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Abstract
The main goal of this paper is to study a class of differential nonlinear system
involving parabolic variational and history-dependent hemivariational inequalities in
Banach spaces by using the penalty method. We first construct a penalized problem
for such a nonlinear system and then derive the existence and uniqueness of its
solution to obtain an approximating sequence for the nonlinear system. Moreover,
we prove the strong convergence of the obtained approximating sequence to the
solution of the original nonlinear system when the penalty parameter converges to
zero. Finally, we apply the obtained convergence result to a long-memory elastic
frictional contact problem with wear and damage in mechanics.
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1 Introduction

Let V , X, Y and W be separable, reflexive Banach spaces, V ∗ and Y ∗ be the dual spaces of V
and Y , respectively, and Y1 be a separable Hilbert space satisfying Y ⊂ Y1 ⊂ Y ∗. Moreover,
assume that M : V ↪→ X is a compact embedding operator, KV with 0V ∈ KV and KY are
nonempty, closed, and convex subsets of V and Y , respectively. Let I be the time interval
[0, T] with T > 0. Very recently, in order to model an elastic frictional contact problem
with long memory, damage, and wear, Chen et al. [4] introduced the following differential
nonlinear system driven by a differential equation, a history-dependent hemivariational
inequality and a parabolic variational inequality: find u : I → KV , ζ : I → KY and w : I →
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W such that, for all t ∈ I = [0, T] with T > 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ(t) = F(t, w(t), u(t)),

〈A(t, u(t)) +
∫ t

0 B(t – s, u(s), ζ (s)) ds, v – u(t)〉V∗×V

+ j0(w(t), Mu(t), Mu(t); Mv(t) – Mu(t)) ≥ 〈f (t), v – u(t)〉V∗×V , ∀v ∈ KV ,

〈ζ̇ (t),η – ζ (t)〉Y∗×Y + a(ζ (t),η – ζ (t)) ≥ 〈φ(t, u(t), ζ (t)),η – ζ (t)〉Y∗×Y , ∀η ∈ KY ,

w(0) = w0, ζ (0) = ζ0.

(1.1)

Moreover, they gave a unique solvability result for (1.1) by using Banach’s fixed-point the-
orem and applied it to the long-memory elastic frictional contact problem with wear and
damage in mechanics.

We would like to mention that (1.1) is an extended model that can be used to de-
scribe many real problems such as the long-memory elastic frictional contact problem
with wear and damage in mechanics, engineering operation research, network equilib-
rium problems, and so on [2, 4–8, 23, 30]. Moreover, to choose suitable spaces and maps,
many known differential variational inequalities (DVIs) and differential hemivariational
inequalities (DHVIs) can be considered as special cases of (1.1) (see, for example, [12–
15, 18, 25, 26, 29] and the references therein).

Among the studies on variational inequalities (VIs) and hemivariational inequalities
(HVIs), constructing approximating sequences for their solutions and further discussing
their convergence analysis are crucially important [10, 11]. It is well known that the penalty
method is a kind of efficient approximating method forvarious problems. It is also con-
stantly used for the study of VIs and HVIs (see, for example, [3, 21, 28, 31]). Due to the close
relationship with VIs and HVIs, differential variational inequalities (DVIs) and differential
hemivariational inequalities (DHVIs) are studied by employing the penalty method, such
as Liu and Zeng [16, 17] and Weng et al. [27]. As the generalization of DVIs and DHVIs, the
differential variational-hemivariational inequalities (DVHVIs) have drawn the attention of
researchers in operations research and contact mechanics. With the penalty method, Tang
et al. [25], Liu et al. [16], and Lu et al. [19] recently studied different DVHVIs, obtained
their convergence results, and gave the corresponding applications in contact mechanics.
However, to the best of our knowledge, there are no results in the literature concerning
the penalty method for (1.1). The motivation of the present work is to make an attempt in
this direction.

The main goal of this paper is to obtain a convergence result for (1.1) by employing the
penalty method. The main contributions of this paper are twofold. First, we construct a
penalized problem for (1.1) and show a convergence result, i.e., the solution of (1.1) can be
approached as the penalty parameter converges to zero. Secondly, we apply the obtained
convergence result to the long-memory elastic frictional contact problem with wear and
damage in mechanics.

The rest of the paper is structured as follows. In Sect. 2, we introduce some preliminary
materials that will be used in the following sections. In Sect. 3, we construct approximating
sequences of solutions to (1.1) by the penalty method and derive its convergence. Finally,
in Sect. 4, we apply the obtained convergence result to a long-memory elastic frictional
contact problem with wear and damage in mechanics.
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2 Preliminaries
Let (X,‖ · ‖X) be a real Banach space with its dual X∗ and 〈·, ·〉X∗×X denote the duality
pairing between X∗ and X. In this section, we recall some known definitions and lemmas
that will be used subsequently (see [20, 22] for more details). Moreover, the symbols “→”
and “⇀” represent the strong and weak convergence in various spaces, respectively.

Definition 2.1 A functional j : X →R is lower semicontinuous if and only if for any con-
vergence sequence {un}∞n=1 ⊂ X satisfying un → u ∈ X, one has lim infn→∞ j(un) ≥ j(u).

Definition 2.2 A functional j : X →R∪{∞} is called proper if j(v) > –∞ for all v ∈ X and
there exists a point u ∈ X such that j(u) < +∞.

Definition 2.3 Let j : X →R∪{+∞} be a proper, convex and lower semicontinuous func-
tional. Define the convex subdifferential of j at u by

∂Cj(u) =
{

u∗ ∈ X∗ | j(v) – j(u) ≥ 〈
u∗, v – u

〉

X∗×X for all v ∈ X
}

.

Definition 2.4 Let j : X → R be a locally Lipschitz function. The Clarke directional
derivative of j at x in the direction v ∈ X is given by

j0(x; v) = lim sup
y→x,λ↓0

j(y + λv) – j(y)
λ

.

The Clarke subdifferential of j at x is a subset of the dual space X∗ defined by

∂j(x) =
{
ξ ∈ X∗ | j0(x; v) ≥ 〈ξ , v〉X∗×X for all v ∈ X

}
.

For a set-valued operator A : X → 2X∗ , the graph of A is denoted by G(A), i.e.,

G(A) :=
{(

u, u∗) ∈ X × X∗ | u∗ ∈ A(u)
}

.

Definition 2.5 A set-valued operator A : X → 2X∗ is called monotone if

〈
u∗ – v∗, u – v

〉

X∗×X ≥ 0, ∀(
u, u∗),

(
v, v∗) ∈ G(A).

Moreover, a monotone operator A is called maximal monotone if for any (u, u∗) ∈ X × X∗

satisfying

〈
u∗ – v∗, u – v

〉

X∗×X ≥ 0, ∀(
v, v∗) ∈ G(A),

one has (u, u∗) ∈ G(A).

For a proper, convex and lower semicontinuous functional j : X → R ∪ {∞}, it is well
known that ∂Cj : X → 2X∗ is maximal monotone.

Definition 2.6 A single-valued operator A : X → X∗ is said to be
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(1) strongly monotone, if there exists mA > 0 such that

〈Au – Av, u – v〉X∗×X ≥ mA‖u – v‖2
X for all v ∈ X;

(2) bounded, if A maps bounded sets of X into bounded sets of X∗;
(3) pseudomonotone, if it is bounded and un ⇀ u in X with

lim sup
n→∞

〈Aun, un – u〉X∗×X ≤ 0,

which implies that lim infn→∞〈Aun, un – v〉X∗×X ≥ 〈Au, u – v〉X∗×X for all v ∈ X ;
(4) demicontinuous, if un → u in X implies that Aun ⇀ Au in X∗;
(5) hemicontinuous at u, if for each u, v, w ∈ X , F(t) := 〈A(u + tv), w〉X∗×X is continuous

on [0,1].

Definition 2.7 An operator P : X → X∗ is said to be a penalty operator of the set K ⊂
X if P is bounded, demicontinuous, monotone, and K = {x ∈ X | Px = 0X∗}, where 0X∗

represents the zero element of X∗.

Lemma 2.1 ([20, Proposition 3.23]) If the operator A : X → X∗ is bounded, demicontinu-
ous, and monotone, then A is pseudomonotone.

Lemma 2.2 ([20, Proposition 3.74]) If j : X → R is a locally Lipschitz function, then for
every v ∈ X, one has

j0(x; v) = max
{〈ξ , v〉X∗×X : ξ ∈ ∂j(x)

}
.

3 Convergence result for (1.1)
In this section, we first use the penalty method to construct a penalized problem of (1.1)
and show that the penalized problem has a unique solution by employing Theorem 3.1
of Chen at al. [4]. Then, we show a convergence result that the solution of (1.1) can be
approximated by the penalized problem as the penalty parameter converges to 0.

We assume that (V , H , V ∗) and (Y , Y1, Y ∗) are two Gelfand triplets of Banach spaces
that have continuous, compact, and dense embeddings, M is the embedding operator of
V ↪→ H , M∗ is the adjoint operator of M, and ‖M‖ and ‖M∗‖ are the norms of M and M∗,
respectively. KV is a convex subset of V . Let P : V → V ∗ be a penalty operator of KV . In
order to develop the approximation procedure of (1.1), we need to construct the penalized
problem of (1.1). For any given ρ > 0, the penalized problem of (1.1) can be constructed
as follows.

Problem 3.1 Find uρ : I → V , ζρ : I → KY and wρ : I → W such that, for all t ∈ I ,

ẇρ(t) = F
(
t, wρ(t), uρ(t)

)
, (3.1)

〈

A
(
t, uρ(t)

)
+

∫ t

0
B
(
t – s, uρ(s), ζρ(s)

)
ds, v – uρ(t)

〉

V∗×V

+
1
ρ

〈
Puρ(t), v – uρ(t)

〉

V∗×V + j0(wρ(t), Muρ(t), Muρ(t); Mv(t) – Muρ(t)
)

≥ 〈
f (t), v – uρ(t)

〉

V∗×V , ∀v ∈ V , (3.2)
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〈
ζ̇ρ(t),η – ζρ(t)

〉

Y∗×Y + a
(
ζρ(t),η – ζρ(t)

)

≥ 〈
φ
(
t, uρ(t), ζρ(t)

)
,η – ζρ(t)

〉

Y∗×Y , ∀η ∈ KY , (3.3)

wρ(0) = w0, ζρ(0) = ζ0. (3.4)

Remark 3.1 We note that in Problem 3.1, we can consider the penalty operators for both
KV and KY . Since our main interest is to provide tools in analyzing Problem 3.1, we restrict
ourselves to study penalty operators for KV . The case in which KY is considered can be
solved likewise.

In order to study Problem 3.1, we need the following assumptions on the data.
H(A): The operator A : I × V → V ∗ satisfies

(a) A(·, v) is continuous on I for any given v ∈ V ;
(b) For any given t ∈ I , A(t, ·) is hemicontinuous, pseudomonotone, and

strongly monotone with mA > 0 on V , i.e.,

〈
A(t, u1) – A(t, u2), u1 – u2

〉

V∗×V ≥ mA‖u1 – u2‖2
V , ∀(t, u1, u2) ∈ I × V × V ;

(c) A(t, 0V ) = 0V∗ for all t ∈ I .
H(B): The operator B : I × V × Y → V ∗ satisfies

(a) B(·, v, ζ ) is continuous on I for any given v ∈ V and ζ ∈ Y ;
(b) B(t, ·, ·) is Lipschitz continuous with LB > 0 on V × Y for any given t ∈ I , i.e.,

∥
∥B(t, u1, ζ1) – B(t, u2, ζ2)

∥
∥

V∗ ≤ LB
(‖u1 – u2‖V + ‖ζ1 – ζ2‖Y

)
,

∀t ∈ I,∀u1, u2 ∈ V ,∀ζ1, ζ2 ∈ Y ;

(c) There exists � ∈ L2(I;R+) such that

∥
∥B(t, u, ζ )

∥
∥

V∗ ≤ �(t)
(‖ζ‖Y + ‖u‖V

)
, ∀(t, u, ζ ) ∈ I × V × Y .

H(j): The functional j : W × X × X → R satisfies
(a) j(w, u, ·) is locally Lipschitz on X for any given (w, u) ∈ W × X ;
(b) There exist two constants c0, c1 > 0 such that

∥
∥∂j(w, x, y)

∥
∥

X∗ ≤ c1
(
1 + ‖w‖W + ‖x‖X

)
+ c0‖y‖X , ∀(x, y, w) ∈ X × X × W ;

(c) There exist α0 > 0 and α1 > 0 such that

j0(w1, Mu1, Mv1; Mv2 – Mv1) + j0(w2, Mu2, Mv2; Mv1 – Mv2)

≤ α0‖w1 – w2‖W ‖v1 – v2‖V + α1‖u1 – u2‖V ‖v1 – v2‖V ,

∀w1, w2 ∈ W ,∀u1, u2, v1, v2 ∈ V .

H(F): The operator F : I × W × V → W satisfies
(a) F(·, w, v) is continuous on I for any given (w, v) ∈ W × V ;
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(b) F(t, ·, ·) is Lipschitz continuous with LF > 0 on V × Y for any given t ∈ I , i.e.,

∥
∥F(t, w1, u1) – F(t, w2, u2)

∥
∥

W ≤ LF
(‖u1 – u2‖V + ‖w1 – w2‖W

)
,

∀t ∈ I,∀w1, w2 ∈ W ,∀u1, u2 ∈ V .

H(φ): The operator φ : I × V × Y → Y1 satisfies
(a) φ(t, ·, ·) is Lipschitz continuous with Lφ > 0 on V × Y for any given t ∈ I , i.e.,

∥
∥φ(t, u, ζ ) –φ(t, v,η)

∥
∥

Y1
≤ Lφ

(‖u– v‖V +‖ζ –η‖Y1

)
, ∀t ∈ I,∀u, v ∈ V ,∀ζ ,η ∈ Y ;

(b) φ(·, 0V , 0Y ) ∈ L2(I; Y1).
H(a): The functional a : Y × Y → R is a continuous bilinear symmetric coercive func-

tional and there exist a1 ∈R and a2 > 0 such that

a(η,η) + a1‖η‖2
Y1 ≥ a2‖η‖2

Y , ∀η ∈ Y .

Remark 3.2 By Theorem 3.1 in [4], we know that (1.1) has a unique solution (ζ ∗, u∗,
w∗) ∈ (H1(I; Y1) ∩ L2(I; Y )) × C(I; KY ) × C(I; W ), providing H(A)–H(a) hold with mA >
max{c0‖M‖2

L(V ;X),α1}.

Remark 3.3 H(j)(c) is equivalent to the following condition

〈ξ1 – ξ2, Mv1 – Mv2〉X ≥ –α0‖w1 – w2‖W ‖v1 – v2‖V – α1‖u1 – u2‖V ‖v1 – v2‖V

for all w1, w2 ∈ W and all u1, u2, v1, v2 ∈ V with ξi ∈ ∂j(wi, Mui, Mvi), i = 1, 2.

First, to solve the history-dependent hemivariational inequality in Problem 3.1, we con-
sider the following auxiliary problem.

Problem 3.2 For any given ρ > 0, ζ ∈ H1(I; Y1) ∩ L2(I; Y ), w ∈ C(I; W ) and f ∈ C(I; V ∗),
find uρwζ : I → V such that, for all t ∈ I ,

〈

A
(
t, uρwζ (t)

)
+

∫ t

0
B
(
t – s, uρwζ (s), ζ (s)

)
ds, v – uρwζ (t)

〉

V∗×V

+ j0(w(t), Muρwζ (t), Muρwζ (t); Mv(t) – Muρwζ (t)
)

+
1
ρ

〈
Puρwζ (t), v – uρwζ (t)

〉

V∗×V ≥ 〈
f (t), v – uρwζ (t)

〉

V∗×V , ∀v ∈ V . (3.5)

Lemma 3.1 Assume that H(A), H(B), and H(j) hold. If mA > max{c0‖M‖2
L(V ;X),α1}, then

one has the following conclusions:
(i) for any given ρ > 0, ζ ∈ H1(I; Y1) ∩ L2(I; Y ), w ∈ C(I; W ) and f ∈ C(I; V ∗),

Problem 3.2 has a unique solution uρwζ ∈ C(I; V );
(ii) uρwζ converges strongly to uwζ as ρ → 0, where uwζ ∈ C(I; KV ) is the unique solution

of the following problem: for any given ζ ∈ (H1(I; Y1) ∩ L2(I; Y )), w ∈ C(I; W ) and
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f ∈ C(I; V ∗), find uwζ : I → KV such that, for all t ∈ I ,

〈

A
(
t, uwζ (t)

)
+

∫ t

0
B
(
t – s, uwζ (s), ζ (s)

)
ds, v – uwζ (t)

〉

V∗×V

+ j0(w(t), Muwζ (t), Muwζ (t); Mv(t) – Muwζ (t)
)

≥ 〈
f (t), v – uwζ (t)

〉

V∗×V , ∀v ∈ KV . (3.6)

Proof (i) Consider a function Aρ : I × V → V ∗ defined by

Aρ(t, u) = A(t, u) +
1
ρ

Pu, ∀(t, u) ∈ I × V .

Since P is bounded, demicontinuous, monotone, and KV = {u ∈ V | Pu = 0V∗}, it follows
from H(A) that Aρ(·, v) is continuous for any given v ∈ V and Aρ(t, ·) is hemicontinuous,
pseudomonotone, and strong monotone with Aρ(t, 0V ) = 0V∗ for all t ∈ I . This shows that
Problem 3.2 satisfies all the hypotheses of Lemma 3.2 in [4] and so Problem 3.2 has a
unique solution uρwζ ∈ C(I; V ).

(ii) For fixed η ∈ C(I; KV ), we consider the auxiliary problem for (3.5) as follows: find a
map uρwζη : (0, T) → V such that, for any t ∈ I and any v ∈ V ,

〈
A

(
t, uρwζη(t)

)
, v – uρwζη(t)

〉

V∗×V +
1
ρ

〈
Puρwζη(t), v – uρwζη(t)

〉

V∗×V

+ j0(w(t), Muρwζη(t), Muρwζη(t); Mv – Muρwζη(t)
)

≥ 〈
fη(t), v – uρwζη(t)

〉

V∗×V , (3.7)

where fη is defined by

fη(t) = f (t) –
∫ t

0
B
(
t – s,η(s), ζ (s)

)
ds.

Let u0 ∈ KV be fixed. Inserting v = u0 into (3.7), we have

〈
A(t, uρwζ (t), u0 – uρwζ (t)

〉

V∗×V +
1
ρ

〈
Puρwζ (t), u0 – uρwζ (t)

〉

V∗×V

+ j0(w(t), Muρwζ (t), Muρwζ (t); Mu0 – Muρwζ (t)
) ≥ 〈

fη(t), u0 – uρwζ (t)
〉

V∗×V .

It follows from the strong monotonicity of A that

mA
∥
∥u0 – uρwζ (t)

∥
∥2

V ≤ 〈
A

(
t, uρwζ (t)

)
– A(t, u0), uρwζ (t) – u0

〉

V∗×V

≤ 〈
A(t, u0), u0 – uρwζ (t)

〉

V∗×V +
1
ρ

〈
Puρwζ (t), u0 – uρwζ (t)

〉

V∗×V

+ j0(w(t), Muρwζ (t), Muρwζ (t); Mu0 – Muρwζ (t)
)

–
〈
fη(t), u0 – uρwζ (t)

〉

V∗×V
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for all t ∈ [0, T]. As P is monotone, Pv = 0 for all v ∈ KV and u0 ∈ KV , one has

mA
∥
∥u0 – uρwζ (t)

∥
∥2

V

≤ 〈
A(t, u0), u0 – uρwζ (t)

〉

V∗×V +
1
ρ

〈
Puρwζ (t) – Pu0, u0 – uρwζ (t)

〉

V∗×V

+ j0(w(t), Muρwζ (t), Muρwζ (t); Mu0 – Muρwζ (t)
)

–
〈
fη(t), u0 – uρwζ (t)

〉

V∗×V

≤ 〈
A(t, u0), u0 – uρwζ (t)

〉

V∗×V –
〈
fη(t), u0 – uρwζ (t)

〉

V∗×V

+ j0(w(t), Muρwζ (t), Muρwζ (t); Mu0 – Muρwζ (t)
)

(3.8)

for all t ∈ [0, T]. Thus, Remark 3.3 implies that

j0(w(t), Mu0, Mu0; Mu0 – Muρwζ (t)
)

+ j0(w(t), Muρwζ (t), Muρwζ (t); Muρwζ (t) – Mu0
)

≤ α1
∥
∥u0 – uρwζ (t)

∥
∥2

V . (3.9)

From (3.8), (3.9), and H(j)(b), we have

(mA – α1)
∥
∥u0 – uρwζ (t)

∥
∥2

V

≤ mA
∥
∥u0 – uρwζ (t)

∥
∥2

V + j0(w(t), Mu0, Mu0; Mu0 – Muρwζ (t)
)

+ j0(w(t), Muρwζ (t), Muρwζ (t); Muρwζ (t) – Mu0
)

≤ (∥
∥A(t, u0)

∥
∥

V∗ +
∥
∥fη(t)

∥
∥

V∗
)∥
∥u0 – uρwζ (t)

∥
∥

V

+ ‖M‖∗(c1
(
1 + ‖w‖C(I;W ) + ‖M‖‖u0‖V

)
+ c0‖M‖‖u0‖V

)∥
∥u0 – uρwζ (t)

∥
∥

V

and so

(mA – α1)
∥
∥u0 – uρwζ (t)

∥
∥

V

≤ (∥
∥A(t, u0)

∥
∥

V∗ +
∥
∥fη(t)

∥
∥

V∗
)

+ ‖M‖∗(c1
(
1 + ‖w‖C(I;W ) + ‖M‖‖u0‖V

)
+ c0‖M‖‖u0‖V

)
. (3.10)

Moreover, A is pseudomonotone, so A is bounded, then there exists a constant N , such
that

∥
∥A(t, u0)

∥
∥

V∗ ≤ N (3.11)

and H(B)(c) implies that

∥
∥fη(t)

∥
∥

V∗ ≤ ∥
∥f (t)

∥
∥

V∗ +
∫ t

0

∥
∥B

(
t – s,η(s), ζ (s)

)∥
∥ds

≤ ‖f ‖C(I,V∗) +
√

T‖η‖C(I;V )

(∫ t

0

∣
∣�(t – s)

∣
∣2 ds

) 1
2

+
(∫ t

0

∣
∣�(t – s)

∣
∣2 ds

) 1
2
(∫ t

0

∥
∥ζ (s)

∥
∥2 ds

) 1
2
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≤ ‖f ‖C(I,V∗) +
√

T‖η‖C(I;V )‖�‖L2(I;R+)

+ ‖�‖L2(I;R+)‖ζ‖L2(I;Y ). (3.12)

Combining (3.10), (3.11), and (3.12), one has

(mA – α1)
∥
∥u0 – uρwζ (t)

∥
∥

V

≤ N + ‖f ‖C(I,V∗) +
√

T‖η‖C(I;V )‖�‖L2(I;R+) + ‖�‖L2(I;R+)‖ζ‖L2(I;Y )

+ ‖M‖∗(c1
(
1 + ‖w‖C(I;W ) + ‖M‖‖u0‖V

)
+ c0‖M‖‖u0‖V

)
,

which implies that the sequence {uρwζ (t)}ρ>0 is uniformly bounded. Therefore, for any
given t ∈ [0, T], there exists a subsequence {uρ(t)}ρ>0 such that uρ(t) ⇀ ũ(t) in V as ρ → 0
for some ũ(t) ∈ V .

Next, we show that ũ ∈ C(I; KV ). In fact, according to the monotonicity of A, we have

1
ρ

〈
Puρ(t), uρ(t) – v

〉

V∗×V

≤ 〈
A

(
t, uρ(t)

)
, v – uρ(t)

〉

V∗×V +
〈
fη(t), uρ(t) – v

〉

V∗×V

+ j0(w(t), Muρ(t), Muρ(t); Mv – Muρ(t)
)

≤ 〈
A(t, v), v – uρ(t)

〉

V∗×V +
〈
fη(t), uρ(t) – v

〉

V∗×V

+ j0(w(t), Muρ(t), Muρ(t); Mv – Muρ(t)
)

(3.13)

for all v ∈ V . Taking v = ũ(t) into (3.13), one has

1
ρ

〈
Puρ(t), uρ(t) – ũ(t)

〉

V∗×V

≤ 〈
A

(
t, ũ(t)

)
– fη(t), ũ(t) – uρ(t)

〉

V∗×V + j0(w(t), Muρ(t), Muρ(t); Mũ(t) – Muρ(t)
)
.

Combining H(j), the continuity of fη and the compactness of M, we have

lim sup
ρ→0

〈
Puρ(t), uρ(t) – ũ(t)

〉

V∗×V ≤ 0. (3.14)

Because of Lemma 2.1, P is pseudomonotone, it follows from (3.13) and (3.14) that

〈
Pũ(t), ũ(t) – v

〉

V∗×V ≤ lim inf
ρ→0

〈
Puρ(t), uρ(t) – v

〉

V∗×V

≤ lim sup
ρ→0

〈
Puρ(t), uρ(t) – v

〉

V∗×V ≤ 0

for all v ∈ V . Since v ∈ V is arbitrary, we know that Pũ(t) = 0 and so ũ(t) ∈ KV . Moreover,
according to (3.7) and Pv = 0 for all v ∈ KV , one has

〈
A

(
t, uρ(t)

)
, uρ(t) – v

〉

V∗×V

≤ –
1
ρ

〈
Pv – Puρ(t), u0 – uρ(t)

〉

V∗×V +
〈
fη(t), uρ(t) – v

〉

V∗×V
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+ j0(w(t), Muρ(t), Muρ(t); Mv – Muρ(t)
)

≤ j0(w(t), Muρ(t), Muρ(t); Mv – Muρ(t)
)

+
〈
fη(t), uρ(t) – v

〉

V∗×V (3.15)

for all v ∈ KV . Taking v = ũ(t) in (3.15) and passing to the upper limit as ρ → 0, we have

lim sup
ρ→0

〈
A

(
t, uρ(t)

)
, uρ(t) – ũ(t)

〉

V∗×V ≤ 0.

Moreover, the pseudomonotonicity of A implies that

〈
A

(
t, ũ(t)

)
, ũ(t) – v

〉

V∗×V ≤ lim inf
ρ→0

〈
A

(
t, uρ(t)

)
, uρ(t) – v

〉

V∗×V . (3.16)

Passing to the upper limit as ρ → 0 in (3.15), we obtain

lim sup
ρ→0

〈
A

(
t, uρ(t)

)
, uρ(t) – v

〉

V∗×V

≤ j0(w(t), Mũ(t), Mũ(t); Mv – Mũ(t)
)

+
〈
fη(t), ũ(t) – v

〉

V∗×V . (3.17)

Combining (3.16) and (3.17), we have

〈
A

(
t, ũ(t)

)
, v – ũ(t)

〉

V∗×V + j0(w(t), Mũ(t), Mũ(t); Mv – Mũ(t)
)

+
〈
fη(t), ũ(t) – v

〉

V∗×V ≥ 0.

Since (3.6) has a unique solution, we know that ũ(t) = uwζ (t) and so ũ ∈ C(I, KV ).
Finally, we show the strong convergence of {uρwζ (t)}. Indeed, because {uρwζ (t)} is

bounded and for any weakly convergent subsequence of {uρwζ (t)} converges weakly to the
same limit uwζ (t), by Theorem 1.20 in [24], we know that the whole sequence {uρwζ (t)}
converges weakly to uwζ (t) for any t ∈ I . On the other hand, using the monotonicity of P,
one has

〈
A(t, v), uρwζ (t) – v

〉

V∗×V ≤ 〈
A

(
t, uρwζ (t)

)
, uρwζ (t) – v

〉

V∗×V . (3.18)

Similar to the proof of (3.15), we have

〈
A

(
t, uρwζ (t)

)
, uρwζ (t) – v

〉

V∗×V

≤ j0(w(t), Muρwζ (t), Muρwζ (t); Mv – Muρwζ (t)
)

+
〈
fη(t), uρwζ (t) – v

〉

V∗×V . (3.19)

Taking v = uwζ (t) in (3.18) and (3.19), and then passing to the limit as ρ → 0, one has

lim
ρ→0

〈
A

(
t, uρwζ (t)

)
, uρwζ (t) – uwζ (t)

〉

V∗×V = 0.

Using uρwζ (t) ⇀ uwζ (t) in V as ρ → 0, it follows from the strong monotonicity of A that

lim
ρ→0

mA
∥
∥uρwζ (t) – uwζ (t)

∥
∥2

V ≤ lim
ρ→0

〈
A

(
t, uwζ (t)

)
– A

(
t, uρwζ (t)

)
, uwζ (t) – uρwζ (t)

〉

V∗×V

= 0

for all t ∈ I . Consequently, we conclude for each t ∈ I , uρwζ (t) → uwζ (t) in V as ρ → 0. �
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Next, we consider the following auxiliary problem that includes a history-dependent
hemivariational inequality and a differential equation in Problem 3.1.

Problem 3.3 For any given ρ > 0, ζ ∈ H1(I; Y1) ∩ L2(I; Y ) and f ∈ C(I; V ∗), consider the
following problem: find uρζ : I → V and wρζ : I → W such that, for any t ∈ I ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇρζ (t) = F(t, wρζ (t), uρζ (t)),

〈A(t, uρζ (t)) +
∫ t

0 B(t – s, uρζ (s), ζ (s)) ds, v – uρζ (t)〉V∗×V

+ 1
ρ
〈Puρζ (t), v – uρζ (t)〉V∗×V + j0(wρζ (t), Muρζ (t), Muρζ (t); Mv(t) – Muρζ (t))

≥ 〈f (t), v – uρζ (t)〉V∗×V , ∀v ∈ V ,

wρζ (0) = w0.

Lemma 3.2 Assume that H(A), H(B), H(j), and H(F) hold. If mA > max{c0‖M‖2
L(V ;X),α1},

then one has the following conclusions:
(i) for any given ρ > 0, ζ ∈ H1(I; Y1) ∩ L2(I; Y ) and f ∈ C(I; V ∗), Problem 3.3 has a

unique solution (uρζ , wρζ ) ∈ C(I; V ) × C1(I; W );
(ii) (uρζ , wρζ ) converges strongly to (uζ , wζ ) as ρ → 0, where (uζ , wζ ) is the unique

solution of the following problem: for any given ζ ∈ H1(I; Y1) ∩ L2(I; Y ) and
f ∈ C(I; V ∗), find uζ : I → KV and wζ : I → W such that, for any t ∈ I ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẇζ (t) = F(t, wζ (t), uζ (t)),

〈A(t, uζ (t)) +
∫ t

0 B(t – s, uζ (s), ζ (s)) ds, v – uζ (t)〉V∗×V

+ j0(wζ (t), Muζ (t), Muζ (t); Mv(t) – Muζ (t)) ≥ 〈f (t), v – uζ (t)〉V∗×V , ∀v ∈ KV ,

wζ (0) = w0.

Proof (i) Define an operator S : C1(I; W ) → C(I; V ) by setting S(wρ)(t) = uρwζ (t). From
Lemma 3.3 in [4], for each given ρ > 0, ζ ∈ H1(I; Y1) ∩ L2(I; Y ),

ẇρζ (t) = F
(
t, wρζ (t), S(wρζ )(t)

)

has a unique solution wρζ ∈ C1(I; W ) and (S(wρ), wρζ ) ∈ C(I; V ) × C1(I; W ) is the unique
solution of Problem 3.3.

(ii) Consider an operator 
 : C(I; W ) → C1(I; KV ) defined as follows:


wζ (t) =
∫ t

0
F
(
s, wζ (s), S(wζ )(s)

)
ds + w0, ∀t ∈ [0, T].

Then, by the proof of Lemma 3.3 in [4], we know that 
 has a unique fixed point wζ (t). It
follows from H(F) that

∥
∥wρζ (t) – wζ (t)

∥
∥ =

∥
∥
wρζ (t) – 
wζ (t)

∥
∥

=
∥
∥
∥
∥

∫ t

0
F
(
s, wρζ (s), S(wρζ )(s)

)
ds –

∫ t

0
F
(
s, wζ (s), S(wζ )(s)

)
ds

∥
∥
∥
∥

≤ LF

∫ t

0

∥
∥wρζ (s) – wζ (s)

∥
∥ds + LF

∫ t

0

∥
∥uρwζ (s) – uwζ (s)

∥
∥ds. (3.20)
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Now, Gronwall’s inequality yields

∥
∥wρζ (t) – wζ (t)

∥
∥

≤ LF

∫ t

0

∥
∥uρwζ (s) – uwζ (s)

∥
∥ds + L2

F eLF T
∫ t

0

∫ t

0

∥
∥uρwζ (s) – uwζ (s)

∥
∥ds dl

≤ (
LF + TL2

F eLF T)
∫ t

0

∥
∥uρwζ (s) – uwζ (s)

∥
∥ds. (3.21)

Since for each s ∈ I , uρwζ (s) → uwζ (s) in V as ρ → 0 and uρwζ , uwζ ∈ C(I; V ), one has

wρζ (t) → wζ (t) in W as ρ → 0 for each t ∈ I.

Letting uwζ (t) = uζ (t) and uρwζ (t) = uρζ (t), we can conclude that

(
uρζ (t), wρζ (t)

) → (
uζ (t), wζ (t)

)
as ρ → 0

for each t ∈ I . �

Finally, we only need to solve the following parabolic variational inequality.

Problem 3.4 For any given ρ > 0, consider the following problem: find ζρ : I → KY such
that, for all t ∈ I ,

〈
ζ̇ρ(t),η – ζρ(t)

〉

Y∗×Y + a
(
ζρ(t),η – ζρ(t)

) ≥ 〈
φ
(
t, uρ(t), ζρ(t)

)
,η – ζρ(t)

〉

Y∗×Y ,

∀η ∈ KY (3.22)

with ζρ(0) = ζ0.

Lemma 3.3 ([1, 9]) Suppose that condition H(a) holds. Then, for any given λ ∈ L2(I; Y1),
there exists a unique ζ ∈ H1(I; Y1) ∩ L2(I; Y ) such that

〈
ζ̇ (t),η – ζ (t)

〉

Y1
+ a

(
ζ (t),η – ζ (t)

) ≥ 〈
λ(t),η – ζ (t)

〉

Y1
, ∀η ∈ KY (3.23)

with ζ (0) = ζ0 ∈ KY . Moreover, if ζi is the unique solution to problem (3.23) for λi ∈ L2(I; Y1)
with i = 1, 2, then

∥
∥ζ1(t) – ζ2(t)

∥
∥2

Y1
≤ d1

∫ t

0

∥
∥λ1(s) – λ2(s)

∥
∥2

Y1
ds for a.e. t ∈ (0, T) (3.24)

with d1 > 0.

Lemma 3.4 Assume that H(A), H(B), H(j), H(F), H(φ), and H(a) hold. If mA > max{c0 ×
‖M‖2

L(V ;X),α1}, then one has the following conclusions:
(i) for any given ρ > 0, Problem 3.4 has a unique solution ζρ ∈ H1(I; Y1) ∩ L2(I; Y );
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(ii) ζρ converges strongly to ζ as ρ → 0, where ζ is the the unique solution of the
following problem: find ζ : I → KY such that, for all t ∈ I ,

〈
ζ̇ (t),η – ζ (t)

〉

Y∗×Y + a
(
ζ (t),η – ζ (t)

) ≥ 〈
φ
(
t, uζ (t), ζ (t)

)
,η – ζ (t)

〉

Y∗×Y ,

∀η ∈ KY (3.25)

with ζ (0) = ζ0.

Proof (i) Let uρ(t) = uρζ (t) in Lemma 3.2. Then, it follows from Lemma 3.5 in [4] that
Problem 3.4 has a unique solution ζρ ∈ H1(I; Y1) ∩ L2(I; Y ).

(ii) Let φζ (t) := φ(t, uζ (t), ζ (t)). Then, by taking λ = φζ in Lemma 3.3 and using H(φ), we
have

∥
∥ζ (t) – ζρ(t)

∥
∥2

Y1
≤ d1

∫ t

0

∥
∥φ

(
s, uρζ (s), ζρ(s)

)
– φ

(
s, uζ (s), ζ (s)

)∥
∥2

Y1
ds

≤ 2d1L2
φ

∫ t

0

∥
∥uρζ (s) – uζ (s)

∥
∥2

V +
∥
∥ζ (s) – ζρ(s)

∥
∥2

Y1
ds. (3.26)

Now, Gronwall’s inequality yields

∥
∥ζ (t) – ζρ(t)

∥
∥2

Y1

≤ 2d1L2
φ

∫ t

0

∥
∥uρζ (s) – uζ (s)

∥
∥2

V ds + 4d2
1L4

φe2d1L2
φT

∫ t

0

∫ t

0

∥
∥uρζ (s) – uζ (s)

∥
∥2

V ds dl

≤ (
2d1L2

φ + 4d2
1L4

φTe2d1L2
φT)

∫ t

0

∥
∥uρζ (s) – uζ (s)

∥
∥2

V ds. (3.27)

Since for each s ∈ I , uρζ (s) → uζ (s) in V as ρ → 0 and uρζ ∈ C(I; V ), uwζ ∈ C(I; KV ), one
has

ζρ(t) → ζ (t) as ρ → 0

for each t ∈ I . �

Theorem 3.1 Suppose that the assumptions H(A), H(B), H(j), H(F), H(φ), and H(a) hold
and mA > max{c0‖M‖2

L(V ;X),α1}. Then, one has the following conclusions:
(i) for any given ρ > 0, Problem 3.1 has a unique solution

(ζρ , uρζ , wρζ ) ∈ (H1(I; Y1) ∩ L2(I; Y )) × C(I; V ) × C(I; W );
(ii) (ζρ , uρζ , wρζ ) converges strongly to (ζ ∗, u∗, w∗) as ρ → 0, where (ζ ∗, u∗, w∗) is the

unique solution of (1.1).

Proof Let (uρζ , wρζ ) be the same as in Lemma 3.2, ζρ be the same as in Lemma 3.4, and
(ζρ , uρζ , wρζ ) = (ζ ∗, u∗, w∗) be the same as in Remark 3.2. Then, it is easy to see that the
conclusions (i) and (ii) are true. This finishes the proof. �

4 An application
In this section, we use the abstract results obtained in Sect. 3 to study the long-memory
elastic frictional contact problem with wear and damage. To this end, we first recall some
notations.
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Let Sd denote the second-order symmetric tensors on R
d . For any given σ ,τ ∈ S

d , define

σ · τ = σijτij :=
d∑

i,j=1

σijτij

and ‖τ‖ =
√

τ · τ . We use notations u = (ui), σ = (σij) and ε(u) = (εij(u)) = ( 1
2 (ui,j + uj,i)),

i, j = 1, 2, . . . , d to denote the displacement vector, the stress tensor and the linearized strain
tensor, respectively, where ui,j := ∂ui

∂xj
. Here and below, the spatial derivative is defined in

the sense of distribution. Let � be a bounded domain in R
d (d = 2, 3) with Lipschitz con-

tinuous boundary � := ∂�. Let ν denote the unit outward normal vector defined a.e. on �.
The normal and tangential components of stress field σ and displacement field u on � are
denoted by σν = (σν) · ν , uν = u · ν , στ = σν – σνν and uτ = u – uνν , respectively.

Consider a viscoelastic body that occupies �. The boundary � can be divided into three
disjoint measurable parts �1, �2, and �3 with meas(�1) > 0. We are interested in the evo-
lution of the body on the time interval I := [0, T] with T > 0. We also use the following
abbreviations to simplify the notations Q = � × I , � = � × I , �i = �i × I , i = 1, 2, 3. The
time partial derivative for a function f (x, t) is denoted by ḟ (x, t). For the sake of simplicity,
we do not mention the dependence of different functions on variable x.

Thus, the long-memory elastic frictional contact problem with wear and damage can be
modeled as follows (see [4]).

Problem 4.1 Find a displacement field u : Q → R
d , a stress field σ : Q → S

d , a damage
field ζ : Q→ [0, 1] and a wear function w : �3 → R such that

σ (t) = A
(
t,ε

(
u(t)

))
+

∫ t

0
B

(
t – s,ε

(
u(s)

)
, ζ (s)

)
ds in Q, (4.1)

ζ̇ – κ�ζ + ∂I[0,1](ζ ) � φ
(
ε
(

u(t)
)
, ζ

)
in Q, (4.2)

∂ζ

∂ν
= 0 on �, (4.3)

– Divσ (t) = f 0(t) in Q, (4.4)

u(t) = 0 on �1, (4.5)

σ (t)ν = f 2(t) on �2, (4.6)

uν(t) ≤ g, σν(t) + ξν(t) ≤ 0 on �3, (4.7)
(
uν(t) – g

)(
σν(t) + ξν(t)

)
= 0 on �3, (4.8)

ξν(t) ∈ ∂jν
(
w(t), uν(t), uν(t)

)
on �3, (4.9)

–σ τ (t) =∈ ∂jτ
(
w(t), uν(t), uτ (t)

)
on �3, (4.10)

ẇ(t) = α(t)p
(
uν(t) – w(t)

)
on �3, (4.11)

w(0) = 0, ζ (0) = ζ0 ∈ (0, 1) on �3. (4.12)

Relations (4.7)–(4.9) show that the body contacts with a rigid foundation covered by a
layer of soft material, where g > 0 is the thickness of the soft material.
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We use the standard Sobolev spaces on � and �. In particular, let H1 := W 1,2(�;Rd) and
H = L2(�;Rd). Let V = {v ∈ H1 | v = 0 a.e. on �1} endowed with the norm

‖u‖V := ‖u‖H1 = ‖u‖L2(�;Rd) + ‖�u‖L2(�;Rd×d),

where ∇u = ( ∂ui
∂xj

) for i, j = 1, . . . , d with u ∈ H1. Let Divσ = (σij,j) = ( ∂σij
∂xj

) with σ ∈
W 1,2(�;Sd). Then, we have the following Green formula

〈Divσ , v〉H +
〈
σ ,ε(u)

〉

L2(�;Sd) =
∫

�

σν · vd� ,

where

〈
σ ,ε(u)

〉

L2(�;Sd) =
∫

�

σ · ε(u) d�.

From the assumption of meas(�1) > 0, the space V can be endowed with the inner product

〈u, v〉V =
〈
ε(u),ε(v)

〉

L2(�;Sd),

which yields the completeness of V and allows us to use Korn’s inequality.
Let Y = H1(�;R) and Y1 = L2(�;R) endowed with the canonical inner products and

norms. Denote two convex sets KV = {v ∈ V | vν ≤ g a.e. on �3} and KY = {u ∈ Y | 0 ≤ u ≤
1 a.e. in �}. We define γ : V → L2(�3;Rd) as the trace operator and assume that jν and jτ
admit the regular assumption. Let

〈
f(t), v – u

〉

V∗×V =
〈
f2(t),γ v – γ u(t)

〉

L2(�2;Rd) +
〈
f 0(t), v – u(t)

〉

L2(�;Rd),

j(w,γ u,γ v) =
∫

�3

jν(w, uν , vv) d� +
∫

�3

jτ (w, uτ , vτ ) d�,

a(ζ ,η) = κ

∫

�

∇ζ · ∇η dx for all ζ ,η ∈ Y .

Then, the variational formulation of Problem 4.1 can be described as follows (see [4]).

Problem 4.2 Find u : I → KV , ζ : I → KY and w : I → L2(�3;R) such that, for all t ∈ I ,

σ (t) = A
(
t,ε

(
u(t)

))
+

∫ t

0
B

(
t – s,ε

(
u(s)

)
, ζ (s)

)
ds in �, (4.13)

〈
σ (t),ε(v) – ε

(
u(t)

)〉

L2(�;Sd) + j0(w,γ u,γ u;γ v – γ u)

≥ 〈
f(t), v – u(t)

〉

V∗×V , ∀v ∈ KV , (4.14)
〈
(ζ̇ (t),η – ζ (t)

〉

Y1
+ a(ζ ,η – ζ ) ≥ 〈

φ
(
t,ε

(
u(t)

)
, ζ (t)

)
,η – ζ (t)

〉

Y1
, ∀η ∈ KY , (4.15)

ẇ(t) = α(t)p
(
uν(t) – w(t)

)
in �3, (4.16)

w(0) = 0, ζ (0) = ζ0 ∈ (0, 1). (4.17)
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Now, we turn to introduce the following penalized problem concerning Problem 4.1.

Problem 4.3 Find a displacement field uρ : Q→ R
d , a stress field σ ρ : Q→ S

d , a damage
field ζ : Q→ [0, 1] and a wear function wρ : �3 →R such that

σ ρ(t) = A
(
t,ε

(
uρ(t)

))
+

∫ t

0
B

(
t – s,ε

(
uρ(s)

)
, ζρ(s)

)
ds in Q, (4.18)

ζ̇ρ – κ�ζρ + ∂I[0,1](ζρ) � φ
(
ε
(

uρ(t)
)
, ζρ

)
in Q, (4.19)

∂ζρ

∂ν
= 0 on �, (4.20)

– Divσ ρ(t) = f 0(t) in Q, (4.21)

uρ(t) = 0 on �1, (4.22)

σ ρ(t)ν = f 2(t) on �2, (4.23)

σρν(t) + ξρν(t) +
1
ρ

(
uρν(t) – g

)+ = 0 on �3, (4.24)

ξρν(t) ∈ ∂jν
(
wρ(t), uρν(t), uρν(t)

)
on �3, (4.25)

–σ ρτ (t) =∈ ∂jτ
(
wρ(t), uρν(t), uρτ (t)

)
on �3, (4.26)

ẇρ(t) = α(t)p
(
uρν(t) – wρ(t)

)
on �3, (4.27)

wρ(0) = 0, ζρ(0) = ζ0 ∈ (0, 1) on �3, (4.28)

where the operator “+” above a function represents the positive part of it.

It is worth noting that, compared with Problem 4.2, the contact conditions (4.7) and
(4.8) are replaced by (4.24) with ρ > 0.

Now, we define an operator P : V → V ∗ by

〈Pu, v〉V∗×V =
∫

�3

(uν – g)+vν d�, ∀u, v ∈ V .

Then, it follows from the arguments in [4] that the variational formulation of Problem 4.3
can be stated as follows.

Problem 4.4 Find uρ : I → V , ζρ : I → KY and wρ : I → L2(�3;R) such that, for all t ∈ I ,

σ ρ(t) = A
(
t,ε

(
uρ(t)

))
+

∫ t

0
B

(
t – s,ε

(
uρ(s)

)
, ζρ(s)

)
ds in �, (4.29)

〈
σ (t),ε(v) – ε

(
uρ(t)

)〉

L2(�;Sd) +
1
ρ

〈
Puρ(t), v – uρ(t)

〉

V∗×V

+ j0(w,γ uρ ,γ uρ ;γ v – γ uρ) ≥ 〈
f(t), v – uρ(t)

〉

V∗×V , ∀v ∈ V , (4.30)
〈
(ζ̇ (t),η – ζ (t)

〉

Y1
+ a(ζρ ,η – ζρ)

≥ 〈
φ
(
t,ε

(
uρ(t)

)
, ζρ(t)

)
,η – ζρ(t)

〉

Y1
, ∀η ∈ KY , (4.31)
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ẇρ(t) = α(t)p
(
uρν(t) – wρ(t)

)
in �3, (4.32)

wρ(0) = 0, ζρ(0) = ζ0 ∈ (0, 1). (4.33)

In order to solve Problem 4.4, we need the following hypotheses.
H(1): The elasticity operator A : � × I × S

d → S
d satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) A(·, t,ε) is measurable on �,∀(t,ε) ∈ I × S
d;

(b) A(x, ·, ·) is continuous on I × S
d for a.e. x ∈ �;

(c) A(x, t, ·) is Lipschitz continous with LA > 0 for all t ∈ I, i.e.,

‖A(x, t,ε1) – A(x, t,ε2)‖ ≤ LA‖ε1 – ε2‖,∀ε1,ε2 ∈ S
d, a.e. x ∈ �;

(d) A(x, t, ·) is strong monotone with mA > 0 for all t ∈ I, i.e.,

(A(x, t,ε1) – A(x, t,ε2)) · (ε1 – ε2) ≥ mA‖ε1 – ε2‖2,∀ε1,ε2 ∈ S
d, a.e. x ∈ �;

(e) for all t ∈ I and a.e. x ∈ �; ,A(x, t, 0
Sd ) = 0

Sd .

(4.34)

H(2): The relaxation operator B : � × I × S
d ×R→ S

d satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) B(·, t,ε, ζ ) is measurable on �,∀ε ∈ S
d,∀t ∈ I,∀ζ ∈R;

(b) B(x, ·,ε, ζ ) is continuous on I for a.e. x ∈ � and all (ε, ζ ) ∈ S
d ×R;

(c) B(x, t, ·, ·) is Lipschitz continuous with LB > 0,∀t ∈ I and a.e. x ∈ �, i.e.,

‖B(x, t,ε1, ζ1) – B(x, t,ε2, ζ2)‖ ≤ LB(‖ε1 – ε2‖ + |ζ1 – ζ2|)
for all ε1,ε2 ∈ S

d, all ζ1, ζ2 ∈R and a.e. x ∈ �;

(d) there exists a function �B ∈ L2(I;R+) such that ‖B(x, t,ε, ζ )‖ ≤ �B(t)(|ζ | + ‖ε‖)

for all (t,ε, ζ ) ∈ I × S
d ×R and a.e. x ∈ �.

(4.35)

H(3): The normal compliance function p : �3 ×R→R
+ satisfies

⎧
⎪⎪⎨

⎪⎪⎩

(a) p(·, r) is measurable on �3,∀r ∈R;

(b) p(x, ·) is Lipschitz continuous with L̃p > 0, a.e. x ∈ �3, i.e.,

|p(x, r1) – p(x, r2)| ≤ Lp|r1 – r2|,∀r1, r2 ∈R.

(4.36)

H(4): The damage source function φ : � × I × S
d ×R →R satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) φ(·, t,ε, ζ ) is measurable on �, for all t ∈ I,ε ∈ S
d and ζ ∈R;

(b) φ(x, t, ·, ·) is Lipschitz continuous with Lφ > 0 for all t ∈ I a.e. x ∈ �, i.e.,

‖φ(x,ε1, ζ1) – φ(x,ε2, ζ2)‖ ≤ L̃φ(‖ε1 – ε2‖ + |ζ1 – ζ2|)
for all ε1,ε2 ∈ S

d, all ζ1, ζ2 ∈R and a.e. x ∈ �;

(c) φ(·, ·, 0
Sd , 0R) ∈ L2(I; L2(�;R)).

(4.37)
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H(5): The normal compliance function jν : �3 ×R×R×R →R satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) jν(·, r1, r2, r3) is measurable on �3 for all r1, r2, r3 ∈ R and there exists

e ∈ L2(�3,R) such that jν(·, r1, r2, e(·)) ∈ L1(�3,R) for all r1, r2 ∈R;

(b) jν(x, r1, r2, ·) is locally Lipschitz on R for all r1, r2 ∈R and a.e. x ∈ �3;

(c) There are two constants c̃0, c̃1 > 0 such that, for a.e. x ∈ �3,

|∂jν(·, r1, r2, r3)| ≤ c̃1(1 + |r1| + |r2|) + c̃0|r3|,∀r1, r2, r3 ∈R;

(d) There are two constants α̃0, α̃1 > 0 such that for a.e. x ∈ �3,

j0
ν(x, w1, s1, r1; r2 – r1) + j0

ν(x, w2, s2, r2; r1 – r2)

≤ |r1 – r2|(α̃0|w1 – w2| + α̃1||s1 – s2|),∀r1, r2, s1, s2, w1, w2 ∈ R.

(4.38)

H(6): The normal compliance function jτ : �3 ×R×R×R
d →R satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) jτ (·, r1, r2, r3) is measurable on �3 for all r1, r2 ∈R and r3 ∈R
d and there exists

e ∈ L2(�3,Rd) such that jν(·, r1, r2, e(·)) ∈ L1(�3,R) for all r1, r2 ∈R;

(b) jν(x, r1, r2, ·) is locally Lipschitz on R
d for all r1, r2 ∈R and a.e. x ∈ �3;

(c) There are two constants c̄0, c̄1 > 0 such that for a.e. x ∈ �3,

|∂jν(·, r1, r2, r3)| ≤ c̄1(1 + |r1| + |r2|) + c̄0‖r3‖,∀r1, r2 ∈R,∀r3 ∈R
d;

(d) There are two constants ᾱ0, ᾱ1 > 0 such that for a.e. x ∈ �3,

j0
ν(x, w1, s1, r1; r2 – r1) + j0

ν(x, w2, s2, r2; r1 – r2)

≤ ‖r1 – r2‖(ᾱ0|w1 – w2| + ᾱ1|s1 – s2|),∀s1, s2, w1, w2 ∈ R,∀r1, r2 ∈R
d.

(4.39)

Moreover, we use the data f 0, f 2, and α that satisfy the following conditions:

f 0 ∈ C(I; H), f 2 ∈ C
(
I; L2(�2;Rd)), α ∈ C

(
I; L∞(�3;R)

)
. (4.40)

Given Banach spaces V = {u ∈ H1(�;Rd) | u = 0 on �1} and Y = H1(�;R), and Hilbert
spaces H = L2(�;Rd) and Y1 = L2(�;R), by the basic embedding theory of Sobolev spaces,
we know that (V , H , V ∗) and (Y , Y1, Y ∗) form two Gelfand triples. Let X = L2(�3;Rd) and
W = L2(�3;R).

Now, we give the following theorem.

Theorem 4.1 Suppose that assumptions (4.34)–(4.40) hold and

mA > ‖γ ‖2 max{α̃1 + ᾱ1, c̃0 + c̄0}.

Then, one has the following conclusions:
(i) Problem 4.2 has a unique solution

(ζ , uζ , wζ ) ∈ (H1(I; Y1) ∩ L2(I; Y )) × C(I; KV ) × C1(I; W ); for any given ρ > 0,
Problem 4.4 has a unique solution
(ζρ , uρζ , wρζ ) ∈ (H1(I; Y1) ∩ L2(I; Y )) × C1(I; KV ) × C1(I; W );

(ii) (ζρuρζ , wρζ ) converges strongly to (ζ , uζ , wζ ) as ρ → 0.
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Proof The unique solvability of Problem 4.2 is the direct conclusion of Theorem 4.1 in
[4]. Define operators A(t, ·) : V → V ∗, B(t, ·, ·) : V × Y → V ∗, P(·) : V → V ∗, F(t, ·, ·) : W ×
V → W , φ(t, ·, ·) : V × Y → Y ∗, a functional j(·, ·, ·) : W × X × X → R and a symmetric
bilinear form a(·, ·) : Y × Y →R by setting

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈A(t, u), v〉V∗×V =
∫

�
A(x, t,ε(u)) · ε(v) d�,

〈B(t, u, ζ ), v〉V∗×V =
∫

�
B(x, t,ε(u), ζ ) · ε(v) d�,

〈Pu, v〉V∗×V =
∫

�3
(uν – g)+vν d�,

F(t, w, u) = α(t)p(uν – w),

φ(t, u, ζ ) = λD( 1–ζ

ζ
) – 1

2λE‖ε(u)‖2 + λw,

j(w,γ u,γ v) =
∫

�3
jν(w, uν , vν) d� +

∫

�3
jτ (w, uτ , vτ ) d�,

a(ζ ,η) = κ
∫

�
∇ζ · ∇η d�

for all u, v ∈ V , w ∈ W , ζ ,η ∈ Y and t ∈ I . Then, Problem 4.2 can be transformed as follows:

ẇρ(t) = F
(
t, wρ(t), uρ(t)

)
,

〈

A
(
t, uρ(t)

)
+

∫ t

0
B
(
t – s, uρ(s), ζρ(s)

)
ds, v – uρ(t)

〉

V∗×V
+

1
ρ

〈
Puρ(t), v – uρ(t)

〉

V∗×V

+ j0(wρ(t), Muρ(t), Muρ(t); Mv – Muρ(t)
) ≥ 〈

f (t), v – uρ(t)
〉

V∗×V , ∀v ∈ V ,
〈
ζ̇ρ(t),η – ζρ(t)

〉

Y1
+ a

(
ζρ(t),η – ζρ(t)

) ≥ 〈
φ
(
t, uρ(t), ζρ(t)

)
,η – ζρ(t)

〉

Y1
, ∀η ∈ KY ,

wρ(0) = 0, ζρ(0) = ζ0 ∈ (0, 1).

Next, we show that all the conditions of Theorem 3.1 are satisfied. We only need to prove
that H(A)(b) is fulfilled and P is a penalty operator because the other assumptions have
been testified in [4].

We first show that H(A)(b) is fulfilled. In fact, from (4.34)(c) and Hölder’s inequality, one
has

〈
A(t, u1) – A(t, u2), v

〉

V∗×V ≤
(∫

�

∥
∥A

(
x, t,ε(u1)

)
– A

(
x, t,ε(u2)

)∥
∥2 d�

) 1
2 ‖v‖V

≤ LA

(∫

�

∥
∥ε(u1) – ε(u2)

∥
∥2 d�

) 1
2 ‖v‖V

for all u1, u2, v ∈ V and all t ∈ I and so

∥
∥A(t, u1) – A(t, u2)

∥
∥

V∗ ≤ LA‖u1 – u2‖V .

This shows that LA = LA in (4.34)(c), and so condition H(A)(b) holds.
Moreover, we prove that P is a penalty operator of KV . Now, we show that P is monotone.

For any given r1, r2, g ∈ R, through simple algebraic calculations we have

(
(r1 – g)+ – (r2 – g)+)

(r1 – r2) ≥ 0
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and so

(
(uν – g)+ – (vν – g)+)

(uν – vν) ≥ 0 on �3.

This shows that P is monotone. Now, the Sobolev trace theorem states that there exists a
positive constant C such that

‖v‖L2(�,Rd) ≤ C‖v‖V .

From Hölder’s inequality, one has

〈Pu1 – Pu2, v〉V∗×V ≤
(∫

�3

(
(u1ν – g)+ – (u2ν – g)+)2 d�

) 1
2
(∫

�3

v2
ν d�

) 1
2

≤ C2‖u1 – u2‖V ‖v‖V

for all u1, u2, v ∈ V and so

‖Pu1 – Pu2‖V∗ ≤ C2‖u1 – u2‖V .

This shows that P is a bounded and continuous operator. Furthermore, we can see that

KV = {u ∈ V | Pu = 0V∗} = {u ∈ V | uν ≤ g a.e. on �3},

and so P is a penalty operator of KV . Thus, we can conclude that Problem 4.4 is equivalent
to Problem 3.1 and so Theorem 3.1 ends the proof. �
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