reduce to the usual cases by the definitions for Sx and By which are the Kuratowski
measure and the Hausdorff measure of noncompactness, respectively, in normed spaces
(see Kuratowski [63]).

From now on, we denote by 2 the set of all shrinkable zero neighborhoods in E, we have
the following result, which is Theorem 1 of Machrafi and Oubbi [72], saying that in the
general setting of locally p-convex spaces, the measure of noncompactness « for U given
by Definition 4.4 is stable from U to its p-convex hull C,(A) of the subset A in E, which is
key for us to establish the fixed points for condensing mappings in locally p-convex spaces
for 0 < p < 1. This also means that it is the key property for the measures due to the Kura-
towski and Hausdorff measures of noncompactness in normed (or p-seminorm) spaces,
which also holds for the measure of noncompactness by Definition 4.4 in the setting of
locally p-convex spaces with (0 < p < 1) (see more similar and related discussion in detail
by Alghamdi et al. [4] and Silva et al. [111]).

Lemma4.2 IfU €0, is p-convex for some 0 < p < 1, then a(C,(A)) = a(A) forevery A C E.
Proof It is Theorem 1 of Machrafi and Oubbi [72]. The proof is complete. O

Now, based on the definition for the measure of noncompactness given by Definition 4.4
(originally from Machrafi and Oubbi [72]), we have the following general extension version
of Schauder, Darbo, and Sadovskii type fixed point theorems in the context of locally p-
convex vector spaces for condensing mappings.

Theorem 4.5 (Schauder fixed point theorem for single-valued condensing mappings) Let
C C E be a complete p-convex subset of a Hausdor(f locally p-convex or Hausdor(f topolog-
ical vector space Ewith 0 <p < 1.If T : C — C is continuous and («) condensing, then T
has a fixed point in C and the set of fixed points of T is compact.

Proof We first prove the conclusion by assuming E is a locally p-convex space, then we
prove the conclusion when E is a topological vector space.

Case A: Assuming E is locally p-convex. In this case, let 5 be a sufficient collection of p-
convex zero neighborhoods in E with respect to which 7' is condensing and for any given
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U € B. We choose some x € C and let § be the family of all closed p-convex subsets A
of C with xp € A and T(A) C A. Note that § is not empty since C € §. Let Ag = ﬂAegA.
Then Ay is a nonempty closed p-convex subset of C such that T(4¢) C Ao, and then the
conclusion follows by Theorem 4.3 for the continuous mapping 7 from Ay to Ay to show
that A is compact. Now we prove Ay is compact. Indeed, let A; = m. Since
T(Ap) C Apand Ay is closed and p-convex, A; C Ag. Hence, T(A;) C T(Ag) C A;. It follows
that A; € § and therefore A; = Ag. Now, by Proposition 1 of Machrafi and Oubbi [72] and
Lemma 4.2 above (i.e., Theorem 1 and Theorem 2 in [72]), we get oy (T (Ao)) = ay(A).
Our assumption on T shows that oy;(Ag) = 0 since T is condensing. As U is arbitrary
from the family 9B, thus Ay is p-convex and compact (see Proposition 4 in [72]). Now, the
conclusion follows by Theorem 4.3. Secondly, let Cy be the set of fixed points of T in C.
Then it follows that Cy C T(Cp), and the upper semicontinuity of 7 implies that its graph
is closed, so is the set Cy. As T is condensing, we have a(T(Cp)) < a;(Co), which implies
that a;(Cp) = 0. As U is arbitrary from the family B, it implies that Cp is compact (by
Proposition 4 in [72] again).

Case B: We now prove the conclusion by assuming E is a topological vector space. Based
on the argument in Case A’s proof above, when T is condensing, there exists a nonempty
compact p-convex subset Ay such that 7': Ao — Ag. We prove the conclusion by consid-
ering two situations: (1) 0<p<1land (2) p=1.

Now, for case (1) 0 < p < 1: By the proof above, A is a nonempty compact p-convex
subset of a topological vector space E. By Lemma 4.1, it follows that Ay can be linearly
embedded in alocally p-convex space X, which means that there exists a linear mapping L :
lin(Ay) — X whose restriction to A isa homeomorphism. Define the mapping S : L(A¢) —
L(Ap) by S(x) := L(Tx) for x € Ay. This mapping is easily checked to be well defined. The
mapping S is continuous (and condensing) since L is a (continuous) homeomorphism and
T is continuous (and condensing) on Ag. Furthermore, the set L(A,) is compact, being the
image of a compact set under a continuous mapping L. It is also p-convex as it is the image
of a p-convex set under a linear mapping. Then, by the conclusion in the first part above
for S on Ay, there exists x € Ag such that Lx = S(Lx) = L(Tx), thus it implies that x = T'(x)
since L is a homeomorphism, which means x is the fixed point of T'.

Now, for case (2) p = 1: take any point xy € Ao, and let Ky := Ag — {x0}. Now define a
new mapping Tp : Ko — Ko by To(x) = T'(x) — x¢ for each x € Ag. By the fact that now Ky
is p-convex for any 0 < p < 1 by Lemma 2.1(ii), the T has a fixed point in Kj by the proof
above for case (1) when 0 < p < 1, so Ty has a fixed point in Ky implies that T has a fixed
point in Ayg.

This completes the proof. d

Remark 4.4 We first note that Theorem 4.5 improves Theorem 4.5 of Yuan [134]. Sec-
ondly, as pointed out by Remark 2.2 (for Theorem 3.1 and Theorem 3.3 given by Ennassik
and Taoudi [32]), Theorem 4.5 above provides an answer to Schauder’s conjecture in the
affirmative way under the general framework of closed p-convex subsets in topological
vector spaces for 0 < p <1 of (single-valued) continuous condensing mappings. Here we
also mention a number of related works and discussion by authors in this direction, see
Mauldin [74], Granas and Dugundji [46], Park [90, 91], and the references therein.
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Following the argument used by Theorem 4.5, we have the following results for upper
semicontinuous set-valued mappings in locally convex spaces as an application of Theo-

rem 4.2.

Theorem 4.6 (Schauder fixed point theorem for upper semicontinuous condensing map-
pings) Let C be a convex subset of a locally convex space E. If T : C — 2€ is upper semi-
continuous, («) condensing with closed convex values, then T has a fixed point in C and
the set of fixed points of T is compact.

Proof By the same argument as in Theorem 4.5 by applying Theorem 4.4. O

As applications of Theorem 4.5, we have the following fixed points for condensing map-

pings in locally p-convex or topological vector spaces for 0 < p < 1.

Corollary 4.1 (Darbo type fixed point theorem) Let C be a complete p-convex subset of a
Hausdor(flocally p-convex space or topological vector space E with0<p <1.IfT:C — C
is a (k)-set-contraction (where k € (0,1)), then T has a fixed point.

Corollary 4.2 (Sadovskii type fixed point theorem) Let (E, | - ||) be a complete p-normed
space and C be a bounded, closed, and p-convex subset of E, where 0 < p < 1. Then every

continuous and condensing mapping T : C — C has a fixed point.

Proof In Theorem 4.5, let B := {B,(0, 1)}, where B,(0, 1) stands for the closed unit ball of
E, and by the fact that it is clear that «(A) = (e (A))” for each A C E. Then T satisfies all
conditions of Theorem 4.5. This completes the proof. O

Corollary 4.3 (Darbo type) Let (E, | - ||) be a complete p-normed space and C be a
bounded, closed, and p-convex subset of E, where 0 < p < 1. Then each single-valued map-
ping T : C — C has a fixed point.

Theorems 4.5 and 4.6 improve Theorem 5 of Machrafi and Oubbi [72] for general con-
densing mappings and also unify corresponding the results in the existing literature, e.g.,
see Alghamdi et al. [4], Gérniewicz [44], Gérniewicz et al. [45], Nussbaum [77], Silva et
al. [111], Xiao and Lu [122], Xiao and Zhu [123, 124], and the references therein.

Before ending this section, we would also like to remark that by comparing with the
topological method or related arguments used by Askoura et al. [5], Cauty [19, 20], Nhu
[76], Reich [99], the fixed points given in this section improve or unify the corresponding
ones given by Alghamdi et al. [4], Darbo [28], Liu [70], Machrafi and Oubbi [72], Sadovskii
[105], Silva et al. [111], Xiao and Lu [122], and those from references therein.

5 Best approximation for the class of single and set-valued 1-set contractive
mappings in locally p-convex spaces

The goal of this section is first to establish one general best approximation result for the

classes of single-valued 1-set continuous and hemicompact (see the definition below) non-

self mappings, which in turn are used as a tool to derive the general principle for the ex-

istence of solutions for Birkhoff-Kellogg problems (see Birkhoff and Kellogg [11]), fixed

points for nonself 1-set contractive mappings.
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Here, we recall that since the Birkhoff—Kellogg theorem was first introduced and proved
by Birkhoft and Kellogg [11] in 1922 in discussing the existence of solutions for the equa-
tion x = AF(x), where X is a real parameter and F is a general nonlinear nonself mapping
defined on an open convex subset U of a topological vector space E, now the general form
of the Birkhoff—Kellogg problem is to find the so-called invariant direction for the non-
linear single-valued or set-valued mappings F, i.e., to find x, € U (or xp € 9U) and . > 0
such that Axg = F(xo) or Axy € F(xp). But the current paper focuses on the study for single-
valued mappings for p-vector spaces for 0 <1 < 1.

Since the Birkhoff and Kellogg theorem given by Birkhoff and Kellogg in 1920s, the study
on the Birkhoft—Kellogg problem has received a lot of scholars’ attention; for example, one
of the fundamental results in nonlinear functional analysis, called the Leray—Schauder
alternative by Leray and Schauder [65] in 1934, was established via topological degree.
Thereafter, certain other types of Leray—Schauder alternatives were proved using differ-
ent techniques other than topological degree, see work given by Granas and Dugundji [46],
Furiand Pera [37] in the Banach space setting and applications to the boundary value prob-
lems for ordinary differential equations, and a general class of mappings for nonlinear al-
ternative of Leray—Schauder type in normal topological spaces, and also Birkhoff-Kellogg
type theorems for general class mappings in TVS by Agarwal et al. [1], Agarwal and O’Re-
gan [2, 3], Park [87]; in particular, recently O’Regan [80] used the Leray—Schauder type
coincidence theory to establish some Birkhoff—Kellogg problem, Furi—Pera type results
for a general class of single-valued or set-valued mappings, too.

In this section, one best approximation result for 1-set contractive mappings in locally
p-convex spaces is first established, it is then used to establish the solution principle for
Birkhoff-Kellogg problems and related nonlinear alternatives. These new results allow
us to give a general principle for Leray—Schauder type and related fixed point theorems
of nonself mappings in locally p-convex spaces for (0 < p < 1). The new results given in
this part not only include the corresponding results in the existing literature as special
cases, but also would be expected to play the fundamental role in the development of
nonlinear problems arising from theory to practice for 1-set contractive mappings under
the framework of p-vector spaces, which include the general topological vector spaces as
a special class.

We also note that the general principles for nonlinear alternative related to Leray—
Schauder alternative and other types under the framework of locally p-convex spaces for
(0 < p < 1) given in this section would be useful tools for the study of nonlinear prob-
lems. In addition, we also note that the corresponding results in the existing literature for
Birkhoff-Kellogg problems and the Leray—Schauder alternatives have been studied com-
prehensively by Granas and Dugundji [46], Isac [51], Kim et al. [57], Park [88-90], Carbone
and Conti [18], Chang et al. [23, 24], Chang and Yen [25], Shahzad [109, 110], Singh [113];
and in particular, many general forms have been recently obtained by O’Regan [81] and
Yuan [134] (see also the references therein).

In order to study the general existence of fixed points for nonself mappings in locally

p-convex spaces, we need some definitions and notations given below.

Definition 5.1 (Inward and outward sets in p-vector spaces) Let C be a subset of a p-

vector space E and x € E for 0 < p < 1. Then the p-inward set I%(x) and the p-outward set
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O’é(x) are defined by

Ig(x):z {x+r(y—x):yeCforanyriO(l)ifOfrg1with(1—r)p+r1’=1;

1\ 1\
or (2) if r > 1 with (—) +(1——) =l}; and
r r

O (x) = {x+r(y—x):yeCf0ranyr§0(1) if 0 < |r| < 1with (1-1|r])" + |l = 1;

1\ 1\’
or (2) if |r] > 1 with (—) + <1——) =1}.
|7 ||

From the definition, it is obvious that when p = 1, both inward and outward sets I’é(x),
O’é(x) are reduced to the definition for the inward set I-(x) and the outward set O¢(x), re-
spectively, in topological vector spaces introduced by Halpern and Bergman [47] and used
for the study of nonself mappings related to nonlinear functional analysis in the literature.
In this paper, we mainly focus on the study of the p-inward set I7,(x) for the best approx-
imation and related to the boundary condition for the existence of fixed points in locally
p-convex spaces. By the special property of p-convex concept for p € (0,1) and p = 1, we

have the following fact.

Lemma 5.1 Let C be a subset of a p-vector space E and x € E for 0 < p < 1. Then, for both
p-inward and outward sets IV.(x) and OF.(x) defined above, we have

(I) when p € (0,1), IZ.(x) = [{x} U C] and O (x) = [{x} U {2x} U -C],

(II) when p =1, in general [{x} U C] C Ilé(x) and [{x} U {2x} U-C] C O’é(x).

Proof First, when p € (0, 1), by the definitions of Ilé(x), the only real number r > 0 satisfy-
ing the equation (1 -r)? +r” =1 forr € [0,1]isr =0 or r = 1, and when r > 1, the equation
(%)P +(1 - %)” = 1 implies that r = 1. The same reason for O’é(x), it follows that r = 0 and
r=-1.

Secondly, when p = 1, all r > 0 and all » < 0 satisfy the requirement of definition for I’é(x)

and Of(x), respectively, thus the proof is complete. d

By following the original idea by Tan and Yuan [117] for hemicompact mappings in met-
ric spaces, we introduce the following definition for a mapping being hemicompact in p-
seminorm spaces for p € (0, 1], which is indeed the “(H) condition” used in Theorem 5.1 to
prove the existence of best approximation results for 1-set contractive mappings in locally

p-convex spaces for p € (0,1].

Definition 5.2 (Hemicompact mapping) Let E be a locally p-convex space for 1 < p < 1.
For a given bounded (closed) subset D in E, a mapping F : D — 2F is said to be hemi-
compact if each sequence {x,},en in D has a convergent subsequence with limit x, such
that xy € F(xo), whenever lim,,_, o dp,, P(x4, F(x,)) = 0 for each U € 4, where dp,P(x,C) :=
inf{Py(x —y) : y € C} is the distance of a single point x with the subset C in E based on Py,
Py, is the Minkowski p-functional in E for U € 4, which is the base of the family consisting

of all open p-convex subsets for 0-neighborhoods in E.
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Remark 5.1 We would like to point out that Definition 5.2 is indeed an extension for a
“hemicompact mapping” defined from a metric space to a (locally) p-convex space with the
p-seminorm, where p € (0,1] (see Tan and Yuan [117]). By the monotonicity of Minkowski
p-functionals, i.e., the bigger 0-neighborhoods, the smaller Minkowski p-functionals’ val-
ues (see also p. 178 of Balachandran [6]). Definition 5.2 describes the converge for the
distance between x,, and F(x,) by using the language of seminorms in terms of Minkowski
p-functionals for each 0-neighborhood in il (the base), which is the family consisting of

its open p-convex 0-neighborhoods in a p-vector space E.

Now we have the following Schauder fixed point theorem for 1-set contractive mappings

in locally p-convex spaces for p € (0, 1].

Theorem 5.1 (Schauder fixed point theorem for single-valued 1-set contractive map-
pings) Let U be a nonempty bounded open subset of a (Hausdorff) locally p-convex space
E and its zero 0 € U, and C C E be a closed p-convex subset of E such that 0 € C with
0<p<1.IF:CNU~— CNU is a continuous and 1-set contractive single-valued map-
ping satisfying the following (H) or (H1) condition:

(H) condition: The sequence {x,}nex in U has a convergent subsequence with limit

%o € U such that xy € F(xo), whenever lim,,_, oo dp,, (%, F(x,)) = 0, where,

dpy (%, F (%)) := Py, — F(x,)}, where Py is the Minkowski p-functional for any

U e 8, which is the family of all nonempty open p-convex subsets of zero in E.

(H1) condition: There exists xo in U with xo = F(xo) if there exists {x,} e in U such

that limy,_, o dp, (%, F(%4)) = 0, where Py is the Minkowski p-functional for any U € 4,

which is the family of all nonempty open p-convex subsets of zero in E.
Then F has at least one fixed point in CN U.

Proof Let U be any element in 4, which is the family of all nonempty open p-convex sub-
sets for zero in E. As the mapping T is 1-set contractive, take an increasing sequence
{X,} such that 0 < A, < 1 and lim,_, A, = 1, where n € N. Now we define a mapping
F,: C — C by F,(x) := A,F(x) for each x € C and n € N. Then it follows that F, is a A,-
set-contractive mapping with 0 < A, < 1. By Theorem 4.5 on the condensing mapping F,
in a p-vector space with p-seminorm P for each # € N, there exists x, € C such that
xy, € Fy(x,) = A,F(x,). As Py is the Minkowski p-functional of U in E, it follows that Py is
continuous as 0 € int({{) = U. Note that for each # € N, A,x,, € U N C, which implies that
xy = r(A,F(x,)) = A,F(x,), thus Py (1, F(x,)) <1 by Lemma 2.2. Note that

Pu(Fls) =) = PulFls) o) = Pu 22250

n

— p _ p
< <1 MA”) Py (AuF (%)) < <1 ﬁ”) ,

which implies that lim,,_, o, Py (F(x,) — x,,) = 0 for all U € .
Now (1) if F satisfies the (H) condition, it implies that the consequence {x,},cn has a

convergent subsequence which converges to x such that xy = F(xg). Without loss of gen-
erality, we assume that lim,,_, c x,, = %9 is with x,, = A,,F(x,;) and lim,,_, o A, = 1. It implies

that xy = lim,,_, o (A,,F(x,)), which means lim,,_, o, F(x,,) = xo.
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(ii) If F satisfies the (H1) condition, then by the (H1) condition it follows that there exists
%o in U such that xq = F(x,), which is a fixed point of F. We complete the proof. d

Theorem 5.2 (Best approximation for single-valued 1-set-contractive mappings) Let U
be a bounded open p-convex subset of a locally p-convex space E (0 < p < 1) with zero
0 € U, and C be a (bounded) closed p-convex subset of E with also zero 0 € C. Assume that
F :1Uﬂ C — C is (single-valued) 1-set contractive, and for each x € dcU with F(x) € C\U,

(PZ(F(x)) - 1)? < Py(F(x) — x) for 0 < p < 1 (this is trivial when p = 1). In addition, if F
satisfies one of the following conditions:
(H) condition: The sequence {x,},cn in U has a convergent subsequence with limit
x0 € U such that xy = F(xo), whenever lim,,_, oo dpy (%, F(x,)) = 0, where
dp, (%, F(x,)) := inf{Py;(x,, — F(x,,)}, where Py is the Minkowski p-functional for any
U e L, which is the family of all nonempty open p-convex subsets containing the zero
inE.
(H1) condition: There exists xo in U with xo = F(xo) if there exists {%,},en in U such
that lim,,_, o dp,; (%4, F(x,)) = 0, where Py is the Minkowski p-functional for any U € 4,
which is the family of all nonempty open p-convex subsets containing the zero in E.
Then we have that there exists xo € C N\ U such that

Pu (F(xo) - X()) = dp()/(),ﬁ N C) = dp(F(xo),I%(xo) N C),

where Py is the Minkowski p-functional of U. More precisely, we have that either () or (II)
holds:
(1) F has a fixed point xo e UNC, i.e.,
0 = Py (F(x0) — x0) = dp(F(x), UN C) = dp(F(xO)’I%(xO) nao),
(II) There exist xg € dc(U) and F(xy) ¢ U with

Py (F(x0) - %0) = dp(F(x0), U N C) = dyy(F(%0), I2:(0) N C) = (P{; (F(xo)) — 1)" > 0.

Proof As E is a locally p-convex space, it suffices to prove that for each open p-convex
subset U in Y (which is the family of all nonempty open p-convex subsets containing the
zero in E), there exists a sequence (x,),ex in U such that lim,,_, o, P (F(x,) — x,) = 0, and
the conclusion follows by applying the (H) condition.

X

Let r: E — U be a retraction mapping defined by r(x) := — foreachx € E,

max{1,(Py; (x))? }
where Py, is the Minkowski p-functional of U. Since the space E's zero0 € U (= intU as U is

open), it follows that 7 is continuous by Lemma 2.2. As the mapping F is 1-set contractive,
take an increasing sequence {A,} such that 0 < &, <1 and lim,_, . A, = 1, where n € N.
Now, for each 7 € N, we define a mapping F, : CNU — C by Fy(x) := A,F or(x) for each x €
C N U. By the fact that C and U are p-convex, it follows that 7(C) C C and r(U) C U, thus
r(CNU) C CNU. Therefore F, is a mapping from U N C to itself. For each n € N, by the
fact that F,, is a A,,-set-contractive mapping with 0 < A, < 1, it follows by Theorem 4.5 for
the condensing mapping that there exists z, € CNU such that F,,(z,) = A,F or(z,). As r(CN
U) c CcNU,letx, = r(z,). Then we have thatx,, € CNU and with x,, = (X,.F,(x,)) such that
the following (1) or (2) holds for each # € N: (1) A,,F,,(x,,) € CNU or (2) A,F,(x,) € C\U.

Now we prove the conclusion by considering the following two cases under the (H) con-
dition and (H1) condition:
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Case (I) For each n € N, A,F(x,) € CNU; or

Case (II) There exists a positive integer # such that A,,F(x,) € C\U.

First, by case (I), for each n € N, 1,F(x,) € U N C, which implies that x,, = r(A,F(x,)) =
AnF(x,), thus Py (A, F(x,)) < 1 by Lemma 2.2. Note that

PU(F(xn)_xn) =PU(F(xn)_xn) =PU(F(xn)_)¥nF(xn)) =PU<

—_ 4 _ p
< (IX:L”) PU()&nF(xn)) = (1)\:”1) ’

which implies that lim,,_, oo Py;(F(x,) — x,) = 0. Now, for any V' € U, without loss of gener-

(1 - )\n))\nF(xn)
)

ality, let Uy = V N U. Then we have the following conclusion:

Pllo (F(xn) _xn) = PL[() (F(xn) _xn) = PLIO (F(xn) - )‘nF(xn)) = PUO(

_ p _ p
< (lk)‘”) Puy (AnF(x)) < (1)\%) ,

n n

(1 - )Ln))"nF(xn)
H)

which implies that lim,,_, oo Py, (F(x,,) — %,) = 0, where Py, is the Minkowski p-functional
of Uy in E.

Now, if F satisfies the (H) condition, if follows that the consequence {x,},cn has a
convergent subsequence, which converges to xy such that xy = F(xg). Without loss of
generality, we assume that lim,_, %, = X9, X, = A,Yy, and lim,_, o X, = 1, and as xp =
lim,,—, oo (A, F(x,)), which implies that F(xp) = lim,_, o F(x,) = 9. Thus there exists xy =
F(xo), thus we have 0 = d,(xo, F(x0)) = d(yo, I N C) = dy(F(x0), 22 (x0) N C) as indeed
xg = F(xo) EHOCCI%(—xo)ﬂC.

If F satisfies the (H1) condition, if follows that there exists xq € U N C with xg = F(xy).
Then we have 0 = Py (F(xo) — xo) = dp(F(x0), UN C) = dp(F(xo),I%(xo) NCQC).

Second, by case (II) there exists a positive integer # such that A,F(x,) € C\U. Then
we have that Py (A,F(x,)) > 1, and also Py (F(x,)) >1 as A, < 1. As x, = r(A,F(x,)) =

%, which implies that Py (x,,) = 1, thus x,, € dc(U). Note that
(Pry(AnF(xn))) P

(Pu(F(x))? —1)F(x,)
Pu(F(x,))?

Py (F(xy) - %) = Pu( ) - (Ph(FGs) - 1)

1 —
By the assumption, we have (P}, (F(x,)) — 1)’ < Py(F(x,) —x) forx € CN U, it follows that

Py(F(x4)) =1 < Py(F(x,)) - sup{Pu(z) :z€ CNU}

<inf{Py(F(x,) —z) :z€ CNU} = dy(F(x,),CNU).

Thus we have the best approximation: Py (F(x,) - x,) = dp(y,, UNC) = (P%, (F(x,)—1)?>0.
Now we want to show that Py;(y, — x,,) = dp(F(x,), U N C) = dp(F(xn),IpU(xo) NC)>0.
By the fact that (I N C) C Ipﬁ(xn) NC, letze Ipﬁ(xn) N CN\(U N C), we first claim that

Py (F(x,)—x,) < Py(F(x,)-z).If not, we have Py (F(x,) —x,) > Py (F(x,)—z). Asz € Ipﬁ(xn) N

C\(U N C), there exists y € U and a nonnegative number ¢ (actually ¢ > 1 as shown soon
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below) with z = x, + c(y — x,,). Since z € C, but z ¢ U N C, it implies that z ¢ . By the
fact that x,, € U and y € U, we must have the constant ¢ > 1; otherwise, it implies that
z(= (1 = ¢)x, + cy) € U, this is impossible by our assumption, i.e., z ¢ U. Thus we have that
¢ > 1, which implies that y = %z +(1- %)xn € C (as both x,, € C and z € C). On the other
hand, as z € I%(x,,) NC\(UNC)and ¢ > 1 with (%)1’ + (1- %)1’ = 11, combining with our
assumption that for each x € dcU and y € F(x,)\U, Pf,(y) -1< Pf,(y —x)forO<p<1,it
then follows that

Pu(FG) -3) = Pu[%(F(xn) _2)+ (1 - %)(F(xn) —xn)}
< [(%)ppu(z-"(xn) -z)+ (1 - %)ppu(z-"(xn) - x,,):|

< Py(F(x,) - x,,),

which contradicts that Py (F(x,) — x,) = dp(F(x,), U N C) as shown above, we know that
y € U N C, we should have Py;(F(x,) — x,) < Py (F(x,) —y)! This helps us to complete the
claim: Py(F(x,) — x,) < Py(F(x,) — z) for any z € Ipﬁ(xn) N C\(U N C), which means that
the following best approximation of Fan type (see [34, 35]) holds:

0 < dp(F(x,), U N C) = Py (F(xy) — %) = dp(F(x,,),Ipﬁ(xn) NnC).

Now, by the continuity of Py, it follows that the following best approximation of Fan type
is also true:

0< PU(F(x,,) —x,,) = dp(F(x,,),U N C) = dp(F(xy,),I%(x,,) n C) = dP(F(x,,),Ipﬁ(xV,) N C);

and we have the conclusion below due to that lim,_, %, = %9 and the continuity of F
(actually xo # F(x0)):

Pu(F(xo) - xo) = dp(F(xo),ﬁ N C) = dp(F(xo),I%(xo) N C)
= dy (F(x0), I2-(x0) N C) = (P} (F(%0)) — 1)° > 0.
This completes the proof. O

Remark 5.2 We note that Theorem 5.2 also improves the corresponding best approxima-
tion for 1-set contractive mappings given by Li et al. [67], Liu [70], Xu [129], Xu et al. [130],
and the results from the references therein; and 3): When p = 1, we have the similar best
approximation result for the mapping F in the locally convex spaces with the outward
set boundary condition below (see Theorem 3 of Park [86] and related discussion in the

references therein).

Although the main focus of this paper studies best approximation, fixed point theo-
rems for single-valued mappings, when a p-vector space E (for p = 1) is a locally convex
space (LCS), we can also have the following best approximation for upper semicontinuous
set-valued mappings by applying Theorem 4.6 with arguments used by Theorem 5.1 and
Theorem 5.2 (see also the discussion given by Yuan [134] and the references therein).
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Theorem 5.3 (Best approximation for USC set-valued mappings in LCS) Let U be a
bounded open convex subset of a locally convex space E (i.e., p = 1) with zero 0 € intU = U
(the interior intU = U as U is open), and let C be a closed p-convex subset of E with also
zero 0 € C. Assume that F : U N C — 2C is a 1-set-contractive upper semicontinuous map-
ping satisfying condition (H) or (H1). Then there exist xo € U N X and y, € F(xo) such that
Py(yo — x0) = dp(yo, U N C) = dp(yo,% N C), where Py is the Minkowski p-functional
of U. More precisely, we have that either (1) or (II) holds:

(I) F has a fixed point xo € U N C, i.e., x9 € F(xo) (so that

Pu(yo —x0) = Pu(yo — %0) = dp(y0, U N C) = d,y(y0, Iz(%) N C) = 0), or
(I) There exist xo € dc(U) and yo € F(xo) with yo &€ U with

Pu(yo —x()) = dp(y(),ﬁ N C) = dp(yo,lﬁ(x()) N C) = dp(y(),IU(x()) N C) > 0.

Proof Following the proof used in Theorem 5.1 and Theorem 5.2, then applying Theo-
rem 4.6 for p = 1, the conclusion follows. This completes the proof. d

Now, by the application of Theorem 5.2 with Remark 5.2 and the argument used in
Theorem 5.2, we have the following general principle for the existence of solutions for
Birkhoff—Kellogg problems in p-seminorm spaces for locally p-convex spaces, where 0 <
p=L

Theorem 5.4 (Principle of Birkhoff-Kellogg alternative) Let U be a bounded open p-
convex subset of a locally p-convex space E (0 < p < 1) with zero 0 € intU = U (the interior
intU as U is open), and let C be a closed p-convex subset of E with also zero 0 € C. Assume
that F:U N C — C is a single-valued 1-set-contractive continuous mapping satisfying the
(H) or (H1) condition. Then F has at least one of the following two properties:

(I) F has a fixed point xy € U N C such that xo = F(xo),

(II) There exist xy € dc(U), F(xo) ¢ U, and » = —L—+ € (0,1) such that xo = MF(xo).
) (Pu(l”(xq))’3

In addition, if for each x € dcU, Pf,(F(x)) -1< PLE[(F(x) —x) for0<p <1 (thisis
trivial when p = 1), then the best approximation between {xo} and F(xy) is given by

1

Py (F(x0) — %0) = dp(F(x0), U N C) = dyy(F(x0), I (x0) N C) = (P (F(x0)) - 1)" > 0.

Proof If (I) is not the case, then (II) is proved by Remark 5.2 and by following the proof
in Theorem 5.2 for case ii): F(xo) ¢ U with F(xo) = f(x0), where f is the restriction of the
continuous retraction r with respect to the set U in E defined in the proof of Theorem 5.2.

Indeed, as F(xo) ¢ U, it follows that P (F(xo)) > 1 and xo = f(F(x0)) = F(xo)%. Now,
(P (F(x0)) P
let A = —1—, we have A < 1 and xy = AF(xp). Finally, the additionally assumption in (II)
Py (F(xo)?
allows us to have the best approximation between x¢ and F(x() obtained by following the
proof of Theorem 5.2 as Py;(F(xo) — xo) = dp(F(x0), UNC) = dp(F(xo),I%(xo) N C) > 0. This

completes the proof. d

As an application of Theorem 5.3 for the nonself upper semicontinuous set-valued map-
pings discussed in Theorem 5.4, we have the following general principle of Birkhoff—

Kellogg alternative in locally convex spaces.
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Theorem 5.5 (Principle of Birkhoff-Kellogg alternative in LCS) Let U be a bounded open
p-convex subset of an LCS E with the zero 0 € U and C be a closed convex subset of E with
also zero 0 € C. Assume that F : U N C — 2 is a set-valued 1-set contractive and upper
semicontinuous mapping satisfying the (H) or (H1) condition. Then it has at least one of
the following two properties:
(I) F has a fixed point xy € U N C such that xy € F(xy),
(I) There exist xo € dc(U) and yo € F(xo) with yo & U and ) € (0,1) such that xo = Ayo,
and the best approximation between {xo} and F(xo) is given by
Py (yo —x0) = dp(yo, UNC) = dp(yo,lpﬁ(xo) NC)>0.

On the other hand, by the proof of Theorem 5.2, we note that for case (II) of Theorem 5.2,

1 1
the assumption “each x € dcU with P/, (F(x) — 1 < P/, (F(x) — x)” is only used to guarantee
the best approximation “Py;(F(xo) — xo) = dp(F(x0), UNC) = dp(F(xo),I%(xo) NC) > 0’ thus
we have the following Leray—Schauder alternative in p-vector spaces, which, of course,

includes the corresponding results in locally convex spaces as special cases.

Theorem 5.6 (Leray—Schauder nonlinear alternative) Let C be a closed p-convex subset
of p-seminorm space E with 0 < p <1 and the zero 0 € C. Assume that F: C — C isa
single-valued 1-set contractive and continuous mapping satisfying the (H) or (H1) condition
above. Let ¢(F) := {x € C: x = AF(x) for some 0 < A < 1}. Then either F has a fixed point in
C or the set s(F) is unbounded.

Proof We prove the conclusion by assuming that F has no fixed point, then we claim that
the set ¢(F) is unbounded. Otherwise, assume that the set ¢(F) is bounded and that P
is the continuous p-seminorm for E, then there exists r > 0 such that the set B(0,r) :=
{x € E : P(x) < r}, which contains the set &(F), i.e., ¢(F) C B(0,r), which means, for any
x € g(F), P(x) < r. Then B(0.r) is an open p-convex subset of E and the zero 0 € B(0,r)
by Lemma 2.2 and Remark 2.4. Now, let U := B(0,r) in Theorem 5.4. It follows that the
mapping F : B(0,r) N C — C satisfies all general conditions of Theorem 5.4, and we have
that any xo € dcB(0,7), no any A € (0,1) such that xo = LF(xo). Indeed, for any x € e(F), it
follows that P(x) < r as ¢(F) C B(0,7), but for any x¢ € 3¢B(0,r), we have P(xy) = r, thus
conclusion (II) of Theorem 5.4 does not hold. By Theorem 5.4 again, F must have a fixed
point, but this contradicts our assumption that F is fixed point free. This completes the
proof. d

Now, assume a given p-vector space E equipped with the P-seminorm (by assum-
ing it is continuous at zero) for 0 < p < 1, then we know that P: E — R*, P71(0) = 0,
P(rx) = |APP(x) for any x € E and A € R. Then we have the following useful result for
fixed points due to Rothe and Altman types in p-vector spaces, in particular, for locally
p-convex spaces, which plays an important role in optimization problems, variational in-
equalities, and complementarity problems (see Isac [51] or Yuan [133] and the references
therein for related study in detail).

Corollary 5.1 Let U be a bounded open p-convex subset of a locally p-convex space E and
zero 0 € U, plus C is a closed p-convex subset of E with U C C, where 0 < p < 1. Assume
that F: U — C is a single-valued 1-set contractive continuous mapping satisfying the (H)
or (H1) condition. If one of the following is satisfied:
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(1) (Rothe type condition): Py (F(x)) < Py(x) forx € 0U;

(2) (Petryshyn type condition): Py (F(x) u(F( for xedl;

(3) (Altman type condition): |Py(F(x))|? < [Py(F (x)) x)]P + [Py (x)]? forx eol;
then F has at least one fixed point.

)2

Proof By conditions (1), (2), and (3), it follows that the conclusion of (II) in Theorem 5.4
“there exist xg € dc(U) and A € (0,1) such that xy # AF(x9)” does not hold, thus by the
alternative of Theorem 5.4, F has a fixed point. This completes the proof. g

By the fact that for p = 1, when a p-vector space is a locally convex space, we have the fol-
lowing classical Fan’s best approximation (see [34]), which is a powerful tool for nonlinear
functional analysis in supporting the study in optimization, mathematical programming,
games theory, and mathematical economics, and other related topics in applied mathe-

matics.

Corollary 5.2 (Fan’s best approximation in LCS) Let U be a bounded open convex sub-
set of a locally convex space E with the zero 0 € U and C be a closed convex subset of
E with also zero 0 € C, and assume that F: U N C — C is a set-valued 1-set contrac-
tive and continuous mapping satisfying the (H) or (H1) condition. Assume Py to be the
Minkowski p-functional of U in E. Then there exists xo € U N X such that Py (F(xo) — o) =
dp(F(x), UNC) = d, (F(xo),% N C). More precisely, we have that either (1) or (1) holds:

() F has a fixed point xog € UNC, i.e., xy = F(xo) (so that

0 = Py (F(xo) — x0) = dp(F(x0), U N C) = dyy(F(x0), Iz (0) N C));
(II) There exist xy € dc(U) and F(xo) ¢ U with

PU(F(xo) —xo) = dp(F(xo),U N C) =d, (F(xo),lg(xo) N C) = PU(F(xo)) -1>0.

Proof When p = 1, it automatically satisfies the mequahtyP (x)-1< P%, (F(x) —x). Now
if F has no fixed points, by Theorem 5.4, indeed we have that for xy € dc(U), Py (F(xo) —
%0) = dp(F(x0), UNC) = dp(F(xo),m N C) = Py(F(xo) — 1. The conclusions are given by
Theorem 5.2 (or Theorem 5.3). The proof is complete. g

We would like to point out that similar results on the Rothe and Leray—Schauder alter-
native have been developed by Isac [51], Park [85], Potter [97], Shahzad [109, 110], Xiao
and Zhu [124], Yuan [134], and the related references therein as tools of nonlinear analysis

in p-vector spaces.

6 Nonlinear alternatives principle for the class of single-valued 1-set class
contractive mappings

As applications of results in Sect. 5, we now establish general results for the existence of

solutions for the Birkhoff-Kellogg problem and the principle of Leray—Schauder alterna-

tives in locally p-convex spaces for 0 < p < 1.

Theorem 6.1 (Birkhoff—Kellogg alternative in locally p-convex spaces) Let U be a
bounded open p-convex subset of a locally p-convex space E (where 0 < p < 1) with the
zero 0 € U, let C be a closed p-convex subset of E with also zero 0 € C, and assume that
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F:UNC —> C is asingle-valued 1-set contractive and continuous mappzng satisfying con-
dition (H) or (H1). In addition, for each x € 3c(U), P" L(Fx)—1< PZ(F(x) -x)forO<p<1
(this is trivial when p = 1), where Py is the Minkowski p-functional of U. Then we have
that either (1) or (II) holds:
(I) There exists xo € UN C; or
(II) There exists xo € dc(U) with F(xo) ¢ U and . > 1 such that Axo = F(xo), i.e.,
F(xo) € {Axg: A >1} # 0.

Proof By following the argument and symbols used in the proof of Theorem 5.2, we have
that either

(1) F has a fixed point xo € U N C; or

(2) There exist xg € dc(U) and xo = f(F(x0)) such that

Py (F(xo) — x0) = dp(F(x0), U N C) = dy, (F(x0), Iz (x0) N C) = Py(F(x0) — 1 >0,
where 9¢(U) denotes the boundary of U relative to C in E, and f is the restriction of the

continuous retraction r with respect to the set U in E defined in the proof of Theorem 5.2.
If F has no fixed point, then (2) holds and xy # F(xo). As given by the proof of Theo-

rem 5.2, we have that F(xy) ¢ U, thus Py (F(xo)) > 1 and xo = f(F(xo)) = & , which
(Pu(F(xo))

means F(xg) = (PU(F(xo))Pxo Let A = (PU(F(xO)))P then A > 1, and we have Axg = F(xo).

This completes the proof. d

Theorem 6.2 (Birkhoft—Kellogg alternative in LCS) Let U be a bounded open convex sub-
set of a locally convex space E with the zero 0 € U, let C be a closed convex subset of E
with also zero 0 € C, and assume that F : U N C — C is a 1-set contractive and continuous
mapping satisfying condition (H) or (H1). Then we have that either (1) or (II) holds:
(I) There exists xo € U N C such that xy = F(xy); or
(1) There exists xo € dc(U) with F(xo) ¢ U and ) > 1 such that Axo = F(x,), i.e.,
F(xo) € {Axg: A >1} #0.

1 1
Proof When p = 1, it automatically satisfies the inequality P}, (F(x)) — 1 < P[;(F(xo) — %),
and indeed we have that for x, € dc(U), we have Py (F(xq) — xo) = dp(EF(x), U N C) =
dy(F(x0), Wz(x0) N C) = Py (F(x0)) — 1. The conclusions are given by 5.4. The proof is com-
plete. d

Indeed, we have the following fixed points for nonself mappings in p-vector spaces for
0 < p <1 under different boundary conditions in locally p-convex spaces.

Theorem 6.3 (Fixed points of nonself mappings in a locally p-convex space) Let U be a
bounded open p-convex subset of a locally p-convex space E (where 0 < p < 1) with the
zero 0 € U, let C be a closed p-convex subset of E with also zero 0 € C, and assume that
F:UNC — Cisa l-set contractive and continuous mappmg satisfying condition (H) or

(H1). In addition, for each x € dc(U), P” L(Flx)-1< P” [(F(x) — x) for 0 < p <1 (this is
trivial when p = 1), where Py is the Minkowski p-functional of U. If F satisfies any one of
the following conditions for any x € 9c(U)\F(x):

(i) Py(F(x) —z) < Py(F(x) —x) for some z € % NC;
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(i) There exists A with |A| < 1 such that dx + (1 — M)F(x) € Iz(x) N C;
(iii) F(x) € Iglx) N C;
(iv) Fix)e{dx:A>1}=0;
) FOU)cUNC;
(V) Pu(F(x) %) # (PulF () — 13
then F must have a fixed point.

Proof By following the argument and symbols used in the proof of Theorem 5.2 (see also
Theorem 5.4), we have that either

(1) F has a fixed point xo € U N C; or

(2) There exists xg € dc(U) with xg = f(F(xo)) such that

Pu(F(xO) - x()) = dp(F(Xo),U N C) = dp(F(x()),Iﬁ(xo) N C) = Pu(F(X())) -1> 0,

where 9¢(U) denotes the boundary of U relative to C in E, and f is the restriction of the
continuous retraction r with respect to the set U in E.

First, suppose that F satisfies condition (i). If F has no fixed point, then (2) holds and
%0 # F(xo). Then, by condition (i), it follows that Py (F(xo) — z) < Py (F(x0) — %0) for some
z € I7(x) N C, this contradicts with the best approximation equations given by (2), thus F
mush have a fixed point.

Second, suppose that F satisfies condition (ii). If F has no fixed point, then (2) holds and
%0 # F(x0). Then by condition (ii), there exists A > 1 such that Axo + (1 —X)F(xo) € Igmﬁ C.
It follows that

Py (F(xo) — %0) < Pu(F(xo) — (Ao + (1 = AF(x0)) = Py (A (F(x0) — %0))

= [APPy (F(xo) — %0) < Pu(F(x0) — %o)

this is impossible, and thus F must have a fixed point in I/ N C.
Third, suppose that F satisfies condition (iii), i.e., F(x) € I7(x) N C; then by (2) we have

that P (F(xo) — x0), and thus x¢ = F(x¢), which means F has a fixed point.
Fourth, suppose that F satisfies condition (iv). If F has no fixed point, then (2) holds and
x0 # F(xo). As given by the proof of Theorem 5.2, we have that F(xlo) ¢ U, thus Py (F(x0)) > 1
>

and xg = f(F(x)) = %, which means F(xg) = (Py (F(x0)))? xo, where (Py;(F(xo)))
(Pu(F(x0)) ? —
1, this contradicts assumption (iv), thus F must have a fixed point in &/ N C.

>
1
r

Fifth, suppose that F satisfies condition (v), then xg # F(xo). As xg € dcU, now by con-
dition (v), we have that F(dU) C U N C. It follows that for F(x,) we have F(xo) € U N C,
thus F(xo) ¢ U\ N C, which implies that 0 < Py;(F(xo) — x0) = dp(F(xo), U N C) = 0, this
is impossible, thus F must have a fixed point. Here, like pointed out by Remark 5.2,
we know that based on condition (v), the mapping F has a fixed point by applying
F(IBLI) cun Clis enough, not needing the general hypothesis: “for each x € dc(U),
PL(F(x)) =1 < P (F(x) —x) for0<p < 1"

Finally, suppose that F satisfies condition (vi). If F has no fixed point, then (2) holds and
xo # F(x0). Then condition (v) implies that Py (F(xo) — x0) # ((PU(F(xO))I% — 1)7, but our
proof in Theorem 5.2 shows that Py (F(xg) — xo) = ((PU(F(xo)))P% — 1), this is impossible,
thus F must have a fixed point. Then the proof is complete. d
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Now, by taking the set C in Theorem 6.1 as the whole locally p-convex space E itself,
we have the following general results for nonself continuous mappings, which include the
results of Rothe, Petryshyn, Altman, and Leray—Schauder type fixed points as special cases
in locally convex spaces.

Taking p = 1 and C = E in Theorem 6.3, we have the following fixed points for non-
self single-valued mappings in locally convex spaces (LCS), and the corresponding results
for upper semicontinuous set-valued mappings are discussed by Yuan [134] and related

references therein.

Theorem 6.4 (Fixed points of nonself mappings with boundary conditions) Let U be a
bounded open convex subset of the LCS E with the zero 0 € U, and assume that F : U — E
is a 1-set contractive and continuous mapping satisfying condition (H) or (H1). If F satisfies
any one of the following conditions for any x € 3(U)\ F(x):
(i) Pu(F(x)—2) < Py(F(x) —x) for some z € I7(x);

(ii) There exists A with |\| < 1 such that Ax + (1 — L)F(x) € %;

(i) F(x) € I(x);

(iv) Fx) e {(Ax: A >1}=0;

v) FOW)cU;

(vi) Py(F(x) - x) # Pu(F(x)) - 1;
then F must have a fixed point.

In what follows, based on the best approximation theorem in p-seminorm space, we will
also give some fixed point theorems for nonself mappings with various boundary condi-
tions which are related to the study for the existence of solutions for PDE and differen-
tial equations with boundary problems (see Browder [15], Petryshyn [93, 94], Reich [99]),
which would play roles in nonlinear analysis for a p-seminorm space as shown below.

First, as discussed by Remark 5.2, the proof of Theorem 5.2 with the strongly boundary
condition “F(3(U)) C U N C” only, we can prove that F has a fixed point, thus we have the
following fixed point theorem of Rothe type in p-vector spaces.

Theorem 6.5 (Rothe type) Let U be a bounded open p-convex subset of a locally p-convex
space E (where 0 < p < 1) with the zero 0 € U. Assume that F : U — E is a 1-set contractive
and continuous mapping satisfying condition (H) or (H1) and such that F(3(U)) C U, then
F must have a fixed point.

Now, as applications of Theorem 6.5, we give the following Leray—Schauder alternative
in locally p-convex spaces for nonself mappings associated with the boundary condition
which often appear in the applications (see Isac [51] and the references therein for the
study of complementary problems and related topics in optimization).

Theorem 6.6 (Leray—Schauder alternative in locally p-convex spaces) Let E be a locally
p-convex space E, where 0 < p <1, B C E is a bounded closed p-convex such that 0 € int B.
Let F: [0,1] x B— E be 1-set contractive and continuous, satisfying condition (H) or (H1),
and such that the set F([0,1] x B) is relatively compact in E. If the following assumptions
are satisfied:

(1) x #F(¢,x) forallx ¢ 9B and t € [0,1],

(2) F({0} x 3B) C B,
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then there is an element x* € B such that x* = F(1,x¥).

Proof For n € N, we consider the mapping

F,(x) = K LI:’:(’C), pr(x))’ if1-€e<Ppx) <1, )
’ F(1 if Pg(x) <1 —¢,,

) Toe, )
where Pp is the Minkowski p-functional of B and {¢,},cn is a sequence of real numbers
such thatlim,_, €, =0and 0 < ¢, < % for any # € N, and we also observe that the mapping
F, is 1-set contractive continuous with nonempty closed p-convex values on B. From as-
sumption (2), we have that F,,(dB) C B, and the assumptions of Theorem 6.5 are satisfied,
then for each # € N, there exists an element u,, € B such that u,, = F,(u,).

We first prove the following statement: “It is impossible to have an infinite number of
the elements u,, satisfying the following inequality: 1 — ¢, < Pg(u,) <1”

If not, we assume to have an infinite number of the elements u,, satisfying the following
inequality:

1_6;1 SPB(MM)Sl

As F,(B) is relatively compact and by the definition of mappings F,, we have that {u,},cn
is contained in a compact set in E. Without loss of generality (indeed, each compact set is

%(””) for each n € N.

also countably compact), we define the sequence {¢,},cn by ¢, :=
Then we have that {¢,},ecn C [0,1], and we may assume that lim, . ¢, = £ € [0,1]. The
corresponding subsequence of {u,},cn is denoted again by {u,},cn, and it also satisfies
the inequality 1 — €, < Pp(u,,) <1, which implies that lim,,_, oc Pp(u,) = 1.

Now let #* be an accumulation point of {u,},cxn, thus we have lim,,_, 5 (¢,, %, u,) =
(¢, u*, u*). By the fact that F is compact, we assume that u, = F(¢,, %) foreach n € N. It
follows that u* = F(t, u*), this contradicts with assumption (1) as we have lim,,_, o, Pg(u,,) =
1 (which means that u* € 9B, this is impossible).

Thus it is impossible “to have an infinite number of elements u,, satisfy the inequality
1-€, < Pg(u,) < 1’,which means that there is only a finite number of elements of sequence
{tn}nen satisfying the inequality 1 — €, < Pg(u,) < 1. Now, without loss of generality, for

n € N, we have the following inequality:
Pg(u,) <1—¢,.

By the fact thatlim,,. (1-€,) = 1, u, € F(1, I”T”é) for all # € N and assume that lim,,_, u,, = u*,
then the continuity of F with nonempty closed values implies that by u,, = F(1, {2 ) for each

n €N, u* = F(1,u*). This completes the proof. d

As a special case of Theorem 6.6, we have the following principle for the implicit form
of Leray—Schauder type alternative in locally p-convex spaces for 0 < p < 1.

Corollary 6.1 (Implicit Leray—Schauder alternative) Let E be a locally p-convex space E,
where 0 < p <1, B C E be a bounded closed p-convex such that 0 € intB. Let F : [0,1] x
B — E be 1-set contractive and continuous, satisfying condition (H) or (H1), and let the set
F([0,1] x B) be relatively compact in E. If the following assumptions are satisfied:
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(1) E({0} x 3B) C B,
(2) x #F(0,x) for all x € 9B,
then at least one of the following properties is satisfied:
(i) There exists x* € B such that x* = F(1,x%); or
(ii) There exists (\*,x*) € (0,1) x B such that x* = F(A*,x*).

Proof Theresultisanimmediate consequence of Theorem 6.6, this completes the proof. ]

We would like to point out that similar results on Rothe and Leray—Schauder alterna-
tive have been developed by Furi and Pera [37], Granas and Dugundji [46], Gérniewicz
[44], Gbrniewicz et al. [45], Isac [51], Li et al. [67], Liu [70], Park [85], Potter [97], Shahzad
[109, 110], Xu [129], Xu et al. [130], and related references therein as tools of nonlin-
ear analysis in the Banach space setting and applications to the boundary value problems
for ordinary differential equations in noncompact problems, a general class of mappings
for nonlinear alternative of Leray—Schauder type in normal topological spaces, and some
Birkhoff—Kellogg type theorems for general class mappings in topological vector spaces
are also established by Agarwal et al. [1], Agarwal and O’Regan [2, 3], Park [87] (see the ref-
erences therein for more details); and in particular, recently O’Regan [80] used the Leray—
Schauder type coincidence theory to establish some Birkhoff—Kellogg problem, Furi—Pera
type results for a general class of 1-set contractive mappings.

Before closing this section, we would like to share with readers that as the application of
the best approximation result for 1-set contractive mappings, we just establish some fixed
point theorems and the general principle of Leray—Schauder alternative for nonself map-
pings, which seem to play important roles in the nonlinear analysis under the framework
of locally p-convex (seminorm) spaces, as the achievement of nonlinear analysis under the
framework for underling locally topological vector spaces, normed spaces, or in Banach

spaces.

7 Fixed points for the class of 1-set contractive mappings
In this section, based on the best approximation Theorem 5.2 for classes of 1-set con-
tractive mappings developed in Sect. 5, we show how it can be used as a useful tool to
establish fixed point theorems for nonself upper semicontinuous mappings in locally p-
convex (seminorm) spaces for p € (0,1], which include norm spaces, uniformly convex
Banach spaces as special classes.

By following Browder [15], Li [66], Goebel and Kirk [41], Petryshyn [93, 94], Tan and
Yuan [117], Xu [129] and the references therein, we recall some definitions for p-seminorm
spaces, where p € (0,1].

Definition 7.1 Let D be a nonempty (bounded) closed subset of locally p-convex spaces
(E, || - llp), where p € (0,1]. Suppose that f : D — X is a (single-valued) mapping, then: (1)
f is said to be nonexpansive if for each x,y € D, we have |[f(x) —f()l, < llx = ylip; (2) f
(actually, (I —f)) is said to be demiclosed (see Browder [15]) at y € X if for any sequence
{*4}nen in D, the conditions x,, — xo € D weakly and (I — f)(x,) — yo strongly imply that
(I =f)(x0) = yo, where I is the identity mapping; (3) f is said to be hemicompact (see p. 379
of Tan and Yuan [117]) if each sequence {x,},cn in D has a convergent subsequence with
the limit xy such that xy = f(xo), whenever lim,,_, . d,(x,,,f(x,)) = 0, here dp(x,,f(x,)) :=
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inf{Py(x, — z) : z € f(x,)}, and Py, is the Minkowski p-functional for any U € 4, which is
the family of all nonempty open p-convex subsets containing the zero in E; (4) f is said
to be demicompact (by Petryshyn [93]) if each sequence {x,},cn in D has a convergent
subsequence whenever {x, — f(x,)},cn is a convergent sequence in X; (5) f is said to be
a semiclosed 1-set contractive mapping if f is 1-set contractive mapping, and (I —f) is
closed, where I is the identity mapping (by Li [66]); and (6) f is said to be semicontractive
(see Petryshyn [94] and Browder [15]) if there exists a mapping V : D x D — 2% such that
f(x) = V(x,x) for each x € D, with (a) for each fixed x € D, V(-,x) is nonexpansive from D
to X; and (b) for each fixed x € D, V(x, -) is completely continuous from D to X, uniformly
for u in a bounded subset of D (which means if v; converges weakly to v in D and ; is a

bounded sequence in D, then V (i, v;) — V(u;,v) — 0, strongly in D).

From the definition above, we first observe that definitions (1) to (6) for set-valued map-
pings can be given in a similar way with the Hausdorff metric H (we omit their detailed
definitions here to save space). Secondly, if f is a continuous demicompact mapping, then
(I —f) is closed, where I is the identity mapping on X. It is also clear from the definitions
that every demicompact map is hemicompact in seminorm spaces, but the converse is not
true by the example in p. 380 by Tan and Yuan [117]. It is evident that if f is demicom-
pact, then I — f is demiclosed. It is known that for each condensing mapping f, when D or

f(D) is bounded, then f is hemicompact; and also f is demicompact in metric spaces by
Lemma 2.1 and Lemma 2.2 of Tan and Yuan [117], respectively. In addition, it is known
that every nonexpansive map is a 1-set-contractive mapping; and also if f is a hemicompact
1-set-contractive mapping, then f is a 1-set-contractive mapping satisfying the following
(H1) condition (which is the same as “condition (H1)” in Sect. 5, but slightly different from
condition (H) used there in Sect. 5):

(H1) condition: Let D be a nonempty bounded subset of a space E and assume

F:D — 2F to be a set-valued mapping. If {x,},en is any sequence in D such that for

each x, there exists y, € F(x,) with lim,_, (%, — ¥,) = 0, then there exists a point

x € D such that x € F(x).

We first note that the “(H1) condition” above is actually the same as the “condition (C)”
used by Theorem 1 of Petryshyn [94]. Secondly, it was shown by Browder [15] that indeed
the nonexpansive mapping in a uniformly convex Banach space X enjoys condition (H1)

as shown below.

Lemma 7.1 Let D be a nonempty bounded convex subset of a uniformly convex Banach
space E. Assume that F : D — E is a nonexpansive (single-valued) mapping, then the map-
ping P:= I — F defined by P(x) := (x — F(x)) for each x € D is demiclosed, and in particular,
the “(H1) condition” holds.

Proof By following the argument given in p. 329 (see the proof of Theorem 2.2 and Corol-
lary 2.1) by Petryshyn [94], the mapping F is demiclosed (which actually is called Browder’s
demiclosedness principle), which says that by the assumption of (H1) condition, if {x,,},en
is any sequence in D such that for each x, there exists y,, € F(x,) with lim,_, o (%, — y,) = 0,
then we have 0 € (I — F)(D), which means that there exists x, € D with 0 € (I — F)(xo), this
implies that xy € F(xo). The proof is complete. d
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Remark 7.1 When a p-vector space E is with a p-norm, then the “(H) condition” satisfies
the “(H1) condition” The (H1) condition is mainly supported by the so-called demiclosed-
ness principle after the work by Browder [15].

By applying Theorem 5.2, we have the following result for nonself mappings in p-
seminorm spaces for p € (0, 1].

Theorem 7.1 Let U be a bounded open p-convex subset of a locally p-convex (or seminorm)
space E (0 < p < 1) with the zero 0 € U. Assume that F : U — E is a 1-set contractive and
continuous mapping satisfying condition (H) or (H1) above. In addition, for any x € dU, we
have Ax # F(x) for any X > 1 (i.e., the “Leray—Schauder boundary condition”), then F has at
least one fixed point.

Proof By Theorem 5.2 with C = E, it follows that we have that either (I) or (II) holds:
(I) F has a fixed point xg € U, i.e., Py (F(xg) — %) = 0.

1

(II) There exists xg € o(U) with Py (F(xo) — xo) = (Pf,(F(xo)) -1 >0.
If F has no fixed point, then (II) holds and x # F(xo). By the proof of Theorem 5.2, we

have that xq = f(F(x0)) and F(xo) ¢ U. Thus Py (F(xo)) > 1 and xo = f(F(xo)) = %
(Pu(F(xo))?

which means F(xg) = (Py;(F (xo)))l%xo, where (P (F (xo)))l%' > 1, this contradicts the assump-

’

tion. Thus F must have a fixed point. The proof is complete. O

By following the idea used and developed by Browder [15], Li [66], Li et al. [67], Goebel
and Kirk [41], Petryshyn [93, 94], Tan and Yuan [117], Xu [129], Xu et al. [130] and the
references therein, we have a number of existence theorems for the principle of Leray—
Schauder type alternatives in locally p-convex spaces or p-seminorm spaces (E, | - ||,) for
p € (0,1] as follows.

Theorem 7.2 Let U be a bounded open p-convex subset of a p-seminorm space (E, || - |5)
(0<p < 1) withthezero0 e U.Assumethat F : U — E is a 1-set contractive and continuous
mapping satisfying condition (H) or (H1). In addition, there exist @ > 1, B > 0 such that, for
each x € dU, we have that for any y € F(x), ||y — xllz/p > ||y||§7a+ﬂ)/p||x||;ﬂ/p - ||x||Z/p. Then F
has at least one fixed point.

Proof We prove the conclusion by showing that the Leray—Schauder boundary condition
in Theorem 7.1 does not hold. If we assume F has no fixed point, by the boundary condi-
tion of Theorem 7.1, there exist xo € dU, Ao > 1 such that F(xg) = Aoxo.

Now, consider the function f defined by f(¢) := (t — 1)* — t**# + 1 for t > 1. We observe
that f is a strictly decreasing function for £ € [1,00) as the derivative of f'(¢) = a(t — 1)*! —
(a + B)t**#~1 < 0 by the differentiation, thus we have t**# — 1 > (¢ — 1)* for ¢ € (1,00).
By combining the boundary condition, we have that ||F(x,) — x0||z/p = || Aoxo — xollglp =
(ho = D% llxolly” < (g™ = Dllxolly™" o1, = 1E@o) 15" llxoll,”" ~ ol which
contradicts the boundary condition given by Theorem 7.2. Thus, the conclusion follows
and the proof is complete. O

Theorem 7.3 Let U be a bounded open p-convex subset of a p-seminorm space (E, | - ||,))
(0 < p < 1) withthezero0 e U. Assumethat F : U — E is a 1-set contractive and continuous
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mapping satisfying condition (H) or (H1). In addition, there exist « > 1, B > 0 such that,
for each x € 3T, we have that |F(x) + x||S "7 < |[F@)|57 %1157 + 1121+, Then F has

at least one fixed point.

Proof We prove the conclusion by showing that the Leray—Schauder boundary condition
in Theorem 7.1 does not hold. If we assume F has no fixed point, by the boundary condi-
tion of Theorem 7.1, there exist x € dU and A¢ > 1 such that F(xg) = Aoxo.

Now, consider the function f defined by £(¢) := (£ + 1)*# — % — 1 for ¢t > 1. We then can
show that f is a strictly increasing function for ¢ € [1,00), thus we have t* + 1 < (¢ + 1)**#
for t € (1, 00). By the boundary condition given in Theorem 7.3, we have that

(a+B)/,
| E o) + 20" = (o + D™ llxo &P > (3 + 1) o | S

= | FGa) |5 lxoll 27 + llxolle,

which contradicts the boundary condition given by Theorem 7.3. Thus, the conclusion
follows and the proof is complete. d

Theorem 7.4 Let U be a bounded open p-convex subset of a p-seminorm space (E, || - |5)
(0 < p <1) with the zero 0 € U. Assume that F : U — E is a 1-set contractive and contin-
uous mapping satisfying condition (H) or (H1). In addition, there exist « > 1, 8 > 0 (or,
alternatively, a > 1, B > 0) such that, for each x € dU, we have that ||F(x) — x||Z/p||x||£/p >
||F(x)||;'/p||F(x) + x||g/p - ||x||;,a+ﬁ)/p. Then F has at least one fixed point.

Proof The same as above, we prove the conclusion by showing that the Leray—Schauder
boundary condition in Theorem 7.1 does not hold. If we assume F has no fixed point, by
the boundary condition of Theorem 7.1, there exist xo € U and Aq > 1 such that F(xo) =
AoXo.

Now, consider the function f defined by f(¢£) := (¢t — 1)* — t*(t — 1)’ + 1 for t > 1. We
then can show that f is a strictly decreasing function for ¢ € [1, 00), thus we have (£ — 1)* <
t“(t+ 1) —1fort e (1,00).

By the boundary condition given in Theorem 7.4, we have that

/
| E@o) = o7 llxoll5% = (ho = D* oI < (3§ (2o + 1) = 1) o7

= |FG) |27 | Fexo) + 2027 ~ o 22,

which contradicts the boundary condition given by Theorem 7.4. Thus, the conclusion
follows and the proof is complete. O

Theorem 7.5 Let U be a bounded open p-convex subset of a p-seminorm space (E, | - |5)
(0 < p < 1) withthezero0 € U. Assumethat F : U — E is a 1-set contractive and continuous
mapping satisfying condition (H) or (H1). In addition, there exist « > 1, 8 > 0, we have
that ||F(x) + x| < |[Fx) = 2l|27 |6]157 + | F@) |57 11|17, Then F has at least one fixed
point.

Proof The same as above, we prove the conclusion by showing that the Leray—Schauder
boundary condition in Theorem 7.1 does not hold. If we assume F has no fixed point, by
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the boundary condition of Theorem 7.1, there exist xo € U and Aq > 1 such that F(xq) =
AoXo-

Now, consider the function f defined by f(¢) := (£ + 1)**# — (¢t = 1)% — ¢# for t > 1. We then
can show that f is a strictly increasing function for ¢ € [1,00), thus we have (¢ + 1)**# >
(t—1)% +¢P for t € (1,00).

By the boundary condition given in Theorem 7.5, we have that || F(xo) + xo ||;,a+ﬂ e _ (Ao +
D lxolly ™ > (o = 1)* + A5) Icolls " = llxoxo — wollp oI5 + lroxolp” ol ” =
1FGeo) = xollp” lxolly” + 1 Fxo) 15 llxs[1#/7, which implies that

| FGeo) + 0" > | (ko) = o |0 ol + | EGeo) [ llws 17,

this contradicts the boundary condition given by Theorem 7.5. Thus, the conclusion fol-
lows and the proof is complete. d

As an application of Theorem 7.1 by testing the Leray—Schauder boundary condition,
we have the following conclusion for each special case, and thus we omit their detailed
proofs here.

Corollary 7.1 Let U be a bounded open p-convex subset of a p-seminorm space (E, || - ||,))
(0 < p < 1) withthezero0 € U. Assume that F : U — E is a 1-set contractive and continuous
mapping satisfying condition (H) or (H1). Then F has at least one fixed point if one of the
following conditions holds for x € dU:
) 1@, < ],
(i) 1F@)p < I1F) —xlp,
(iii) [IF(x) +x[lp < [IF®)]l,,
(iv) IFx) +#lp < %l
V) IF )+l < I1F(x) - xllp,
(Vi) IF@)Ip - IF(x) + 1, < 12113,
(vii) IFE@)lp - IF(x) +xllp < I1F() = xllp - %]l

If the p-seminorm space E is a uniformly convex Banach space (E, | - ||) (for p-norm
space with p = 1), then we have the following general existence result (which actually is
true for nonexpansive set-valued mappings).

Theorem 7.6 Let U be a bounded open convex subset of a uniformly convex Banach space
(E, |l - |I) (with p = 1) with zero 0 € U. Assume that F : U — E is a semicontractive and
continuous single-valued mapping with nonempty values. In addition, for any x € dU, we
have Ax # F(x) for any X > 1 (i.e., the “Leray—Schauder boundary condition”). Then F has
at least one fixed point.

Proof By the assumption that F is a semicontractive and continuous single-valued map-
ping with nonempty values, it follows by Lemma 3.2 in p. 338 of Petryshyn [94] that f isa 1-
set contractive single-valued mapping. Moreover, by the assumption that E is a uniformly
convex Banach space, indeed (I — F) is closed at zero, i.e., F is semiclosed (see Browder
[15] or Goebel and Kirk [41]). Thus all assumptions of Theorem 7.1 are satisfied with the
(H1) condition. The conclusion follows by Theorem 7.1, and the proof is complete. [
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Lemma 7.1 shows that s single-valued nonexpansive mapping defined in a uniformly
convex Banach space (see also Theorem 7.6) satisfies the (H1) condition. Actually, the
nonexpansive set-valued mappings defined on a special class of Banach spaces with the so-
called “Opial condition” do not only satisfy condition (H1), but also belong to the classes
of semiclosed 1-set contractive mappings as shown below.

Now let K(X) denote the family of all nonempty compact convex subsets of a topological
vector space X. The notion of the so-called “Opial condition” first given by Opial [79]
says that a Banach space X is said to satisfy the Opial condition if liminf,_,  ||w, — w|| <
liminf,_, « [|w, — p|| whenever (w,,) is a sequence in X weakly convergent to w and p # w,
we know that the Opial condition plays an important role in the fixed point theory, e.g., see
Lami Dozo [64], Goebel and Kirk [42], Xu [127], and the references therein. The following
result shows that there exist nonexpansive set-valued mappings in Banach spaces with the
Opial condition (see Lami Dozo [64] satisfying condition (H1)).

Lemma 7.2 Let C be a convex weakly compact subset of a Banach space X which satis-
fies the Opial condition. Let T : C — K(C) be a nonexpansive set-valued mapping with
nonempty compact values. Then the graph of (I — T) is closed in (X,0 (X, X*) x (X, | - 1),
thus T satisfies the “(H1) condition’, where I denotes the identity on X, o (X, X*) the weak
topology, and | - || the norm (or strong) topology.

Proof By following Theorem 3.1 of Lami Dozo [64], it follows that the mapping T is demi-
closed, thus T satisfies the “(H1) condition” The proof is complete. d

As an application of Lemma 7.2, we have the following results for nonexpansive map-

pings.

Theorem 7.7 Let C be a nonempty convex weakly compact subset of a Banach space X
which satisfies the Opial condition and 0 € intC. Let T : C — K(X) be a nonexpansive set-
valued mapping with nonempty compact convex values. In addition, for any x € 3C, we
have Ax # F(x) for any X > 1 (i.e., the “Leray—Schauder boundary condition”). Then F has

at least one fixed point.

Proof As T is nonexpansive, it is 1-set contractive. By Lemma 7.1, it is then semicontrac-
tive and continuous. Then the (H1) condition of Theorem 7.1 is satisfied. The conclusion
follows by Theorem 7.1, and the proof is complete. O

Before the end of this section, by considering the p-seminorm space (E, || - ||) is a semi-
norm space with p = 1, the following result is a special case of the corresponding results
from Theorem 7.2 to Theorem 7.5, and thus we omit its proof.

Corollary 7.2 Let U be a bounded open convex subset of a normed space (E, || - ||). Assume
that F : U — E is a 1-set contractive and continuous mapping satisfying condition (H) or
(H1). Then F has at least one fixed point if there exist « > 1, B > 0 such that any one of the
following conditions is satisfied:
(i) Foreachx e dU, |[F(x)—x|* = [F@) x|~ - x]%,
(ii) Foreach x € 3U, [|[F(x) + x| < |F(x) || [lc]lP + [|x[|*F,
(iii) For each x € 3U, ||F(x) —x||*l|x[|? = | FG)I*(IF(x) + ] — [l]| 7,
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(iv) Foreachx € dU, |F(x) + x| “*F) < ||[F(x) — x| lx||# + | F(x)]I1# |x*.

Remark 7.2 As discussed by Lemma 7.1 and the proof of Theorem 7.6, when the p-vector
space is a uniformly convex Banach space, the semicontractive or nonexpansive mappings
automatically satisfy condition (H) or (H1). Moreover, our results from Theorem 7.1 to
Theorem 7.6, Corollary 7.1 and Corollary 7.2 also improve or unify the corresponding
results given by Browder [15], Li [66], Lietal. [67], Goebel and Kirk [41], Petryshyn [93, 94],
Reich [99], Tan and Yuan [117], Xu [126], Xu [129], Xu et al. [130], and results from the
reference therein by extending the nonself mappings to the classes of 1-set contractive
set-valued mappings in p-seminorm spaces with p € (0.1] (including the normed space or

Banach space when p = 1, and for p-seminorm spaces).

8 Fixed points for the class of semiclosed 1-set contractive mappings in
p-seminorm spaces

In order to study the fixed point theory for a class of semiclosed 1-set contractive mappings

in p-seminorm spaces, we first introduce the following definition which is a set-valued

generalization of single-value semiclosed 1-set mappings first discussed by Li [66], Xu

[129] (see also Li et al. [67], Xu et al. [130], and the references therein).

Definition 8.1 Let D be a nonempty (bounded) closed subset of p-vector space (£, | -
ll,) with p-seminorm for p-vector spaces, where p € (0, 1] (which include norm spaces or
Banach spaces as special classes), and suppose that 7: D — X is a set-valued mapping.
Then F is said to be a semiclosed 1-set contraction mapping if 7 is 1-set contraction and
(I = T) is closed, which means that for a given net {x,};c;, for each i € I, there exists y; €
T(x;) with lime;(x; — ;) = 0, then 0 € (I — T)(D), i.e., there exists xy € D such that x; €
T (x0).

Remark 8.1 By Lemmas 7.1 and 7.2, it follows that each nonexpansive (single-valued)
mapping defined on a subset of uniformly convex Banach spaces and nonexpansive set-
valued mappings defined on a subset of Banach spaces satisfying the Opial condition
are semiclosed 1-set contractive mappings (see also Goebel [40], Goebel and Kirk [41],
Petrusel etal. [92], Xu [127], Yangai [131] for related discussion and the references therein).
In particular, under the setting of metric spaces or Banach spaces with certain property, it
is clear that each semiclosed 1-set contractive mapping satisfies condition (H1).
Although we know that compared to the single-valued case, based on the study in the lit-
erature about the approximation of fixed points for multi-valued mappings, a well-known
counterexample due to Pietramala [95] (see also Muglia and Marino [75]) proved in 1991
that Browder approximation Theorem 1 given by Browder [13] cannot be extended to the
genuine multivalued case even on a finite dimensional space R2. Moreover, if a Banach
space X satisfies the Opial property (see Opial [79]) that is, if x, weakly converges to x,
then we have that limsup ||x, — || < limsup ||z, — y|| for all x € X and y #x), then I — f is
demiclosed at 0 (see Lami Dozo [64], Yanagi [131], and related references therein) pro-
vided f : C:— K(C) is nonexpansive (here K(C) denotes the family of nonempty compact
subsets of C). We know that all Hilbert spaces and L? spaces p € (1,00) have the Opial
property, but it seems that whether I — f is demiclosed at zero 0 if f is a nonexpansive set-
valued mapping defined on the space X which is uniformly convex (e.g., L[0,1], 1 < p < 00,
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#2) and f : C — K(C) is nonexpansive. Here we remark that for a single-valued nonex-
pansive mapping f is yes, which is the famous theorem of Browder [12]. A remarkable
fixed point theorem for multi-valued mappings is Lim’s result in [69], which says that: If C
is a nonempty closed bounded convex subset of a uniformly convex Banach space X and
f:C— K(C) is nonexpansive, then f has a fixed point.

Now, based on the concept for the semiclosed 1-set contractive mappings, we give the
existence results for their best approximation, fixed points, and related nonlinear alterative
under the framework of p-seminorm spaces for p € (0, 1].

Theorem 8.1 (Schauder fixed point theorem for semiclosed 1-set contractive mappings)
Let U be a nonempty bounded open subset of a (Hausdorff) locally p-convex space E and
itszero 0 € U, and C C E be a closed p-convex subset of E such that 0 € CwithO<p <1.If
F:CNU— CNU is continuous and semiclosed 1-set contractive, then T has at least one
fixed point in CN U.

Proof As the mapping T is 1-set contractive, take an increasing sequence {A,} such that
0 <Ay <1andlim, oA, =1, where n € N. Now we define a mapping F, : C — C by
F,(x) := A,F(x) for each x € C and #n € N. Then it follows that F, is a A,-set-contractive
mapping with 0 < 1, < 1. By Theorem 4.5 on the condensing mapping F, in a p-vector
space with p-seminorm Py for each n € N, there exists x,, € C such that x,, € F,(x,) =
AnF(x,). Thus we have x, = A,,F(x,). Let Py; be the Minkowski p-functional of U in E. It
follows that Py is continuous as 0 € int(U) = U. Note that for each n € N, A,.x, € UN C,
which imply that x,, = r(A,F(x,)) = L,F(x,), thus Py (1, F(x,)) < 1byLemma 2.2. Note that
Pu(F ) %) = Pu(Fsn) = ) = m(“”‘i—”(’”)

n

_ p _ V4
= <1A)‘n> PL[()LnF(xn)) = <1A)\n> ’

n n

which implies that lim,_, o Py (F(x,) — x,) = 0. Now, by the assumption that F is semi-
closed, which means that (I — F) is closed at zero, there exists one point x; € C such that
0 € (I - F)(C), thus we have that xy = F(xg).

Indeed, without loss of generality, we assume that lim,_, o, x, = %9 with x,, = A,F(x,)
and lim,_ A, = 1, which implies that xy = lim,_ (A, F(x,)), which means F(xp) :=
lim,,_, o F(x,) = %o, thus xo = F(xg). We complete the proof. O

Theorem 8.2 (Best approximation for semiclosed 1-set contractive mappings) Let U be
a bounded open p-convex subset of a locally p-convex space E (0 < p < 1) with the zero
0 € U, and let C be a (bounded) closed p-convex subset of E with also zero 0 € C. Assume
F:UNC—Cisa semicl]osed 1-set contractive and continuous mapping, and for each
x € dcU with F(x) ¢ U, (PZZ}(F(x)) —1)? < Py(F(x) — x) for 0 < p <1 (this is trivial when
p =1). Then we have that there exist xy € C N U and F(xy) such that Py(F(xg) — xg) =
dp(F(xo), UNC) = dp(F(xo),I%(xo) N C), where Py is the Minkowski p-functional of U. More
precisely, we have that either (1) or (1) holds:
(I) F has a fixed point xo € UNC, i.e., xog = F(xo) (so that
0 = Py (F(xo) — %0) = dp(F(x), UN C) = dp(F(xO)rI%(xO) NnaQ));
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(II) There exist xo € dc(U) and F(xo) ¢ U with

Py (F(xo) — %0) = dp(F(xo), U N C) = dy (F(x0), I x0) N C) = (P{; (F(x0)) — 1)° > 0.

X

Proof Letr: E — U bearetraction mapping defined by r(x) := — foreachx € E,

max(L,(Py (x))? )
where Py, is the Minkowski p-functional of U. Since the space E's zero0 € U (= intU as U is

open), it follows that r is continuous by Lemma 2.2. As the mapping F is 1-set contractive,
taking an increasing sequence {A,} such that 0 < A, <1 and lim,,_, A, = 1, where n € N.
Now we define a mapping F, : C N U — C by F,(x) := A,F o r(x) for each x € CN U and
n € N. Then it follows that F, is a A,-set-contractive mapping with 0 < A, < 1 for each
neN. As C and U are p-convex, we have #(C) C C and r(U) C U, so (CNU) C CNIU.
Thus F, is a self-mapping defined on C N U. By Theorem 4.5 for condensing mapping F,,,
for each # € N, there exists z, € C N U such that z, € F,(z,) = A.F o r(z,). Let x, = r(z,),
then we have x,, € C N U with «,, = r(A,.F(x,)) such that (1) or (2) holds for each n € N:

(1): A,F(x,) € CNU; or (2): A E(x,) € O\ U.

Now we prove the conclusion by considering the following two cases:

Case (I): For each n € N, A,F(x,) € CNU; or

Case (II): There exists a positive integer # such that A,F(x,) € C\U.

First, by case (1), for each n € N, A,F(x,) € U N C, which implies that x,, = 7(A,F(x,)) =
AnF(x,), thus Py (A, F(x,)) <1 by Lemma 2.2. Note that

Pu(F(5) - %) = Pu(F () = 7F(x,)) = Pu ((l‘kiim(’”)

—_ p _ p
= (IX:L”) PU()&nF(xn)) = (1)\:‘?[) ’

which implies that lim,_, o Py(F(x,) — x,) = 0. Now, by the fact that F is semiclosed,

it implies that there exists a point x, € U (i.e., the consequence {x,},cy has a conver-
gent subsequence with the limit x¢) such that xy = F(xo). Indeed, without loss of gener-
ality, we assume that lim,_, o %, = %o with x, = X,,F(x,) and lim,_,c X, = 1, and as x¢ =
lim,,—, 0o (A, F(x,,)), it implies that F(xp) = lim,,_, o, F(x;) = x9. Thus there exists F(x) = xo,
we have 0 = d,,(xo, F(x0)) = d(F(x0), I N C) = dy(F(x0), 2(x0) N C) as indeed xo = F(xo) €
UnCclx)nC.

Second, by case (II) there exists a positive integer 7 such that A,F(x,) € C\U. Then
we have that Py (A,F(x,)) > 1, and also Py (F(x,)) > 1 as A, < 1. As x,, = r(A,,F(x,)) =

%, it implies that Py (x,) = 1, thus x,, € dc(U). Note that
(Py(AnF(xn))) P

(Pu(F(x))? - 1)E(x,)
Py(E(x,)?

Py (F(x,) = %) = P - (Ph(FG) -1).
( )

1 _
By the assumption, we have (P[;(F(x,)) — 1) < Py(F(x,) - x) forx € CNaU, it follows that

Py(F(xy)) — 1 < Py(F(x,)) —sup{Pyu(z) : z€ CN U]}

<inf{Py(F(x,) -z) :z€ CNU} = dy(F(x,), CNU).
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Thus we have the best approximation: Py (F(x,) — %,) = dp(F(x,), U N C) = (Pl%(F(x,,)) -
1)? > 0.

Now we want to show that Py (F(x,) ~ %) = dp(F(x,), U N C) = dy(F(x,), 2(x6) N C) > 0.

By the fact that (I N C) C Ipﬁ(x,,) NC, letze Ipﬁ(xn) N C\(U N C), we first claim that
Py (F(x,)—x,) < Py(F(x,)—z).If not, we have Py (F(x,,) —%,) > Py(F(x,)—z).Asz € IPU(x,,) N
C\ (U N C), there exist y € U and a nonnegative number ¢ (actually ¢ > 1 as shown soon
below) with z = x, + c(y — x,,). Since z € C, but z ¢ U N C, it implies that z ¢ . By the
fact that x,, € U and y € U, we must have the constant ¢ > 1; otherwise, it implies that
z(= (1 = ¢)x, + cy) € U, this is impossible by our assumption, i.e., z ¢ U. Thus we have that
¢ > 1, which implies that y = %z +(1- %)xn € C (as both x,, € C and z € C). On the other
hand, as z € I%(xn) NC\(UNC)and ¢ > 1 with (%)p +(1- %)p =1, combining with our

1 1
assumption that for each x € dcU and F(x) ¢ U, P/ (F(x)) -1 <P[,(F(x)—x)forO<p <1,
it then follows that

Pu(FG) -3) = Pu[l(F(xn) _2)+ (1 - 1) (F(x) —xn)]

c Cc

< [(—)pPU(F(xn) -z)+ (1 - l)pPu(F(xn) —x,,)]
() = %n

1
¢ ¢
< Py(F(%n) — %),

which contradicts that P (F(x,) — x,) = dp(F(x,), U N C) as shown above. We know that
y € U N C, we should have Py;(F(x,) — x,) < Py (F(x,) — y)! This helps us to complete the
claim Py (F(x,) — x,) < Py(F(x,) — z) for any z € I%(xn) N C\(U N C), which means that
the following best approximation of Fan type (see [34, 35]) holds:

0< dp(F(x,,),ﬁ N C) =Py (F(xn) —x,,) = dp(F(xn),IpU(xn) N C).

Now, by the continuity of Py, it follows that the following best approximation of Fan type

is also true:

0 < Py (F(x,) = %) = dp(F(x,), UN C) = dp(F(x), (%) N C) = dyp (F(x), I (x,) N C),
and we have that

Py (F(x0) = %0) = dp(F(x), UNC) = dp(F(xo),I%(xo) NC>0.
The proof is complete. d

For a p-vector space when p = 1, we have the following best approximation for LCS.

Theorem 8.3 (Best approximation for LCS) Let U be a bounded open convex subset of
a locally convex space E (i.e., p = 1) with zero 0 € intU = U (the interior intU = U as U
is open), and let C be a closed p-convex subset of E with also zero 0 € C. Assume that
F:UNC — C is a semiclosed 1-set-contractive continuous mapping. Then there exists
x0 € U N X such that Py(F(xo) — x0) = dp(F(x0), UNC) = dp(F(x0), Igp(x0) N C), where Py is
the Minkowski p-functional of U. More precisely, we have that either (I) or (1) holds:
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() F has a fixed point xyg € UNC, i.e., xy = F(xo) (so that
Py (F(xo) — %0) = dp(F(%0), U N C) = dy(F(x0), Iz (x0) N C)) = 0);
(II) There exist xo € dc(U) and F(xo) ¢ U with

Pu (F(xo) —xo) = dp (F(xo), Eﬁ C) = dp (F(X()),]ﬁ(xo) N C) = dp (F(X()),IU(%()) N C) > 0.

Proof By applying Theorem 5.2 and the same argument used by Theorem 8.2, the conclu-
sion follows. This completes the proof. O

Now, by the application of Theorems 8.2 and 8.3, we have the following general principle
for the existence of solutions for Birkhoff—Kellogg problems in p-seminorm spaces, where
O<p=<1).

Theorem 8.4 (Principle of Birkhoff—Kellogg alternative) Let U be a bounded open p-
convex subset of a locally p-convex space E (0 < p < 1) with zero 0 € intU = (U) (the in-
terior intU as U is open), and let C be a closed p-convex subset of E with also zero 0 € C.
Assume that F : U N C — C is a semiclosed 1-set-contractive continuous mapping. Then F
has at least one of the following two properties:
(I) F has a fixed point xo € U N C such that xy = F(xy), or
(II) There exist xo € dc(U) and F(xo) ¢ U, and X = % € (0,1) such that
I(PU(F(xo)))p .
%0 = ME(x0). In addition, if for each x € dcU, P} (F(x)) — 1 < P}, (F(x) — x) for
0 < p <1 (this is trivial when p = 1), then the best approximation between xy and
F(xo) is given by

Py (F(xo) — %0) = dp(F(xo), U N C) = dy, (F(xo), I2(x0) N C) = (P{; (F(x0)) - 1)° > 0.

Proof 1f (I) is not the case, then (II) is proved by Remark 5.2 and by following the proofin
Theorem 8.2 for case (ii): F(xo) € C\.U with y, = f(F(xo)), where f is the restriction of the
continuous mapping r restriction to the subset U in E. Indeed, as y, ¢ U, it follows that

Py (yo) > 1 and xo = f(yo) = F(xg) ————. Nowlet . = —1— we have A < 1 and x, =
(Py(F(x0)) P (Py(F(x0))P
AF(x0). Finally, the additionally assumption in (II) allows us to have the best approximation

between xy and F(x() obtained by following the proof of Theorem 8.2 as Py (F(xo) — xo) =
dp(F(x0),UNC) = dp(F(xo),I%(xo) N C) > 0. This completes the proof. O

As an application of Theorem 8.2 for the nonself mappings, we have the following gen-
eral principle of Birkhoff—Kellogg alternative in TVS.

Theorem 8.5 (Principle of Birkhoff-Kellogg alternative in LCS) Let U be a bounded open
p-convex subset of the LCS E with the zero 0 € U, and let C be a closed convex subset of
E with also zero 0 € C. Assume that F: U N C — C is a semiclosed 1-set contractive and
continuous mapping. Then it has at least one of the following two properties:
() F has a fixed point xg € U N C such that xy = F(xo); or
(II) There exist xo € dc(U) and F(xg) ¢ U and A € (0,1) such that xo = AF(xo), and the
best approximation between {xo} and F(xo) is given by
Py (F(x0) — %0) = dp(F(xo), UN C) = dp(F(xo)JpU(xo) nC)>0.
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On the other hand, by the proof of Theorem 8. 2 we note that for case (II) of Theorem 8.2,

the assumption “each x € dcU with y € F(x), P ) —-1< P[}(y x)” is only used to guar-
antee the best approximation “Py(yo — %o) = dp(yo, U N C) = p(yo,lp x9) N C) > 0’ thus
we have the following Leray—Schauder alternative in p-vector spaces, which, of course,

includes the corresponding results in locally convex spaces as special cases.

Theorem 8.6 (Leray—Schauder nonlinear alternative) Let C be a closed p-convex subset of
a P-seminorm space E with 0 < p < 1 and the zero 0 € C. Assume that F : C — C is a semi-
closed 1-set contractive and continuous mapping. Let ¢(F) := {x € C : x € AF(x) for some 0 <
A < 1}. Then either F has a fixed point in C or the set ¢(F) is unbounded.

Proof By assuming that case (I) is not true, i.e., F has no fixed point, we claim that the
set ¢(F) is unbounded. Otherwise, assume that the set £(F) is bounded, and assume that
P is the continuous p-seminorm for E, then there exists r > 0 such that the set B(0,r) :=
{x € E : P(x) < r}, which contains the set &(F), i.e., ¢(F) C B(0,r), which means for any
x € g(F), P(x) < r. Then B(0.r) is an open p-convex subset of E and the zero 0 € B(0,r)
by Lemma 2.2 and Remark 2.4. Now let U := B(0,r) in Theorem 8.4, it follows that the
mapping F: B(0,r) N C — 2€ satisfies all general conditions of Theorem 8.4, and we have
that any xy € 3¢B(0,7), no any A € (0,1) such that xy = Ayo, where yy € F(xp). Indeed, for
any x € £(F), it follows that P(x) < r as e(F) C B(0,r), but for any xy € d¢B(0,r), we have
P(xo) = r, thus conclusion (II) of Theorem 8.4 does not hold. By Theorem 8.4 again, F
must have a fixed point, but this contradicts our assumption that F is fixed point free.
This completes the proof. O

Now assume a given p-vector space E equipped with the P-seminorm (by assum-
ing it is continuous at zero) for 0 < p < 1, then we know that P: E — R*, P71(0) = 0
P(Ax) = |A|PP(x) for any x € E and A € R. Then we have the following useful result for
fixed points due to Rothe and Altman types in p-vector spaces, which plays important
roles in optimization problems, variational inequalities, and complementarity problems.

Corollary 8.1 Let U be a bounded open p-convex subset of a locally p-convex space E and
zero 0 € U, plus C is a closed p-convex subset of E with U C C, where 0 < p < 1. Assume
that F: U — C is a semiclosed 1-set contractive continuous mapping. If one of the following
is satisfied:

(1) (Rothe type condition): Py (F(X)) < Py(x) for any x € 9U;

(2) (Petryshyn type condition): Py (F(X)) < Py(F(X) —x) for any x € dU;

3) (Altman type condition): \Pu(F(X))|? < [Pu(E(X)) - x)]? + [Pu(x)]? for any x € aU;
then F has at least one fixed point.

Proof By conditions (1), (2), and (3), it follows that the conclusion of (II) in Theorem 8.4
“there exist xy € dc(U) and A € (0, 1) such that xy # F(x0)” does not hold, thus by the alter-
native of Theorem 8.4, F has a fixed point. This completes the proof. O

By the fact that when p = 1 in a p-vector space is an LCS, we have the following classical
Fan’s best approximation (see [34]) as a powerful tool for the study in the optimization,
mathematical programming, games theory, mathematical economics, and other related
topics in applied mathematics.
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Corollary 8.2 (Fan’s best approximation) Let U be a bounded open convex subset of a lo-
cally convex space E with the zero 0 € U, let C be a closed convex subset of E with also
zero 0 € C, and assume that F : U N C — C is a semiclosed 1-set contractive and contin-
uous mapping. Then there exists xo € U N X such that Py(F(xo) — xo) = dp(F(x0, U N C) =
dp(F(x0), I7(x0) N C), where Py is the Minkowski p-functional of U in E. More precisely, we
have that either (1) or (1) holds, where W7 (xo) is either the inward set I(xo) or the outward
set Og(xo):

(I) F has a fixed point xo € UNC, i.e., xo = F(xo);

(II) There exists xo € dc(U) with F(xo) ¢ U such that

Pu(F(xo) —xo) = dp(P(Xo),U N C) = dp (F(x()), iﬁ(Xo) N C) = Pu (F(xo)) -1>0.

1 1

Proof When p = 1, it automatically satisfies the inequality Pf, (Fx)-1< P{’[ (F(xy — x) for
eachx € UNC.Indeed, we have that for x, € 3c(U), we have Py (F(xo) —x0) = dp(F(x0), UN
C) = d,(F(x0), Izz(xo) N C) = Py(F(x0)) — 1. The conclusions are given by Theorem 8.2 (or
Theorem 8.3). The proof is complete. d

We would like to point out that similar results on Rothe and Leray—Schauder alternative
have been developed by Isac [51], Park [85], Potter [97], Shahzad [109, 110], Xiao and Zhu
[124], and related references therein as tools of nonlinear analysis in topological vector
spaces. As mentioned above, when p = 1 and F is a continuous mapping, then we can ob-
tain a version of Leray—Schauder in locally convex spaces, and we omit detailed statements
here due to the limit of the space.

9 Nonlinear alternative principle for the class of semiclosed 1-set contractive
mappings

As applications of results in Sect. 8, we now establish general results for the existence of

solutions for the Birkhoff—Kellogg problem and the principle of Leray—Schauder alterna-

tives for semiclosed 1-set contractive mappings for p-vector spaces being locally p-convex

spaces forO<p <1.

Theorem 9.1 (Birkhoff-Kellogg alternative in locally p-convex spaces) Let U be a
bounded open p-convex subset of a locally p-convex space E (where 0 < p < 1) with the
zero 0 € U, let C be a closed p-convex subset of E with also zero 0 € C, and assume that
F:UNC — 2C is a semiclosed 1-set contractive and continuous mapping, and for each
x € dc(U) with P{%,(F(x)) -1< PL%(F(x) —x) for 0 < p <1 (this is trivial when p = 1), where
Py is the Minkowski p-functional of U. Then we have that either (1) or (II) holds:

(I) There exists xo € U N C such that xy = F(x,);

(1) There exists xo € dc(U) with F(xo) ¢ U and ) > 1 such that Axo = F(xo), i.e.,

F(xg) € {Axg: A > 1}

Proof By following the argument and notations used by Theorem 8.2, we have that either
(1) F has a fixed point xo € U N C; or
(2) There exists xg € dc(U) with x9 = f(yo) such that

Pu(F(xO) - x()) = dp(F(xo),E N C) = dp(F(x()),Iﬁ(xo) N C) = Pu(F(xO)) -1> 0,
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where 9¢(U) denotes the boundary of U relative to C in E and f is the restriction of the
continuous retraction r with respect to the set U in E.
If F has no fixed point, then above (2) holds and x¢ # F(xo). As given by the proof of

Theorem 8.2, we have that F(x,) ¢ U, thus Py (F(xo)) > 1 and xo = f(yo) = %, which
(Py (F(x0)) P

means F(xg) = (PU(F(xo)))%xo. Let A = (PU(F(xO)))Il’, then A > 1, and we have Axy = F(xo).
This completes the proof. d

Theorem 9.2 (Birkhoft—Kellogg alternative in LCS) Let U be a bounded open convex sub-
set of a locally p-convex space E with the zero 0 € U, let C be a closed convex subset of E
with also zero 0 € C, and assume that F: U N C — C is a semiclosed 1-set contractive and
continuous mapping. Then we have that either (1) or (I1) holds:

(I) There exists xo € U N C such that xy = F(x); or

(II) There exists xo € dc(U) with F(xo) ¢ U and ’ > 1 such that Axy = F(xy), i.e.,

F(xg) € {Axo: A >1}.
1 1

Proof When p = 1, then it automatically satisfies the inequality P}, (F(x)) — 1 < P},(F(x) —
x) for all x € U N C. Indeed, we have that for xy, € dc(U), we have Py(F(xo) — xo) =
dp(F(x0), UNC) = dy(F(%0), Iz7(x0) N C) = Py (F(x0)) — 1. The conclusions are given by The-
orems 8.3 and 8.4. The proof is complete. d

Indeed, we have the following fixed points for nonself mappings in p-vector spaces for
0 < p <1 under different boundary conditions.

Theorem 9.3 (Fixed points of nonself mappings) Let U be a bounded open p-convex
subset of a locally p-convex space E (where 0 < p < 1) with the zero 0 € U, let C be a
closed p-convex subset of E with also zero 0 € C, and assume that F:UNC — C is a

semiclosed 1-set contractive and continuous mapping. In addition, for each x € dc(U),
1 1

P{’[(F(x)) -1< Pf,(F(x) —x) for 0 < p <1 (this is trivial when p = 1), where Py is the
Minkowski p-functional of U. If F satisfies any one of the following conditions for any
x € dc(U)\F(x):
(i) Py(F(x) —z) < Py(F(x) —x) for some z € % NcC;

(ii) There exists A with |\| < 1 such that Ax + (1 — L)F(x) € % NG,

(iii) F(x) € I(x) N C;

(iv) F(x) e {Ax:A>1}=0;

(v) F@U)cUNC;

i) Pu(F@) - ) # (PuF)? - 1)
then F must have a fixed point.

Proof By following the argument and symbols used in the proof of Theorem 8.2 (see also
Theorem 8.4), we have that either

(1) F has a fixed point xy € U N C; or

(2) There exists xg € dc(U) with xg = f(F(xo)) such that

Pu (F(xo) - X()) = dp(F(xo),E N C) = dp(F(xo),Iﬁ(x()) N C) = Pu(F(JCQ)) -1>0,

where d¢(U) denotes the boundary of U relative to C in E, and f is the restriction of the
continuous retraction r with respect to the set U in E.
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First, suppose that F satisfies condition (i). If F has no fixed point, then (2) holds and
x0 7 F(x9). Then, by condition (i), it follows that P (F(xo) — z) < Py (F(x0) — x0) for some
z € Iz(x) N C. This contradicts the best approximation equations given by (2), thus F mush
have a fixed point.

Second, suppose that F satisfies condition (ii). If F has no fixed point, then above (2)
holds and x # F(x,). Then, by condition (ii), there exists A > 1 such that Axg + (1 —X1)F(xg) €

Iz7(x) N C. It follows that

Py (F(x0) — %0) < Py(F(x) — (Axo + (1 = AF(%0))) = Py (A(F(x0) — %0))

= | AP Py (F(x0) — %0) < Py (F(x0) — %o),

this is impossible, and thus F must have a fixed point in Z/ N C.

Third, suppose that F satisfies condition (iii), i.e., F(x) € I;;(x) N C; then by (2) we have
that Py;(F(xo) — %), and thus x¢ = F(xo), which means F has a fixed point.

Fourth, suppose that F satisfies condition (iv), and if F has no fixed point, then (2)
holds and xy # F(xo). As given by the proof of Theorem 8.2, we have that F(x,) ¢ U, thus

Py (F(x0)) > 1 and x¢ = f(F(x0)) = %, which means F(xg) = (Pu(F(xo)))I%xo, where
Py (F(xo))? —
(Py(F (xo)))ll’ > 1. This contradicts assumption (iv), thus F must have a fixed pointin /N C.

Fifth, suppose that F satisfies condition (v), then xy # F(xo). As %o € dcU, now by con-
dition (v) we have that F(dU) C U N C, it follows that for any we have F(xy) € U N C, thus
F(x) ¢ LI\ _N C, which implies that 0 < Py (F(xo) — %0) = dp(F(x0), U N C) = 0. This is im-
possible, thus F must have a fixed point. Here, as pointed out by Remark 5.2, we know
that based on condition (v), the mapping F has a fixed point by applying F (?U ycunc

is enough, we do not need the general hypothesis: “for each x € dc(U), P{;(F(x)) -1<
1

Pf[(F(x) —-x)forO<p<1”

Finally, suppose that F satisfies condition (vi). If F has no fixed point, then (2) holds and
x0 7 F(x). Then condition (v) implies that Py (F(xo) —xo) # (Py (F (x))ll’ —1)?, but our proof
in Theorem 5.2 shows that Py (yo — x9) = ((Pu(y))ll? —1)?, which is impossible, thus F must
have a fixed point. Then the proof is complete. O

Now, by taking the set C in Theorem 8.1 as the whole locally p-convex space E itself,
we have the following general results for nonself upper semicontinuous mappings, which
include the results of Rothe, Petryshyn, Altman, and Leray—Schauder types’ fixed points
as special cases.

Taking p =1 and C = E in Theorem 9.3, we have the following fixed points for nonself
continuous mappings associated with inward or outward sets for locally convex spaces,
which are locally p-convex spaces for p = 1.

Theorem 9.4 (Fixed points of nonself mappings with boundary conditions) Let U be a
bounded open convex subset of the LCS E with the zero 0 € U, and assume that F : U — E is
a semiclosed 1-set contractive and continuous mapping. If F satisfies any one of the following
conditions for any x € d(U)\F(x):
(i) Py(F(x) —z) < Py(F(x) —x) for some z € %i
(ii) There exists A with |\| < 1 such that Ax + (1 — L)F(x) € %;
(iii) F(x) € Iz(®);
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(iv) F(x) e {Ax:A>1}=0;

(v) FOWU) cU;

(vi) Py(F(x) —x) # Pu(F(x) - 1;
then F must have a fixed point.

In what follows, based on the best approximation theorem in a p-seminorm space, we
will also give some fixed point theorems for nonself continuous mappings with various
boundary conditions, which are related to the study of the existence of solutions for PDE
and differential equations with boundary problems (see Browder [15], Petryshyn [93, 94],
Reich [99]), which would play roles in nonlinear analysis for p-seminorm space as shown
below.

First, as discussed by Remark 5.2, the proof of Theorem 9.2, with the strongly boundary
condition “F(3(U)) C U N C” only, we can prove that F has a fixed point, thus we have the
following fixed point theorem of Rothe type in locally p-convex spaces.

Theorem 9.5 (Rothe type) Let U be a bounded open p-convex subset of a locally p-convex
space E (where 0 < p < 1) with the zero 0 € U. Assume that F : U — E is a semi 1-set
contractive and continuous mapping and such that F(3(U)) C U, then F must have a fixed
point.

Now, as applications of Theorem 9.5, we give the following Leray—Schauder alternative
in p-vector spaces for nonself set-valued mappings associated with the boundary condi-
tion which often appear in the applications (see Isac [51] and the references therein for
the study of complementary problems and related topics in optimization).

By using the same argument used in the proof of Theorem 6.6, we have the following
result.

Theorem 9.6 (Leray—Schauder alternative in locally p-convex spaces) Let E be a locally
p-convex space E, where 0 < p <1, B C E is bounded closed p-convex such that 0 € int B. Let
F:[0,1] x B— E be a semiclosed 1-set contractive and continuous mapping, and such that
the set F([0,1] x B) is relatively compact in E. If the following assumptions are satisfied:
(1) x #F(t,x) forallx ¢ 9B and t € [0,1],
(2) F({0} x 0B) C B,
then there is an element x* € B such that x* = F(1,x¥).

Proof The conclusion is proved by following the argument used in Theorem 6.6. The proof
is complete. O

As a special case of Theorem 9.6, we have the following principle for the implicit form
of Leray—Schauder type alternative in locally p-convex spaces for 0 < p < 1.

Corollary 9.1 (Implicit Leray—Schauder alternative) Let E be a locally p-convex space E,
whereQ < p <1, B C E be bounded closed p-convex such that0 € intB. Let F: [0,1] x B— E
be semiclosed 1-set contractive and continuous, and let the set F([0,1] x B) be relatively
compact in E. If the following assumptions are satisfied:

(1) F({0} x 9B) C B,

(2) x #F(0,x) for all x € 0B,
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then at least one of the following properties is satisfied:
(i) There exists x* € B such that x* = F(1,x*); or
(ii) There exists (\*,x*) € (0,1) x OB such that x* = F(A*,x*).

Proof Theresultisanimmediate consequence of Theorem 9.6, this completes the proof. [J

We would like to point out that similar results on Rothe and Leray—Schauder alterna-
tive have been developed by Furi and Pera [37], Granas and Dugundji [46], Gérniewicz
[44], Gérniewicz et al. [45], Isac [51], Li et al. [67], Liu [70], Park [85], Potter [97], Shahzad
[109, 110], Xu [129], Xu et al. [130] (see related references therein) as tools of nonlin-
ear analysis in the Banach space setting and applications to the boundary value prob-
lems for ordinary differential equations in noncompact problems, a general class of map-
pings for nonlinear alternative of Leray—Schauder type in normal topological spaces. Some
Birkhoff—Kellogg type theorems for general class mappings in topological vector spaces
have also been established by Agarwal et al. [1], Agarwal and O’Regan [2, 3], Park [87]
(see the references therein for more details); and in particular, recently O’'Regan [80] used
the Leray—Schauder type coincidence theory to establish some Birkhoft—Kellogg problem,
Furi—Pera type results for a general class of mappings.

Before closing this section, we would like to share that as the application of the best ap-
proximation result for 1-set contractive mappings, we can establish fixed point theorems
and the general principle of Leray—Schauder alternative for nonself mappings, which seem
to play important roles in the development of nonlinear analysis for p-vector spaces for
0 < p <1, as the natural extension and achievement of nonlinear functional analysis in
mathematics for the underling locally convex vector spaces, locally convex spaces, normed
spaces, or in Banach spaces.

10 Fixed points for the class of semiclosed 1-set contractive mappings

In this section, based on the best approximation Theorem 8.2 established for the 1-set con-
tractive mappings in Sect. 8, we show how it is used as a useful tool for us to develop fixed
point theorems for semiclosed 1-set contractive nonself upper semicontinuous mappings
in p-seminorm spaces (for p € (0, 1], by including seminorm, norm spaces, and uniformly
convex Banach spaces as special cases).

By following Definition 7.1, we first observe that if f is a continuous demicompact map-
ping, then (I —f) is closed, where [ is the identity mapping on X. It is also clear from defini-
tions that every demicompact map is hemicompact in seminorm spaces, but the converse
is not true in general (e.g., see the example in p. 380 by Tan and Yuan [117]). It is evident
that if f is demicompact, then I — f is demiclosed. It is known that for each condensing
mapping f, when D or f(D) is bounded, then f is hemicompact; and also f is demicompact
in metric spaces by Lemma 2.1 and Lemma 2.2 of Tan and Yuan [117], respectively. In ad-
dition, it is known that every nonexpansive map is a 1-set-contractive map; and also if f is
a hemicompact 1-set-contractive mapping, then f is a 1-set-contractive mapping satisfy-
ing the following “Condition (H1)” (the same as (H1) and slightly different from condition
(H) used in Sect. 5):

(H1) condition: Let D be a nonempty bounded subset of a space E, and assume that
F:D — 2F is a set-valued mapping. If {x,},cn is any sequence in D such that for each
x, there exists y, € F(x,) with lim,,_, »(x,, — ¥,) = 0, then there exists a point x € D
such that x € F(x).
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We first note that the “(H1) condition” above is actually “condition (C)” used by Theo-
rem 1 of Petryshyn [94]. Indeed, by following Goebel and Kirk [42] (see also Xu [127] and
the references therein), Browder [15] (see also [16], p. 103) proved that if K is a closed and
convex subset of a uniformly convex Banach space X, and if T : K — X is nonexpansive,
then the mapping f := I — T is demiclosed on X. This result, known as Browder’s demi-
closedness principle (Browder’s proof, which was inspired by the technique of Géhde in
[43]), is one of the fundamental results in the theory of nonexpansive mappings, which
satisfies the “(H1) condition”.

The following is Browder’s demiclosedness principle proved by Browder [15] that says
that a nonexpansive mapping in a uniformly convex Banach X enjoys condition (H1) as
shown below.

Lemma 10.1 Let D be a nonempty bounded convex subset of a uniformly convex Banach
space E. Assume that F : D — E is a nonexpansive single-valued mapping, then the map-
ping P := I — F defined by P(x) := (x — F(x)) for each x € D is demiclosed, and in particular,
the “(H1) condition” holds.

Proof By following the argument given in p. 329 (see also the proof of Theorem 2.2 and
Corollary 2.1) by Petryshyn [94], by the Browder demiclosedness principle (see Goebel
and Kirk [42] or Xu [127]), P = (I - F) is closed at zero, thus there exists xy € U such that
0 € (I - F)(xo), which means that xy € F(xg). The proof is complete. O

On the other hand, by following the notion called “Opial condition” given by Opial [79],
which says that a Banach space X is said to satisfy the Opial condition if liminf,_, » ||w, —
w| <liminf,_,  ||w, — p|| whenever (w,) is a sequence in X weakly convergent to w and
p # w, we know that the Opial condition plays an important role in the fixed point the-
ory, e.g., see Lami Dozo [64], Goebel and Kirk [42], Xu [127] and the references therein.
Actually, the following result shows that there exists a class of nonexpansive set-valued
mappings in Banach spaces with the Opial condition (see Lami Dozo [64] satisfying the
“(H1) condition”).

Lemma 10.2 Let C be a nonempty convex weakly compact subset of a Banach space X
which satisfies the Opial condition. Let T : C — K(C) be a nonexpansive set-valued map-
ping with nonempty compact values. Then the graph of (I — T) is closed (X,0(X,X*) x
X |- 1), thus T satisfies the “(H1) condition’, where I denotes the identity on X, o (X, X*)
the weak topology, and | - || the norm (or strong) topology.

Proof By following Theorem 3.1 of Lami Dozo [64], it follows that the mapping T is demi-
closed, thus T satisfies the “(H1) condition” The proof is complete. O

By Theorem 3.1 of Lami Dozo [64], indeed we have the following statement which is
another version by using the term of “distance convergence” for Lemma 10.2.

Lemma 10.3 Let C be a nonempty closed convex subset of a Banach space (X, d) which
satisfies the Opial condition. Let T : C — K(C) be a multi-valued nonexpansive mapping
(with fixed points). Let (y,)nen be a bounded sequence such that ,_,..d(y T(y,)) = 0, then
the weak cluster points of (y,), n € N is a fixed point of T
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Proof Itis Theorem 3.1 of Lami Dozo [64] (see also Lemma 3.2 of Xu and Muglia [128]). O

We note that another class of set-valued mappings, called *-nonexpansive mappings in
Banach spaces (introduced by Husain and Tarafdar [50], see also Husain and Latif [49]),
which was proved to hold the demiclosedness principle in reflexive Banach spaces satis-
fying the Opial condition by Muglia and Marino (i.e., Lemma 3.4 in [75]), thus the demi-
closedness principle also holds in reflexive Banach spaces with duality mapping that is
weakly sequentially continuous since these satisfy the Opial condition.

More precisely, let C be a subset of a Banach space (X, || - ||) and K(C) be the family
of compact subsets of C. By following Husain and Latif [49], a mapping W : C — K(C) is
said to be x-nonexpansive if for all x,y € Cand x" € W (x) such that [|x—x% || = d(x, W (x)),
there exists y¥ € W (y) with ||y — yV || = d(y, W(y)) such that [|x¥ —y¥|| < |lx - y]|.

As pointed by Muglia and Marino [75], however, x-nonexpansivity and multivalued non-
expansivity are not so far. By Theorem 3 of Lépez-Acdeo and Xu [71], it is proved that a
multivalued mapping W : C — K(C) is x-nonexpansive if and only if the metric projection
Py (x); = {ux € W(x) : lx — x|l = infyew(y [lx — yll} is nonexpansive.

We now have the following result which is the demiclosedness principle for multivalued

x-nonexpansive mappings given by Lemma 3.4 of Muglia and Marino [75].

Lemma 10.4 Let X be a reflexive space satisfying the Opial condition, and let W : X —
K(X) be a x-nonexpansive multivalued mapping with fixed points (existing) (denoted by
Fix(W)). Let (yu)nen be a bounded sequence such that lim,,_, oo d(y,, W(y,)) — 0. Then the
weak cluster points of (y,,)uen belong to Fix(W).

Proof Tt is Lemma 3.4 of Muglia and Marino [75]. d

Remark 10.1 We would like to point out that, indeed, Xu [126] proved existence results of
fixed points for *-nonexpansive mappings on strictly convex Banach spaces, and Lopezo-
Acdeo and Xu in [71] obtained the existence result in the setting of Banach space satisfying
the Opial condition, so the assumption on the existence of fixed points for the mapping
W in Lemma 10.4 makes sense for the setting under either strictly convex Banach spaces

or Banach spaces satisfying the Opial condition.

Let E denote a Hausdorff locally convex topological vector space, and let § denote
the family of continuous seminorms generating the topology of E. Also C(E) will de-
note the family of nonempty compact subsets of E. For each p € § and A, B € C(E), we
can define §(A,B) := sup{p(a — b) : a € A,b € B} and D,(A, B) := max{sup,., infpeg P(a —
b), supycpinf,cq P(a — b)}. Although the P is only a seminorm, D, is a Hausdorff metric on
C(E) (e.g., see Ko and Tsai [61]).

Definition 10.1 Let K be a nonempty subset of E. A mapping T : K — C(E) is said to be
a multi-valued contraction if there exists a constant &, € (0, 1) such that D,(T'(x), T'(y)) <
k,P(x—y). T is said to be nonexpansive if for any x, y € K, we have P, (T (x), T(y)) < P(x—y).

By Chen and Singh [26], we now have the following definition of the Opial condition in
locally convex spaces.
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Definition 10.2 The locally convex space E is said to satisfy the Opial condition if for each
x € E and every net (x,) converging weakly to x, for each P € §, we have liminf P(x, —y) >
liminf P(x,, — x) for any y # x.

Now we have the following demiclosedness principle for nonexpansive set-valued map-
pings in (Hausdorff) local convex spaces E, which is indeed Theorem 1 of Chen and Singh
[26].

Lemma 10.5 Let K be a nonempty, weakly compact, and convex subset of E. Let T : K —
C(E) be nonexpansive. If E satisfies the Opial condition, then graph (I — G) is closed in
E, x E, where E,, is E with its weak topology and I is the identity mapping.

Proof The conclusion follows by Theorem 1 of Chen and Singh [26]. 0

Remark 10.2 When a p-vector space E is with a p-norm, then both (H1) and (H) conditions
for their convergence can be described by the weak and strong convergence, by the weak
topology and strong topology induced by p-norm for p € (0,1]. Secondly, if a given p-
vector space E has a nonempty open p-convex subset U containing zero, then any mapping
satisfying the “(H) condition” is a hemicompact mapping (with respect to Py, for a given
bounded open p-convex subset U containing zero of p-vector space E), thus satisfying the
“(H) condition” used in Theorem 5.1.

By the fact that each semiclosed 1-set mapping satisfies the “(H1) condition’, we have the
existence of fixed points for the class of semiclosed 1-set mappings. First, as an application
of Theorem 8.2, we have the following result for nonself mappings in p-seminorm spaces
for p € (0,1].

Theorem 10.1 Let U be a bounded open p-convex subset of a p-seminorm space E (0 <
p < 1) with the zero 0 € U. Assume that F : U — E is a semiclosed 1-set contractive and
continuous mapping. In addition, for any x € dU, we have \x # F(x) for any 1 > 1 (i.e., the
“Leray—Schauder boundary condition”). Then F has at least one fixed point.

Proof By the proof of Theorem 8.2 with C = E, we actually have that either (I) or (II) holds:
() F has a fixed point xy € U, i.e., Py (F(xp) — x9) = 0.

1

(II) There exists x9 € d(U) with Py (F(xo) — xo) = (Pf;(F(xo)) — 1) > 0.

If F has no fixed point, then (II) holds and xy # F(xo). By the proof of Theorem 8.2, thus

Py (F(x)) > 1 and x¢ = f(F(xo)) = %, which means F(xg) = (Pu(F(xo)))Il’xo, where
(Py (F(x)) P

1
(Py(F(x9)))? > 1, this contradicts the assumption, thus F must have a fixed point. The
proof is complete. O

By following the idea used and developed by Browder [15], Li [66], Li et al. [67], Goebel
and Kirk [41], Petryshyn [93, 94], Tan and Yuan [117], Xu [129], Xu et al. [130], and the
references therein, we have the following existence theorems for the principle of Leray—
Schauder type alternatives in p-seminorm spaces (E, || - ||,) for p € (0,1].

Theorem 10.2 Let U be a bounded open p-convex subset of a p-seminorm space (E, || - ||,))
(0 < p < 1) with the zero 0 € U. Assume that F : U — E is a semiclosed 1-set contractive
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and continuous mapping. In addition, there exist o > 1, B > 0 such that, for each x € dU,
we have ||F(x) —x||z/p > ||F(x)||1(,a+’3)/p||x||;ﬂ/p - ||x||Z/p. Then F has at least one fixed point.

Proof By assuming F has no fixed point, we prove the conclusion by showing that the
Leray—Schauder boundary condition in Theorem 10.1 does not hold. If we assume that F
has no fixed point, by the boundary condition of Theorem 10.1, there exist xo € dU and
Ao > 1 such that F(xg) = Agxo.

Now, consider the function f defined by f(¢) := (t — 1)* — t**# + 1 for £ > 1. We observe
that f is a strictly decreasing function for ¢ € [1,00) as the derivative of f(£) = a(t — 1)*~* -
(a + B)t**P~1 < 0 by the differentiation, thus we have t**# — 1 > (¢ — 1)* for ¢ € (1,00).
By combining the boundary condition, we have that ||F(xo) — x0||z/p = || Aoxo — xollzlp =
(ho = %lxolly” < g™ = Dlxolly™" o, = 1E@o) 57 llxoll,”" ~ ol ”, which
contradicts the boundary condition given by Theorem 10.2. Thus, the conclusion follows
and the proof is complete. d

Theorem 10.3 Let U be a bounded open p-convex subset of a p-seminorm space (E, || - ||))
(0 < p < 1) with the zero 0 € U. Assume that F : U — 2F is a semiclosed 1-set contractive
and continuous mapping. In addition, there exist o > 1, 8 > 0 such that, for each x € U,
we have |F(x) + x| P"7 < |[F@) X7 115" + 112" . Then F has at least one fixed point.

Proof We prove the conclusion by showing that the Leray—Schauder boundary condition
in Theorem 10.1 does not hold. If we assume F has no fixed point, by the boundary con-
dition of Theorem 10.1, there exist xo € dU and A > 1 such that F(x;) = Aoxo.

Now, consider the function f defined by f(£) := (£ + 1)**# — % — 1 for ¢ > 1. We then can
show that f is a strictly increasing function for ¢ € [1,00), thus we have t* + 1 < (¢ + 1)**#

for t € (1, 00). By the boundary condition given in Theorem 7.3, we have that

(a+B)
| Fx0) +xo{|p‘“ﬂ Y= (o + 1P lao | PP > (A% + 1) o |+

= | FGa) |27 lcoll 27 + ol

which contradicts the boundary condition given by Theorem 10.3. Thus, the conclusion
follows and the proof is complete. d

Theorem 10.4 Let U be a bounded open p-convex subset of a p-seminorm space (E, || - || )
(0 < p < 1) with the zero 0 € U. Assume that F : U — E is a semiclosed 1-set contractive and
continuous mapping. In addition, there exist a > 1, 8 > 0 (or, alternatively, « > 1, > 0)
such that, for each x € dU, we have that ||F(x) — x||Z/p||x||£/p > ||F(x)||;'/p||F(x) + x||£/p -
||x||fn°'+5)/p. Then F has at least one fixed point.
Proof The same as above, we prove the conclusion by showing that the Leray—Schauder
boundary condition in Theorem 10.1 does not hold. If we assume F has no fixed point,
by the boundary condition of Theorem 10.1, there exist xy € dU and A > 1 such that
F(xo) = Aoxg.

Now, consider the function f defined by f(¢£) := (¢t — 1)* — t*(t — 1)’ + 1 for t > 1. We
then can show that f is a strictly decreasing function for ¢ € [1, 00), thus we have (£ —1)* <
t*(t+ 1) —1fort e (1,00).
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By the boundary condition given in Theorem 10.3, we have that

/
| Eo) = o |5 Ixoll)? = (o = ) xollis "% < (3§ (2o + 1P = 1) oIl

/
= [E@)[ " o +%olly” = lxoll§+#7,

which contradicts the boundary condition given by Theorem 10.4. Thus, the conclusion

follows and the proof is complete. d

Theorem 10.5 Let U be a bounded open p-convex subset of a p-seminorm space (E, || - ||,))
(0 < p < 1) with thezero 0 € U. Assume that F : U — E is a semiclosed 1-set contractive and
continuous mapping. In addition, there exist o > 1, p > 0, we have that ||F(x) + x||, (a+p)lp <

[IF(x) —x||;,'/p||x||£/p + ||F(x)||p/p||x||“/p. Then F has at least one fixed point.

Proof The same as above, we prove the conclusion by showing that the Leray—Schauder
boundary condition in Theorem 7.1 does not hold. If we assume F has no fixed point,
by the boundary condition of Theorem 10.1, there exist xo € U and Ao > 1 such that
F(xg) = Aoxo.

Now, consider the function f defined by f(¢) := (£ + 1)**# — (¢t = 1)% — ¢ for t > 1. We then
can show that f is a strictly increasing function for ¢ € [1,00), thus we have (¢ + 1)**# >
(t-1)* +tP for t € (1,00).

By the boundary condition given in Theorem 10.3, we have that || F(xo) + %o |,

DAl P > (o = D + 25) I%olly ™ = l20x0 — 2olly” I1%0ll5” + I oxolly” kol =
1EGeo) = xolly” lxolly™ + I1EGeo) " lxs |7, which implies that

(a+B)/p ()\ n

| FGro) + 0| " > [ Fto) = o |57 o 1277 + | F o) | 27l 7,

this contradicts the boundary condition given by Theorem 10.5. Thus, the conclusion fol-

lows and the proof is complete. d

As an application of Theorem 10.1, by testing the Leray—Schauder boundary condition,
we have the following conclusion for each special case, and thus we omit their detailed

proofs here.

Corollary 10.1 Let U be a bounded open p-convex subset of a p-seminorm space (E, || - ||,))
(0 < p < 1) with the zero 0 € U. Assume that F : U — E is a semiclosed 1-set contractive
and continuous mapping. Then F has at least one fixed point if one of the following (strong)
conditions holds for x € dU:
@) IF@)p =< llxl;

(i) IF@lp < I1F(x) —xlp5

(iii) 1F() +xllp < IF@)]lp;

(iv) IF@) +xlp < lIxllp;

) IF®) +xlp < |1F(x) = xl|p;

VD) IE@)p - IF ) +xl, < N1l

(vi) IE@lp - IF () +xlp < I1F(x) —xllp - %]l
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If the p-seminorm space E is a uniformly convex Banach space (E, | - ||) (for p-norm
space with p = 1), then we have the following general existence result which can apply to
general nonexpansive (single-valued) mappings, too.

Theorem 10.6 Let U be a bounded open convex subset of a uniformly convex Banach
space (E, || - ||) (with p = 1) with zero 0 € U. Assume that F : U — E is a semicontractive
and continuous (single-valued) mapping. In addition, for any x € U, we have \x # F(x) for
any A > 1 (i.e., the “Leray—Schauder boundary condition”). Then F has at least one fixed
point.

Proof By Lemma 10.1, F is a semiclosed 1-set contractive mapping. Moreover, by the as-
sumption that E is a uniformly convex Banach space, the mapping (I — F) is closed at zero,
and thus F is semiclosed at zero (see Browder [15] or Goebel and Kirk [41]). Thus all as-
sumptions of Theorem 10.2 are satisfied. The conclusion follows by Theorem 10.2. The
proof is complete. d

Now we can also have the following result for nonexpansive set-valued mappings (in-
stead of single-valued) in a Banach space X with the Opial condition.

Theorem 10.7 Let C be a nonempty convex weakly compact subset of a local convex space
X which satisfies the Opial condition and 0 € intC. Let T : C — K(X) be a nonexpansive
set-valued mapping with nonempty compact convex values. In addition, for any x € dC, we
have Ax # F(x) for any X > 1 (i.e., the “Leray—Schauder boundary condition”). Then F has
at least one fixed point.

Proof As T is nonexpansive, it is 1-set contractive. By Lemma 10.2, it is then semicon-
tractive and continuous. By following the idea of Theorem 10.1, indeed using the proof
of Theorem 8.2 (or a similar argument used by Theorem 5.2) by applying Theorem 5.3
(instead of Theorem 5.2) for the fixed point theorem of upper semicontinuous set-valued
mappings in a locally convex space, the conclusion follows. The proof is complete. d

By using Lemma 10.4, we have the following result in local convex spaces for -
nonexpansive single-valued mappings.

Theorem 10.8 Let C be a nonempty (bounded) convex closed subset of a Banach space
X which is either strictly convex or satisfying the Opial condition. Let T : C — X be a *-
nonexpansive and continuous mapping. In addition, for any x € 3C, we have Ax # F(x) for
any A > 1 (i.e., the “Leray—Schauder boundary condition”). Then F has at least one fixed
point.

Proof As T is x-nonexpansive, and by the demiclosedness principle for *-nonexpansive
mappings given by Lemma 10.4, it follows that T satisfies the (H1) condition of Theo-
rem 7.1, then all conditions of Theorem 7.1 are satisfied, then the conclusion follows by
Theorem 7.1. The proof is complete. 0

By considering the p-seminorm space (E, | - ||) with a seminorm for p = 1, the follow-
ing corollary is a special case of the corresponding results from Theorem 10.2 to Theo-
rem 10.5, and thus we omit its proof.
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Corollary 10.2 Let U be a bounded open convex subset of a normed space (E, || - ||). Assume
that F : U — E is a semiclosed 1-set contractive and continuous mapping. Then F has at
least one fixed point if there exist « > 1, 8 > 0 such that any one of the following conditions
is satisfied:
(i) For each x € 3L, ||F(x) = | = | F@)I| lall 7 — |l

(ii) Foreachx € dU, |F(x) +x[ " < |Fx)|“Ilx]? + [lx]|®*F;

(iii) For each x € 3U, [|F(x) — x| *|lxl|? > | Fx)|*Ily +x]1P — [|lx[|@+F);

(iv) Foreach x € U, ||F(x) + x| < [[F(x) — x| lll” + [ FGx) 1P [lx]*.

Remark 10.3 As discussed by Lemma 10.1 and the proof of Theorem 10.6, when the p-
vector space is a uniformly convex Banach space, the semicontractive or nonexpansive
mappings automatically satisfy the conditions (see (H1)) required by Theorem 10.1, that
is, the mappings are indeed semiclosed. Moreover, our results from Theorem 10.1 to The-
orem 10.6, Corollary 10.1, and Corollary 10.2 also improve or unify the corresponding
results given by Browder [15], Huang et al. [48], Li [66], Li et al. [67], Goebel and Kirk
[41], Marika [73], Petryshyn [93, 94], Reich [99], Shahzad [108], Tan and Yuan [117], Xu
[125], Xu [126], Xu [129], Xu et al. [130], Yuan [134], Yuan [135] and the results from
the references therein by extending the nonself mappings to the classes of semiclosed 1-
set contractive set-valued mappings in p-seminorm spaces with p € (0.1] (including the

norm space or the Banach space when p = 1 for p-seminorm spaces).

Before ending this paper, we would like to share with readers that the main goal of this
paper is to develop some new results and tools in the natural way for the category of non-
linear analysis for three classes of mappings, which are: 1) condensing; 2) 1-set contrac-
tive; and 3) semiclosed mappings under the general framework of locally p-convex spaces
(where (0 < p < 1)) for (single-valued) continuous mappings instead of set-valued map-
pings without the strong condition with closed p-convex values! We do also expect that
these new results would become very useful tools for the development of nonlinear func-
tional analysis under the general framework of p-vector spaces, which include the topo-
logical vector spaces as a special classes, and also the related applications for nonlinear
problems on optimization, nonlinear programming, variational inequality, complemen-
tarity, game theory, mathematical economics, and so on.

As we mentioned at the beginning of this paper, we do expect that nonlinear results and
principles of the best approximation theorem established in this paper would play a very
important role in the nonlinear analysis under the general framework of p-vector spaces
for (0 < p < 1), as shown by those results given from Sects. 6 and 7 for both condens-
ing and 1-set contractive mappings; and general new results in nonlinear analysis from
Sects. 8,9, and 10 for semiclosed 1-set contractive mappings for the development of fixed
point theorems for nonself mappings, the principle of nonlinear alternative, Rothe type,
Leray—Schauder alternative, and related topics, which do not only include corresponding
results in the existing literature as special cases, but are expected to be important tools for
the study of its nonlinear analysis.

Finally, we would like to point out that the work presented by this paper focuses on the
development of nonlinear analysis for single-valued (instead of set-valued) mappings for
locally p-convex spaces. It is essentially very important and, indeed, the continuation of the
work given recently by Yuan [134]; therein the attention is given to establishing new results
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on fixed points, the principle of nonlinear alternative for nonlinear mappings mainly on
set-valued mappings developed in locally p-convex spaces for 0 < p < 1. Although some
new results for set-valued mappings in locally p-convex spaces have been developed (see
Gholizadeh et al. [39], Park [89], Qiu and Rolewicz [98], Xiao and Zhu [123, 124], Yuan
[134], and others), we still would like to emphasize that the results obtained for set-valued
mappings for p-vector spaces may face some challenges in dealing with true nonlinear
problems. One example is that the assumption used for “set-valued mappings with closed
p-convex values” seems too strong as it always means that the zero element is a trivial fixed
point of the set-valued mappings, and this simple fact was also discussed by Yuan [134]
forO<p<1.
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