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Abstract
Implicit block approaches are used by a number of numerical analyzers to model
mild, medium, and hard differential systems. Their excellent stability characteristics,
self-starting nature, quick convergence, and large decrease in computing cost all
contribute to their widespread application. With these numerical benefits in mind,
a new one-step implicit block method with three intrastep grid points has been
created. The major term of the local truncation error is minimized to determine which
of these points is optimal. The reformulation of the suggested technique leads to a
significant decrease in computing cost while maintaining the same consistency,
zero-stability,A-stability, and convergence. Several sorts of error are calculated,
together with CPU time and efficiency plot, to determine which is superior.
Differential models from the fields of heat transfer, population dynamics, and
chemical engineering show that the suggested method does a better job than some
of the current hybrid block and implicit Radau methods with similar properties.
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1 Introduction
Ordinary differential equations are widely used in the real world, so it is crucial to develop
efficient and accurate numerical methods for solving them. Several numerical techniques
are proposed in this regard in the existing literature. Many domains, such as chemistry,
flame propagation, computational fluid dynamics, population dynamics, engineering, and
mathematical biology, require approximate solutions to tough problems, but most of these
methods fall short. For models to be stiff enough, they need numerical approaches that
cost a lot to compute and have unbounded stability areas. Most of the traditional meth-
ods such as explicit Runge–Kutta [1], Lobatto family [2], multi-step Adams family [3–5],
and higher-order multiderivative types [6, 7] are not used due to either a large amount of
computational effort required (very small step-size �x ≈ 0) or finite stability region (con-
ditional stability). The implicit block methods, on the other hand, are preferred since they
are self-starting, computationally robust (cost-effective), highly accurate, fast convergent,
and A-stable (a favorable property for stiff models). Some of the major advantages of the
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block methods include their self-starting nature and ability to overcome the overlapping
of solution pieces.

We consider an initial value problem

dy(x)
dx

= f
(
x, y(x)

)
, y(x0) = y0, x ∈ [x0, T], y(x) ∈R

n, f : R×R
n →R

n, (1)

where f (x, y(x)) is assumed to be Lipschitz continuous and satisfies conditions for the ex-
istence and uniqueness of solutions [8] to the problem (1). Milne [9] is thought to be the
inventor of the block methods who employed them to get starting values for the predictor–
corrector-type numerical methods. One of the most important research works on the
block methods can be seen in [10], proposed way back in 1969. Later, several classical
works were reported in [11–15] whereas some recently developed implicit block methods
include [16–25] and most of the references cited therein. Higher-order block methods
including one-, two-, and three-step approaches are proposed in the literature with the
A-stability feature. Still, they are, to some extent, computationally expensive, while some
lower-order block methods, although time-efficient, are not accurate enough for stiff sys-
tems. In the recent past, Ramos et al. [26] presented an idea for optimization of the inter-
mediate collocation points for k-step hybrid block methods from leading terms of the local
truncation errors. Motivated by this research study, several block methods were proposed,
including [27–29]. For example, Singh et al. [30] proposed a fifth-order block method with
three off-step points in a one-step block while optimizing two off-step points and fixing
the third, wherein the resulting block method was observed to have A-stability. Singh and
Ramos [31] designed an optimized seventh-order two-step hybrid block method with two
intrastep points for numerical integration of second-order differential systems considering
both fixed and variable step-size approaches. Similarly, Ramos [32] presented, while using
interpolation and collocation techniques, a fifth-order two-step hybrid block method for
solving first-order initial value problems, wherein the method considers minimization of
the local truncation errors to optimize the intermediate two off-step points. Several other
researches on the block methods can be found in the available scientific literature. Other
works are recently reported in [33–35] wherein the authors have proposed variable-order
techniques, including Haar wavelet collocations, to solve differential equations.

Our new one-step hybrid block technique takes into account three intra-step points
and is inspired by recent advancements in the block method field. Minimizing the local
truncation error leads to an optimal solution. It is important to note that there is cur-
rently no recorded one-step block approach with three intra-step points, of which only
one is optimal, in the scientific literature. In this study, we seek to create a new one-step
method that, unlike numerous existing block methods, just requires one step to minimize
the major term of the local truncation error (see the section of numerical results). Using
interpolation and collocation, the suggested method derives a continuous approximation
of a polynomial.

The present paper is structured as follows: The proposed implicit hybrid block method
is derived in Sect. 2 whereas its theoretical analysis, containing error constant from the
local truncation error, consistency, zero-stability, linear stability, and the theory of order
stars, is described in Sect. 3. Several physical models are considered in Sect. 4 to test the
performance of the proposed method, and the final concluding remarks are presented in
Sect. 5.
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2 Derivation of the proposed block method
This section presents details about derivation of the proposed one-step hybrid block
method with three intrastep points xn+u, xn+v, xn+w (0 < u < v < w < 1) where one point
is optimized from the principal term of the local truncation error. The method will later
be used to numerically solve several initial value problems as in (1), in both scalar and vec-
tor forms. Consider a polynomial approximation of the actual solution y(x) of (1) at the
grid points x0 < x1 < · · · < xN = T over the integration interval [x0, T], with fixed step-size
�x = xk+1 – xk , k = 0, 1, . . . , N – 1. Suppose the following approximate solution:

y(x) ≈ L(x) =
5∑

j=0

ζjxj. (2)

Differentiation of Eq. (2) produces

y′(x) ≈ L′(x) =
5∑

j=1

jζjxj–1, (3)

where ζj ∈R denote real undetermined coefficients. Consider three intrastep points xn+u =
xn + u�x, xn+v = xn + v�x, xn+w = xn + w�x with 0 < u < v < w < 1 for finding approximate
solution of (1) on [xn, xn+1] at the points xn and xn+1. To carry out the process, consider the
approximation in (2) computed at the point xn, and its first-order derivative computed at
the points xn, xn+u, xn+v, xn+w, xn+1. This setup brings the following matrix form of a linear
system containing six equations in six real unknown coefficients ζj, j = 0, 1, . . . , 5:

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

1 xn x2
n x3

n x4
n x5

n

0 1 2xn 3x2
n 4x3

n 5x4
n

0 1 2xn+u 3x2
n+u 4x3

n+u 5x4
n+u

0 1 2xn+v 3x2
n+v 4x3

n+v 5x4
n+v

0 1 2xn+w 3x2
n+w 4x3

n+w 5x4
n+w

0 1 2xn+1 3x2
n+1 4x3

n+1 5x4
n+1

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

ζ0

ζ1

ζ2

ζ3

ζ4

ζ5

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

yn

fn

fn+u

fn+v

fn+w

fn+1

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

. (4)

Solving the above linear system gives values of the six unknown coefficients ζj, j = 0, 1, . . . , 5
which, for the sake of brevity, are not shown here. Putting these values in (2), while using
the change of variable x = xn + t�x, we obtain

L(xn + t�x) = ζ0yn + �x(η0fn + ηufn+u + ηvfn+v + ηwfn+w + η1fn+1), (5)

where

ζ0 = 1,

η0 =
t(

20uvt2 – 30uvtw – 15ut3 + 20ut2w – 15vt3 + 20vt2w+
12t4 – 15t3w – 30uvt + 60uvw + 20ut2 – 30utw + 20vt2)

60uvw
,

ηu = –
t2(15vt2 – 20vtw – 12t3 + 15t2w – 20vt + 30vw + 15t2 – 20tw)

60(u – 1)(u – w)(u – v)u
,

ηv =
t2(15ut2 – 20utw – 12t3 + 15t2w – 20ut + 30uw + 15t2 – 20tw)

60(v – 1)(v – w)(u – v)v
,

(6)
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ηw =
t2(20uvt – 15ut2 – 15vt2 + 12t3 – 30uv + 20ut + 20vt – 15t2)

60(w – 1)(v – w)(u – w)w
,

η1 = –
t2(20uvt – 30uvw – 15ut2 + 20utw – 15vt2 + 20vtw + 12t3 – 15t2w)

60(w – 1)(v – 1)(u – 1)
.

Now to get the required one-step hybrid block method, we evaluate L(xn + t�x) at the
collocation points xn+u, xn+v, xn+w, and xn+1 where t = u, v, w, 1. By so doing, the following
system of four equations with four unknowns is obtained:

yn+u = yn

–
�x
60

(
–3u4 + 5u3v + 5u3w – 10u2vw + 5u3 – 10u2v – 10u2w + 30uvw

vw
fn

+
u(12u3 – 15u2v – 15u2w + 20uvw – 15u2 + 20uv + 20uw – 30vw)

(u – 1)(u – w)(u – v)
fn+u

–
u2(–3u3 + 5u2w + 5u2 – 10uw)

(v – 1)(v – w)(u – v)v
fn+v –

u2(–3u3 + 5u2v + 5u2 – 10uv)
(w – 1)(v – w)(u – w)w

fn+w

–
u2(–3u3 + 5u2v + 5u2w – 10uvw)

(w – 1)(v – 1)(u – 1)
fn+1

)
,

(7)

yn+v = yn

–
�x
60

(
5uv3 – 10uv2w – 3v4 + 5v3w – 10uv2 + 30uvw + 5v3 – 10v2w

uw
fn

+
v2(–3v3 + 5v2w + 5v2 – 10vw)

(u – 1)(u – w)(u – v)u
fn+u

–
v(–15uv2 + 20uvw + 12v3 – 15v2w + 20uv – 30uw – 15v2 + 20vw)

(v – 1)(v – w)(u – v)
fn+v

+
v2(5uv2 – 3v3 – 10uv + 5v2)

(w – 1)(v – w)(u – w)w
fn+w –

v2(5uv2 – 10uvw – 3v3 + 5v2w)
(w – 1)(v – 1)(u – 1)

fn+1

)
,

(8)

yn+w = yn

–
�x
60

(
–10uvw2 + 5uw3 + 5vw3 – 3w4 + 30uvw – 10uw2 – 10vw2 + 5w3

uv
fn

+
w2(5vw2 – 3w3 – 10vw + 5w2)

(u – 1)(u – w)(u – v)u
fn+u –

w2(5uw2 – 3w3 – 10uw + 5w2)
(v – 1)(v – w)(u – v)v

fn+v

+
w(20uvw – 15uw2 – 15vw2 + 12w3 – 30uv + 20uw + 20vw – 15w2)

(w – 1)(v – w)(u – w)
fn+w

–
w2(–10uvw + 5uw2 + 5vw2 – 3w3)

(w – 1)(v – 1)(u – 1)
fn+1

)
,

(9)

yn+1 = yn

–
�x
60

(
30uvw – 10uv – 10uw – 10vw + 5u + 5v + 5w – 3

uvw
fn

+
–10vw + 5v + 5w – 3
(u – 1)(u – w)(u – v)u

fn+u –
–10uw + 5u + 5w – 3
(v – 1)(v – w)(u – v)v

fn+v (10)

+
–10uv + 5u + 5v – 3

(w – 1)(v – w)(u – w)w
fn+w
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–
(–30uvw + 20uv + 20uw + 20vw – 15u – 15v – 15w + 12)

(w – 1)(v – 1)(u – 1)
fn+1

)
,

where yn+l � y(xn + l�x) are approximations of the exact solution, and fn+l = f (xn+l, yn+l),
for l = u, v, w, 1. The above approximations consist of the parameters u, v, w that are related
to the intrastep points xu, xv, xw. The suitable values of these parameters can be computed
with the help of the principal term of the local truncation error in the main formula, that
is, yn+1. One of the parameters will be optimized by imposing a condition on the principal
term to vanish. The reason to consider the principal term of the local truncation error
in yn+1 to compute one of the optimized parameters is that at the end of the subinterval
[xn, xn+1], the value yn+1 is the only value required for advancing the integration on the
next block. Thus, to achieve this, we have considered the following local truncation error
obtained by expanding y(x) in the Taylor series about xn. So, the local truncation error in
the formula given in (10) is given as follows:

L
(
y(xn+1);�x

)

=
(

((10w – 5)v – 5w + 3)u
7200

+
(–5w + 3)v

7200
+

w
2400

–
1

3600

)
�x6y(6)(xn)

+
(

((70w – 35)v – 35w + 21)u2

302,400

+
(v + w + 1)((w – 1/2)v – (1/2)w + 3/10)u

4320
+

(–35w + 21)v2

302,400

+
–35w2 – 14w + 21

302,400
+

w2

14,400
+

w
14,400

–
1

12,600

)
�x7y(7)(xn)

+ O
(
�x8).

(11)

Equating the principal term (the coefficient of �x6) of the local truncation error in (11) to
zero, we get the following single equation in three unknown parameters:

((10w – 5)v – 5w + 3)u
7200

+
(–5w + 3)v

7200
+

w
2400

–
1

3600
= 0. (12)

The above equation (12) is expressed in terms of u and v as follows:

w =
5uv – 3v – 3u + 2

10uv – 5v – 5u + 3
. (13)

Since there are more unknowns than equations, there exist infinitely many solutions for
the parameters under consideration. Considering two of them (say, u, v) as free parame-
ters, w is optimized. By so doing, the following set of parameters is determined, with w
being the optimal one:

{
u =

1
4

, v =
1
2

, w =
3
4

}
. (14)

Substituting these values into (11), the local truncation error of the main formula in (10)
is computed as follows:

L
(
y(xn+1);�x

)
= –

(�x)7y(7)(xn)
1,935,360

+ O
(
�x8). (15)
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Finally, substituting the values of the obtained parameters u, v, w into (7)–(10) yields the
following required one-step hybrid block method with three intrastep points having at
least fifth-order convergence while one of the intrastep points is optimized:

yn+ 1
4

= yn +
�x

2880
[251fn + 646fn+ 1

4
– 264fn+ 1

2
+ 106fn+ 3

4
– 19fn+1],

yn+ 1
2

= yn +
�x
360

[29fn + 124fn+ 1
4

+ 24fn+ 1
2

+ 4fn+ 3
4

– fn+1],

yn+ 3
4

= yn +
�x
320

[27fn + 102fn+ 1
4

+ 72fn+ 1
2

+ 42fn+ 3
4

– 3fn+1],

yn+1 = yn +
�x
90

[7fn + 32fn+ 1
4

+ 12fn+ 1
2

+ 32fn+ 3
4

+ 7fn+1].

(16)

The pseudocode for the above proposed method is presented in the algorithm of the
Appendix. Moreover, it is easy to notice from the structure of the proposed block method
(16) that the slope f occurs four times in each equation without considering fn as it is just
a numerical value. It becomes computationally expensive when f is complicated. This can,
however, be overcome by minimizing the number of times f appears in each equation of
the above formulae. To accomplish this, we simultaneously solve the set of equations (16)
for fn+u, fn+v„ fn+w, and fn+1. It results in an equivalent formulation of (16) reducing the
occurrences of f to just one. This proves to be computationally cost-effective, particularly
when f is not a simple differentiable function. The obtained reformulation is structured
as follows:

�xfn+ 1
4

= –
37
12

yn +
2
3

yn+ 1
4

+ 3yn+ 1
2

–
2
3

yn+ 3
4

+
1

12
yn+1 –

�x
4

fn,

�xfn+ 1
2

=
31
18

yn –
16
3

yn+ 1
4

+ 2yn+ 1
2

+
16
9

yn+ 3
4

–
1
6

yn+1 +
�x
6

fn,

�xfn+ 3
4

= –
29
12

yn + 6yn+ 1
4

– 9yn+ 1
2

+
14
3

yn+ 3
4

+
3
4

yn+1 –
�x
4

fn,

�xfn+1 =
28
3

yn –
64
3

yn+ 1
4

+ 24yn+ 1
2

–
64
3

yn+ 3
4

+
28
3

yn+1 + �xfn,

(17)

where the above reformulation of (16) is now abbreviated as RPOBM5. The function f
is required to be evaluated at four points in both formulations; the computational cost,
however, is reduced (as evident in the numerical experiments) while using (17) for solving
problems as in (1).

3 Theoretical analysis
In this section, we investigate theoretical properties for the proposed implicit hybrid block
method given in (16), or equivalently (17), including accuracy, consistency, zero-stability,
convergence, linear stability, and A-acceptability.

3.1 Order of accuracy and consistency
The hybrid block method in (16) can be rewritten in the following convenient form:

A1Yn+1 = A0Yn + �x(B0Fn + B1Fn+1), (18)
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where A0, A1, B0, and B1 are 4 × 4 matrices given by

A0 =

⎡

⎢
⎢⎢
⎣

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

⎤

⎥
⎥⎥
⎦

, A1 =

⎡

⎢
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥⎥
⎦

, (19)

B0 =

⎡

⎢⎢⎢
⎣

0 0 0 251
2880

0 0 0 29
360

0 0 0 27
320

0 0 0 7
90

⎤

⎥⎥⎥
⎦

, B1 =

⎡

⎢⎢⎢
⎣

646
2880 – 264

2880
106

2880 – 19
2880

124
360

24
360

4
360 – 1

360
102
320

72
320

42
320 – 3

320
32
90

12
90

32
90

7
90

⎤

⎥⎥⎥
⎦

, (20)

and

Yn = (yn–1+u, yn–1+v, yn–1+w, yn)T ,

Yn+1 = (yn+u, yn+v, yn+w, yn+1)T ,

Fn = (fn–1+u, fn–1+v, fn–1+w, fn)T ,

Fn+1 = (fn+u, fn+v, fn+w, fn+1)T .

(21)

The linear functional operator L̄ associated with (16) can be defined as

L̄
[
z(xn);�x

]
=

∑

k=0,u,v,w,1

[
ζ̄kz(xn + k�x) – �xη̄kz′(xn + k�x)

]
, (22)

where ζ̄k and η̄k are the column vectors of the matrices A1 and A0, respectively. The term
z(x) is an arbitrary test function that is considered sufficiently differentiable in the interval
[0, T]. The block method (16) and the corresponding linear difference operator are said
to be at least of order r if after expanding the functions z(xn + k�x) and z′(xn + k�x) in
Taylor series about xn, and collecting the coefficients of �x, we obtain

L̄
[
z(xn);�x

]
= C̄0z(xn) + C̄1�xz′(xn) + C̄2�x2z′′(xn) + · · · + C̄r�xrz(r)(xn) + · · · , (23)

with C̄0 = C̄1 = · · · = C̄r = 0 and C̄r+1 �= 0. The coefficients C̄r are vectors and C̄r+1 is known
as the vector of error constants. For the proposed hybrid block method (16), we obtain
C̄0 = C̄1 = · · · = C̄5 = 0 with the error constant given by

C̄6 =
(

3
655,360

,
1

368,640
,

3
655,360

, 0
)T

. (24)

Thus, it proves that the one-step implicit hybrid block method with three intrastep points,
while one of them is optimally obtained, has at least fifth algebraic order of accuracy. In
addition, the method (16) does not have an order less than 1; therefore, it is also consistent
with the IVP (1) (see the work of Jator in [36]).

3.2 Zero-stability and convergence
An essential crude requirement for a numerical method to be of some use is the require-
ment called zero-stability. For example, let the IVP given in (1) be asymptotically stable,
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whereas the need is to prove the stability of the proposed numerical method (16). The
notion of zero-stability relates to considering a homogeneous equation y′ = 0 and its dis-
cretized counterpart as given by

A0Yn+1 – A1Yn = 0, (25)

where A0 and A1 are given in (19). Now, if the discrete algebraic equation (25) admits so-
lutions that grow in time, then the proposed block method will not be zero-stable and
cannot be used in practice. On the other hand, the proposed block method is said to be
zero-stable if zeros Ri of the first characteristic polynomial κ(R) = |zA1 – A0| fulfill |Ri| ≤ 1
and for those zeros with |Ri| = 1 the multiplicity does not exceed 1 [5]. The first charac-
teristic polynomial of the proposed block method (16) is given by

κ(R) = R3(R – 1). (26)

Thus, the proposed block method (16) can be considered a zero-stable method. Being
both zero-stable and consistent, it deserves to be called a convergent method (check the
work of Henrici in [37]).

3.3 Linear stability analysis and order stars
Theorem 3.1 The proposed one-step hybrid block method with one optimal intrastep point
given in (16) satisfies every criterion to be A-stable.

Proof As far as the concept of zero stability is concerned, it is related to the behavior of
the underlying numerical method as the step-size �x → 0. In other situations, however,
a different concept of stability is needed from a practical point of view. It is concerned
with a numerical method that produces good results for a particular value of �x > 0. Such
behavior is known as the linear stability behavior for the numerical method, and it requires
applying the method on a linear test problem proposed by Dahlquist [38], namely

y′(x) = σy(x), with Re(σ ) < 0. (27)

It is required to determine the region wherein the approximations obtained under the
numerical method reproduce the behavior of the true solution of the test problem (27).
After using the proposed block method (16) on the test problem in (27), the recurrence
equation given below is obtained:

Yn = H(z)Yn–1, (28)

where H(z) denotes the stability matrix given by

H(z) = (A1 – zB1)–1(A0 + zB0), z = σ�x. (29)

The eigenvalues of the stability matrix (29) determine the behavior of the numerical solu-
tion. This is the commonly known stability property of the numerical method that uses the
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Figure 1 The stability region in 2D and 3D of the proposed one-step block method (16) with three intrastep
points, including one optimal

spectral radius (supremum among the absolute values of the elements in the spectrum) of
H(z). The region of absolute linear stability A is defined by the set [39]

A =
{

z ∈ C :
∣
∣ρ

[
H(z)

]∣∣ < 1
}

, (30)

and if C– ⊆A, the underlying numerical method is said to be A-stable. The spectral radius
is easily computed as the following rational function:

ρ
[
H(z)

]
=

3z4 + 50z3 + 420z2 + 1920z + 3840
3z4 – 50z3 + 420z2 – 1920z + 3840

, (31)

which has modulus less than one in C
–. This completes the proof for the A-stability of the

proposed block method given in (16). �

Remark 3.2 The graphical illustrations given by Fig. 1 show that the entire left-half com-
plex plane C– is included in the stability region of (16). This kind of A- stability is further
confirmed with the plot of order stars wherein the rational stability function (31) does not
have any pole in C

– as can be seen in Fig. 2.

4 Numerical dynamics with results and discussion
The proposed one-step hybrid block method with three intrasteps, including one optimal
point given in (16), is now employed, neither using any starting values nor any predictors,
to determine the approximate solution of various single and systems of stiff ordinary dif-
ferential equations. Keeping in mind that the initial value y(x0) = y0 is known, the system of
equations in (16) is simultaneously solved for n = 0. The well-known quadratically conver-
gent Newton’s method is sufficient for solving the system to get the value y(x1) ∼= y1. Later,
taking y1 from the previous block as the initial value, the value y(x2) ∼= y2 is computed.
This procedure continues until the computation of xN (the last point). The entire length
of the integration interval is chosen to be a multiple of 2�x (xN – x0 = ε(2�x), ε ∈N), as we
have selected, for comparison, some two-step methods. Newton’s method under the Find
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Figure 2 Order stars confirmingA-stability of the proposed one-step block method (16) with three intrastep
points, including one optimal point

Root command in Mathematica 12.1 with 64-digit working precision arithmetic is used
during the implementation of numerical simulations. All numerical simulations are car-
ried out in Mathematica 12.1 on a personal computer running Windows OS with Intel(R)
Core(TM) i7-1065G7 CPU @ 1.30 GHz and 1.50 GHz processor having 24.0 GB installed
RAM.

Considering the potential of block methods to deal with stiff differential models, we
have taken some well-known stiff applied problems that have appeared several times in
the recent literature. These problems are solved with methods as given below:

• Proposed (POBM5) one-step fifth-order hybrid block method with three intrastep
grid points shown in (16).

• Reformulated proposed (RPOBM5) one-step fifth-order hybrid block method with
three intrastep points shown in (17).

• Block hybrid Simpson’s method (BHSM5) with two intrastep points for the stiff
system that appeared in [40].

• Two-step sixth-order block method (Sahi6) that appeared in [41].
• Fully-implicit RK-type fifth-order method, called Radau method (Radau I5), that

appeared in [1]. The Radau family is well-known for solving stiff differential systems.
Moreover, the performance of each method under consideration is measured on differ-
ent types of error, including maximum global absolute errors ME = (maxx∈[x0,T] |y(xN ) –
yN |), absolute error at final grid point LE = (|y(xN ) – yN |), average absolute error AE =
1
N (

∑N
i=1 |y(xi) – yi|), norm (

√∑N
i=1 |y(xi) – yi|2), and the CPU time computed in seconds.

The problems under consideration are the most challenging IVPs in ODEs, including
burning a ball for a match stick (flame propagation), Prothero–Robinson stiff problem,
Kaps stiff system, and the nonlinear Blasius third-order ODE commonly encountered in
fields like heat transfer and the computational fluid dynamics. The numerical simulations
for each numerical experiment are shown in the Tables 1–5. Different absolute errors and
CPU times are noted to compare the above-discussed methods.

It can be observed from these tables that the proposed block method (16) yields minor
errors. In contrast, its reformulation also produces minor errors, reducing CPU times as
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Table 1 Comparison of the methods under consideration on the basis of absolute errors and CPU
time for the flame propagation model given in Problem 1 with different number of steps (n)

n Method ME LE AE Norm CPU time

64 POBM5 1.232e–10 1.049e–12 1.645e–11 2.650e–10 3.739e–01
RPOBM5 1.232e–10 1.049e–12 1.645e–11 2.650e–10 2.898e–01
BHSM5 1.243e–08 1.905e–11 1.387e–09 2.329e–08 1.171e–01
Sahi6 1.155e–08 6.796e–11 1.568e–09 2.565e–08 1.733e–01
Radau I5 9.303e–09 3.043e–10 1.304e–09 2.048e–08 4.269e–01

128 POBM5 1.967e–12 1.635e–14 2.590e–13 5.824e–12 5.682e–01
RPOBM5 1.967e–12 1.635e–14 2.590e–13 5.824e–12 4.026e–01
BHSM5 1.838e–10 2.934e–13 2.246e–11 5.244e–10 1.800e–01
Sahi6 2.239e–10 1.049e–12 2.381e–11 5.601e–10 2.579e–01
Radau I5 2.889e–10 9.259e–12 3.997e–11 8.842e–10 5.834e–01

256 POBM5 3.067e–14 2.553e–16 4.058e–15 1.285e–13 3.051e+00
RPOBM5 3.067e–14 2.553e–16 4.058e–15 1.285e–13 9.716e–01
BHSM5 2.834e–12 4.568e–15 3.536e–13 1.166e–11 4.130e–01
Sahi6 3.621e–12 1.635e–14 3.701e–13 1.234e–11 6.724e–01
Radau I5 8.931e–12 2.857e–13 1.243e–12 3.866e–11 1.176e+00

an additional advantage over the proposed block method. When compared to other well-
known methods from available literature, it is noted that the errors are more significant in
magnitude; however, the CPU times are as promising as in the reformulated block method
in some cases, particularly when the method has a simple form of coefficients such as that
in [40]. The efficiency curves shown in Figs. 4 and 3 for the first and second numerical
experiments, respectively, are obtained wherein the better performance of the proposed
block method (16) and its reformulation given in (17) is seen in terms of absolute maxi-
mum global error and CPU times. Thus, the reformulated version of the proposed block
method is proved to be the most time-efficient algorithm among considered to obtain an
approximate solution of the IVP (1).

Problem 1 Consider the following highly stiff IVP for the flame propagation taken from
[42]:

u′
1(x) = u2

1(x) – u3
1(x), u1(0) = ε, x ∈

[
0,

2
ε

]
, (32)

with the exact solution u1(x) = 1
ProductLog[9 exp (–x+9)]+1 , where the function ProductLog is a

special function whose details are available in the Wolfram language documentation.

Problem 2 We consider the well-known Prothero–Robinson model taken from [43]:

u′
1(x) = λ

(
u1(x) – f (x)

)
+ f ′(x), u1(0) = 0, x ∈ [0, 5], (33)

with λ = 10–7, f (x) = sin(x), whose exact solution is u1(x) = sin(x).

Problem 3 We consider the following stiff system of first-order ODEs taken from [41]:

u′
1(x) = –u1(x) + 95v1(x), u1(0) = 1,

v′
1(x) = –u1(x) – 97v1(x), v1(0) = 1,

(34)
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Table 2 Comparison of the methods under consideration on the basis of absolute errors and CPU
time for Problem 2 with different number of steps (n)

n Method ME LE AE Norm CPU time

256 POBM5 2.868e–17 2.750e–17 1.882e–17 3.338e–16 8.907e–01
RPOBM5 2.868e–17 2.750e–17 1.882e–17 3.338e–16 7.023e–01
SHM, 5 5.874e–15 5.633e–15 3.854e–15 6.836e–14 2.801e–01
Sahi6 7.802e–15 1.760e–15 3.156e–15 6.585e–14 5.546e–01
Radau I5 7.895e–14 2.829e–14 4.692e–14 8.608e–13 8.467e–01

512 POBM5 4.482e–19 4.298e–19 2.942e–19 7.369e–18 2.018e+00
RPOBM5 4.482e–19 4.298e–19 2.942e–19 7.369e–18 1.485+00
BHSM5 9.178e–17 8.802e–17 6.025e–17 1.509e–15 5.645e–01
Sahi 1.219e–16 2.750e–17 4.938e–17 1.455e–15 1.142e+00
Radau I5 2.467e–15 8.838e–16 1.468e–15 3.804e–14 1.562e+00

1024 POBM5 7.003e–21 6.715e–21 4.598e–21 1.628e–19 4.491e+00
RPOBM5 7.003e–21 6.715e–21 4.598e–21 1.628e–19 3.378e+00
BHSM5 1.434e–18 1.375e–18 9.416e–19 3.334e–17 1.319e+00
Sahi6 1.905e–18 4.298e–19 7.721e–19 3.215e–17 2.008e+00
Radau I5 7.710e–17 2.762e–17 4.591e–17 1.681e-15 3.484e+00

Table 3 Comparison of the methods under consideration on the basis of absolute errors and CPU
time for the stiff Problem 3 with different number of steps (n)

n Method ME_u ME_v LE_u LE_v CPU time

216 POBM5 5.919e–07 5.919e–07 1.852e–17 1.949e–19 1.322e+00
RPOBM5 5.919e–07 5.919e–07 1.852e–17 1.949e–19 1.057e+00
BHSM5 1.917e–05 1.917e–05 6.320e–16 6.653e–18 7.299e–01
Sahi6 3.468e–05 3.468e–05 4.494e–14 4.730e–16 2.074e+00
Radau I5 3.468e–05 3.468e–05 1.185e–15 1.247e–17 1.270e+00

1296 POBM5 1.232e–11 1.232e–11 3.969e–22 4.177e–24 7.689e+00
RPOBM5 1.232e–11 1.232e–11 3.969e–22 4.177e–24 6.723e+00
BHSM5 4.197e–10 4.197e–10 1.300e–20 1.426e–22 2.474e+00
Sahi6 3.821e–09 3.821e–09 5.763e–18 6.067e–20 7.311e+00
Radau I5 1.362e–09 1.362e–09 2.540e–20 2.674e–22 4.044e+00

7776 POBM5 2.639e–16 2.639e–16 8.506e–27 8.954e–29 4.876e+01
RPOBM5 2.639e–16 2.639e–16 8.506e–27 8.954e–29 3.723e+01
BHSM5 9.010e–15 9.010e–15 2.903e–25 3.056e–27 1.450e+01
Sahi6 4.809e–13 4.809e–13 7.409e–22 7.798e–24 4.061e+01
Radau I5 3.811e–14 3.811e–14 5.444e–25 5.730e–27 2.482e+01

Table 4 Comparison of the methods under consideration on the basis of absolute errors and CPU
time for Kaps Problem 4 with different number of steps (n)

n Method ME_u ME_v LE_u LE_v CPU time

128 POBM5 5.214e–17 2.608e–19 7.487e–18 2.608e–19 9.962e–01
RPOBM5 5.214e–17 2.608e–19 7.487e–18 2.608e–19 7.935e–01
BHSM5 1.172e–17 9.559e–18 7.686e–18 9.554e–18 3.156e–01
Sahi6 9.182e–11 9.169e–14 9.3e–12 7.819e–15 8.553e–01
Radau I5 3.280e–15 4.168e–17 4.938e–16 1.668e–17 4.917e–01

256 POBM5 8.034e–19 4.079e–21 1.137e–19 4.079e–21 2.691e+00
RPOBM5 8.034e–19 4.079e–21 1.137e–19 4.079e–21 2.029e+00
BHSM5 1.791e–19 1.494e–19 1.189e–19 1.493e–19 7.806e–01
Sahi6 3.111e–12 3.107e–15 4.179e–13 3.707e–16 1.977e+00
Radau I5 5.214e–17 6.584e–19 7.487e–18 2.608e–19 1.014e+00

512 POBM5 1.236e–20 6.376e–23 1.748e–21 6.376e–23 4.106e+00
RPOBM5 1.236e–20 6.376e–23 1.748e–21 6.376e–23 3.685+00
BHSM5 2.727e–21 2.334e–21 1.835e–21 2.333e–21 1.348e+00
Sahi6 9.454e–14 9.442e–17 1.298e–14 1.150e–17 4.011e+00
Radau I5 8.034e–19 1.028e–20 1.137e–19 4.079e–21 2.772e+00



Tassaddiq et al. Fixed Point Theory Algorithms Sci Eng         (2022) 2022:22 Page 13 of 17

Table 5 Comparison of absolute errors at x = 10 for the Blasius equation of boundary layer flow
given in Problem 5 with different number of steps (n)

n Method LE_u LE_v LE_w CPU time

8 POBM5 6.705e–05 1.051e–05 4.259e–11 8.084e–02
RPOBM5 6.705e–05 1.051e–05 4.259e–11 6.753e–02
BHSM5 5.437e–02 6.470e–03 2.294e–07 2.524e–02
Sahi6 1.847e–02 1.542e–03 3.599e–06 4.455e–02
Radau5 1.672e–03 1.640e–04 1.274e–06 7.56e–02

16 POBM5 7.800e–07 1.288e–07 1.496e–11 2.958e–01
RPOBM5 7.800e–07 1.288e–07 1.496e–11 1.362e–01
BHSM5 1.933e–04 1.876e–05 1.839e–11 4.400e–02
Sahi6 6.705e–05 1.051e–05 4.259e–11 1.502e–01
Radau5 5.548e–05 5.016e–06 1.495e–11 1.758e–01

32 POBM5 3.541e–07 3.004e–08 1.496e–11 2.680e–01
RPOBM5 3.541e–07 3.004e–08 1.496e–11 2.308e–01
BHSM5 4.330e–06 4.861e–07 1.496e–11 8.873e–02
Sahi6 7.800e–07 1.288e–07 1.496e–11 1.555e–01
Radau5 2.033e–06 1.761e–07 1.496e–11 2.727e–01

where x ∈ [0, 2]. The exact solution of the above system is

u1(x) =
1

47
[
95 exp (–2x) – 48 exp (–96x)

]
,

v1(x) =
1

47
[
48 exp (–96x) – exp (–2x)

]
.

(35)

Problem 4 We consider the stiff system of first-order ODEs known as the Kaps problem
taken from [31]:

u′
1(x) = –1002u1(x) + 1000v1(x), u1(0) = 1,

v′
1(x) = u1(x) – v1(x)

(
1 + v1(x)

)
, v1(0) = 1,

(36)

where x ∈ [0, 5]. The exact solution of the above system is

u1(x) = exp (–2x),

v1(x) = exp (–x).
(37)

Problem 5 Consider the following nonlinear third-order ODE known as the Blasius equa-
tion of boundary layer flow taken from [44]:

2
d3u1(x)

dv3
1

+ u1(x)
d2u1(x)

dv2 = 0, u1(0) = 0, u′
1(0) = 0, u′′

1(0) = 1. (38)

The above nonlinear equation can be rewritten as a system of three first-order ODEs as
shown below:

u′
1(x) = v1(x), u1(0) = 0,

v′
1(x) = w1(x), v1(0) = 0, (39)

w′
1(x) = –

1
2

u1(x)w1(x), w1(0) = 1.
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Figure 3 Efficiency curves of the maximum absolute global errors versus CPU times (s) for highly stiff IVP of
the flame propagation given in the numerical experiment 1 with tolerance = 10–i , i = 7, 9, 11

Figure 4 Efficiency curves of the maximum absolute global errors versus CPU times (s) for highly stiff IVP of
the flame propagation given in the numerical experiment 1 with tolerance = 10–i , i = 7, 9, 11

The reference solution of (38) accurate to 30 dp is given at the final mesh point x = 10 as
follows:

⎛

⎜
⎝

u1(x)
v1(x)
w1(x)

⎞

⎟
⎠

∣
∣∣
∣
x=10

=

⎛

⎜
⎝

18.369111622637133682327485837045780998471090734582
2.0854091764379035978623786489081898250823577485323

1.9055567124740834810772164777626634323571010482536 × 10–18

⎞

⎟
⎠ .

5 Concluding remarks
This study presents a new one-step hybrid block approach with three intra-step points,
including one optimally determined from the proposed method’s local truncation error.
The order of accuracy, consistency, zero-stability, convergence, A-stability, and the the-
ory of order stars are all thoroughly discussed. When the suggested technique was tried
on certain tough models from applied sciences, the accuracy results were encouraging.
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Furthermore, the inclusion of an efficiency plot comparing the errors of the proposed and
existing numerical approaches in terms of computing cost for an increasing number of
grid points supports reformulation of the suggested method. Future research will focus
on the fully implicit block approach with three optimal intra-step points. This will lead
to a technique that is truly optimal and is easy to rewrite in a computer. The field of frac-
tional calculus [45–50] has additional opportunities to supplement the current study. The
proposed hybrid block method can be changed so that it can be used to solve initial value
problems of fractional order.

Appendix

Algorithm 1: Pseudocode for the optimal one-step A-stable block method
Data: x0, T (integration interval), N (number of steps), y00, y10 (initial values), f .
Result: sol (discrete approximate solution of the IVP (1)).

1 Let n = 0, �x = T–x0
N .

2 Let xn = x0, yn = y00, y′
n = y10.

3 Let sol = {(xn, yn)}.
4 Solve (16) to obtain yn+k , y′

n+k , where k = 0, u, v, w, 1.
5 Let sol = sol ∪{(xn+k , yn+k)}k=0,u,v,w,1.
6 Let xn = xn + �x, yn = yn+1, y′

n = y′
n+1.

7 Let n = n + 1,
8 if n = N then
9 go to 13

10 else
11 go to 4;
12 end
13 End
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