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Abstract
In the present paper we consider a class of generalized saddle-point problems
described by means of the following variational system:

a(u, v – u) + b(v – u,λ) + j(v) – j(u) + J(u, v) – J(u,u) ≥ (f , v – u)X ,

b(u,μ – λ) –ψ (μ) +ψ (λ)≤ 0,

(v ∈ K ⊆ X , μ ∈ � ⊂ Y), where (X , (·, ·)X ) and (Y , (·, ·)Y ) are Hilbert spaces. We use a
fixed-point argument and a saddle-point technique in order to prove the existence of
at least one solution. Then, we obtain uniqueness and stability results. Subsequently,
we pay special attention to the case when our problem can be seen as a perturbed
problem by settingψ (·) = εψ̄ (·) (ε > 0). Then, we deliver a convergence result for
ε → 0, the case ψ ≡ 0 appearing like a limit case.
The theory is illustrated by means of examples arising from contact mechanics,

focusing on models with multicontact zones.
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1 Introduction
In the present paper we bring the attention to the following mixed variational problem.

Problem 1 Given f ∈ X, find (u,λ) ∈ K × � such that, for all v ∈ K and μ ∈ �,

a(u, v – u) + b(v – u,λ) + j(v) – j(u) + J(u, v) – J(u, u) ≥ (f , v – u)X ,

b(u,μ – λ) – ψ(μ) + ψ(λ) ≤ 0.

We are going to study this problem under the following hypotheses:
(h1) (X, (·, ·)X ,‖ · ‖X) and (Y , (·, ·)Y ,‖ · ‖Y ) are Hilbert spaces.
(h2) The form a : X × X → R is symmetric, bilinear continuous (of rank Ma > 0) and

X-elliptic (of rank ma > 0).
(h3) (1) The form b : X × Y →R is bilinear continuous (of rank Mb > 0).
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(2) There exists α > 0 such that

inf
μ∈Y ,μ
=0Y

sup
v∈X,v
=0X

b(v,μ)
‖v‖X‖μ‖Y

≥ α. (1)

(h4) The functional j : X → [0,∞) is convex and Lipschitz continuous (of rank Lj > 0).
(h5) The functional ψ : Y → [0,∞) is convex and lower semicontinuous. When ψ 
≡ 0,

we assume that there exist cψ > 0 and q > 1 such that ψ(μ) ≥ cψ‖μ‖q
Y for all μ ∈ Y .

(h6) • K ⊆ X is an unbounded closed convex subset such that 0X ∈ K and � ⊂ Y is a
bounded closed convex subset such that 0Y ∈ �

or
• K ⊆ X is a linear subspace and � ⊂ Y is an unbounded closed convex subset such that

0Y ∈ �.
(h7) The functional J : X × X → [0,∞) satisfies:
(1) For each v ∈ X, J(v, ·) is convex and Lipschitz continuous of rank LJ (v) > 0.
(2) There exists MJ > 0 such that, for all v1, v2, w1, w2 ∈ X, J(v1, w2) – J(v1, w1) + J(v2, w1) –

J(v2, w2) ≤ MJ‖v1 – v2‖X‖w1 – w2‖X .
(3) There exists cJ > 0 such that |J(u, v)| ≤ cJ (‖u‖X + 1)‖v‖X for all u, v ∈ X.
Problem 1 can be seen as a generalization of the following mixed variational problem:

given f ∈ X, find (u,λ) ∈ X × � such that, for all v ∈ X and μ ∈ � ⊂ Y ,

a(u, v) + b(v,λ) = (f , v)X , (2)

b(u,μ – λ) ≤ 0. (3)

Such a variational system appears in the weak formulations of some contact problems: see,
e.g., [10] for unilateral contact problems or [11] for a class of bilateral contact problems.
The unique solution of the problem (2) and (3) is the unique saddle point of the functional

X × � � (μ, v) → 1
2

a(v, v) + b(v,μ) – (f , v)X .

By analyzing contact models with two-contact zones, one can arrive at a variational
system of the form below: given f ∈ X, find (u,λ) ∈ X × � such that, for all v ∈ X and
μ ∈ � ⊂ Y ,

a(u, v – u) + b(v – u,λ) + j(v) – j(u) ≥ (f , v – u)X , (4)

b(u,μ – λ) ≤ 0, (5)

see, e.g., [15]. According to Theorem 2 in [15], the problem (4) and (5) has at least one
solution (u,λ) that is unique in its first component; each solution is a saddle point of the
functional

X × � � (μ, v) → 1
2

a(v, v) + j(v) + b(v,μ) – (f , v)X .

By considering the perturbed problem

a(u, v – u) + b(v – u,λ) + j(v) – j(u) ≥ (f , v – u)X ,
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b(u,μ – λ) – ε‖μ‖2
Y + ε‖λ‖2

Y ≤ 0,

one can associate the functional

K × � � (μ, v) → 1
2

a(v, v) + j(v) – ε‖μ‖2
Y + b(v,μ) – (f , v)X (ε > 0);

see the recent paper [3].
In the present paper, we focus on models with multicontact zones, arriving at variational

formulations that can be cast in the more general form below.

Problem 2 Given f ∈ X, find (u,λ) ∈ K × � such that, for all v ∈ K and μ ∈ �,

a(u, v – u) + b(v – u,λ) + j(v) – j(u) + J(u, v) – J(u, u) ≥ (f , v – u)X ,

b(u,μ – λ) ≤ 0.

Problem 2 can be seen as a particular case of Problem 1, by setting ψ ≡ 0. Problem 1 is
interesting in its own right and, even more complicated at first glance than Problem 2 due
to the additional term “–ψ(μ) +ψ(λ)”, actually, it brings us a significant advantage: assum-
ing that ψ is strictly convex then its solution is unique in both components. In contrast,
Problem 2 has at least one solution, unique only in its first component.

By setting ψ(·) = εψ̄(·) with ε > 0, Problem 1 can be seen as a perturbed problem. If ψ is
strictly convex then the unique solution of the “perturbed” problem is the unique saddle
point of a bifunctional that is strictly convex in its first argument and strictly concave in
the second one. When ε goes to zero, then the case ψ ≡ 0 appears like a limit case. Thus,
numerical reasons enhance our interest to study the case ψ 
≡ 0.

In order to prove the well-posedness of Problem 1 under the hypotheses (h1)–(h7),
we use a fixed-point argument, a saddle-point technique, arguments in the theory of
variational-quasivariational inequalities as well as a minimization argument.

The present paper brings a contribution to the literature devoted to the saddle-point
problems and their applications in mechanics; references relevant to the matter are, for
instance, [1, 2, 8, 10, 11, 17].

The reading of the present work requires a background in convex analysis, nonlinear
analysis, calculus of variations, continuum mechanics, and contact mechanics; the reader
can consult, e.g., [4, 6, 7, 9, 10, 13, 14, 18, 20, 21]; for a more complex view, the reader can
also consult [5, 12, 19, 22, 23].

To increase the clarity of the presentation, we provide below some tools we need.

Definition 1 Let A and B be two nonempty sets. A pair (u,λ) ∈ A×B is said to be a saddle
point of a functional L : A × B →R if and only if

L(u,μ) ≤L(u,λ) ≤L(v,λ) for all v ∈ A,μ ∈ B.

Proposition 1 Let (X, (·, ·)X ,‖ · ‖X), (Y , (·, ·)Y ,‖ · ‖Y ) be Hilbert spaces, let

A ⊆ X, B ⊆ Y be nonempty, closed, convex subsets (6)
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and let L : A × B →R be a functional such that:

v →L(v,μ) is convex and lower semicontinuous for all μ ∈ B, (7)

μ →L(v,μ) is concave and upper semicontinuous for all v ∈ A. (8)

Then:
• the set of the saddle points of L, A0 × B0, is a convex set;
• if v →L(v,μ) is strictly convex for all μ ∈ B, then A0 has at most one point;
• if μ →L(v,μ) is strictly concave for all v ∈ A, then B0 has at most one point.

For a proof, see Proposition 1.5 on page 169 in [6].

Proposition 2 Let (X, (·, ·)X ,‖ · ‖X), (Y , (·, ·)Y ,‖ · ‖Y ) be two Hilbert spaces. Assume (6), (7),
and (8). Moreover, we assume that

A is bounded or lim
‖v‖X→∞,v∈A

L(v,μ∗) = ∞ for some μ∗ ∈ B and

B is bounded or lim‖μ‖Y →∞,μ∈B
inf
v∈A

L(v,μ) = –∞.

Then, the functional L has at least one saddle point.

For the proof, see Proposition 2.4 on page 176 in [6].
The rest of the paper has the following structure. In Sect. 2 we deliver some auxiliary

results. In Sect. 3 we study the well-posedness of Problem 1. In Sect. 4 we obtain a con-
vergence result. In Sect. 5 we give examples of X, Y , a, b, j, J , K ,�, and ψ such that the
working hypotheses are fulfilled; these examples are related to some weak formulations
via Lagrange multipliers for a class of contact models with multicontact zones.

2 Auxiliary results
In this section we consider the following auxiliary problem.

Problem 3 Let ς ∈ K . Given f ∈ X, find (uς ,λς ) ∈ K × � such that, for all v ∈ K and
μ ∈ �,

a(uς , v – uς ) + b(v – uς ,λς ) + j(v) – j(uς ) + J(ς , v) – J(ς , uς ) ≥ (f , v – uς )X ,

b(uς ,μ – λς ) – ψ(μ) + ψ(λς ) ≤ 0.

Let us associate to Problem 3 the following functional:

Lς : K × � →R, Lς (v,μ) =
1
2

a(v, v) + b(v,μ) – (f , v)X – ψ(μ) + j(v) + J(ς , v).

Proposition 3 Let ς ∈ K . Assume that (h1)–(h7) hold true. Then:
(i) the functional Lς has at least one saddle point;
(ii) a pair (uς ,λς ) ∈ K × � verifies Problem 3 if and only if it is a saddle point of Lς .
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Proof (i) We are going to apply Proposition 2. We know that K ⊆ X and � ⊂ Y are
nonempty closed convex sets and it is obvious that

v →Lς (v,μ) is convex and lower semicontinuous for all μ ∈ �,

μ →Lς (v,μ) is concave and upper semicontinuous for all v ∈ X.

Since K ⊆ X is unbounded, we have to verify that

lim‖v‖X→∞,v∈K
Lς (v,μ∗) = ∞ for some μ∗ ∈ �. (9)

Indeed, let μ∗ = 0Y . We write,

Lς (v, 0Y ) =
1
2

a(v, v) – (f , v)X + j(v) – ψ(0Y ) + J(ς , v) for all v ∈ K .

As j(·), J(·, ·) are nonnegative,

Lς (v, 0Y ) ≥ ma

2
‖v‖2

X – ‖f ‖X‖v‖X – ψ(0Y ) for all v ∈ K .

Passing to the limit as ‖v‖X → ∞, we obtain (9).
If � is unbounded, then we have to justify that

lim‖μ‖Y →∞,μ∈�
inf
v∈K

Lς (v,μ) = –∞, (10)

keeping in mind that K ⊆ X is a linear subspace, according to (h6).
Indeed, let μ ∈ � and let uμ

ς ∈ K be the unique solution of the variational inequality of
the second kind,

a
(
uμ

ς , v – uμ
ς

)
+ j(v) – j

(
uμ

ς

)
+ J(ς , v) – J

(
ς , uμ

ς

)
+ b

(
v – uμ

ς ,μ
) ≥ (

f , v – uμ
ς

)
X (11)

or, equivalently,

a
(
uμ

ς , v – uμ
ς

)
+ j(v) – j

(
uμ

ς

)
+ J(ς , v) – J

(
ς , uμ

ς

) ≥ (
f μ, v – uμ

ς

)
X ,

for all v ∈ K , where f μ ∈ X is defined by Riesz’s representation theorem as follows,

(
f μ, v

)
X = (f , v)X – b(v,μ) for all v ∈ X. (12)

As uμ
ς minimizes the functional

K � v → 1
2

a(v, v) + j(v) + J(ς , v) –
(
f μ, v

)
X

then,

inf
v∈K

Lς (v,μ) =
1
2

a
(
uμ

ς , uμ
ς

)
+ j

(
uμ

ς

)
+ J

(
ς , uμ

ς

)
–

(
f , uμ

ς

)
X + b

(
uμ

ς ,μ
)

– ψ(μ).
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Let us set v = 0X in (11). Therefore,

1
2

a
(
uμ

ς , uμ
ς

)
–

(
f , uμ

ς

)
X + j

(
uμ

ς

)
+ b

(
uμ

ς ,μ
)

+ J
(
ς , uμ

ς

)
(13)

≤ –
1
2

a
(
uμ

ς , uμ
ς

)
+ j(0X).

Consequently,

inf
v∈K

Lς (v,μ) ≤ –
ma

2
‖uμ

ς ‖2
X – ψ(μ) + j(0X) ≤ –

ma

2
‖uμ

ς ‖2
X + j(0X).

Setting now v = uμ
ς – w with w ∈ K , in (11), we obtain

b(w,μ) ≤ (f , w)X – a
(
uμ

ς , w
)

+ j
(
uμ

ς – w
)

– j
(
uμ

ς

)
+ J

(
ς , uμ

ς – w
)

– J
(
ς , uμ

ς

)
.

Then, we use the inf-sup property of b(·, ·) to write

α‖μ‖Y ≤ ‖f ‖X + Ma‖uμ
ς ‖X + Lj + LJ (ς ).

Therefore,

α2‖μ‖2
Y ≤ 3

(‖f ‖2
X + M2

a‖uμ
ς ‖2

X +
(
Lj + LJ (ς )

)2).

As a result, there exists c = c(α, ma, Ma, Lj, LJ (ς )) > 0 such that

inf
v∈K

Lς (v,μ) ≤ –c
(‖μ‖2

Y – ‖f ‖2
X –

(
Lj + LJ (ς )

)2) + j(0X).

We observe that (10) is verified after we pass to the limit in the previous inequality. Thus,
we conclude (i) by applying Proposition 2.

(ii) Let (uς ,λς ) ∈ K × � be a solution of Problem 3. It is easy to observe that the second
line of Problem 3 is equivalent with

Lς (uς ,μ) ≤Lς (uς ,λς ) for all μ ∈ �. (14)

On the other hand, keeping in mind the symmetry of a(·, ·), for all v ∈ K ,

Lς (uς ,λς ) – Lς (v,λς )

≤ –
1
2

a(uς – v, uς – v) –
[
a(uς , v – uς ) + b(v – uς ,λς ) + j(v) – j(uς )

+ J(ς , v) – J(ς , uς ) – (f , v – uς )X
] ≤ 0.

Therefore, (uς ,λς ) is a saddle point of Lς . Conversely, if (uς ,λς ) ∈ K ×� is a saddle point
of Lς , keeping in mind (14), it is enough to prove that the saddle point (uς ,λς ) verifies the
first line of Problem 3. To start, we write

Lς (uς ,λς ) – Lς (w,λς ) ≤ 0 for all w ∈ K .
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Thus, for all w ∈ K ,

1
2

a(uς , uς ) –
1
2

a(w, w) + j(uς ) – j(w) + J(ς , uς ) – J(ς , w)

+ b(uς – w,λς ) + (f , w – uς )X ≤ 0.

Setting w = uς + t(v – uς ) with t ∈ (0, 1] and v ∈ K , we obtain

ta(uς , v – uς ) +
t2

2
a(v – uς , v – uς ) + t

(
j(v) – j(uς )

)

+ t
(
J(ς , v) – J(ς , uς )

)
+ tb(v – uς ,λς ) ≥ t(f , v – uς )X .

Subsequently, we divide by t > 0 and then we pass to the limit as t → 0. As a result, the
pair (uς ,λς ) verifies the first line of Problem 3. �

Proposition 4 Assume (h1)–(h7). If, in addition, ψ is strictly convex, then the functional
Lς has a unique saddle point.

Proof According to Proposition 3, the functional Lς has at least one saddle point. How-
ever, X � v → a(v, v) ∈ [0,∞) and Y � μ → ψ(μ) ∈ [0,∞) are strictly convex maps. Hence,

v →Lς (v,μ) is strictly convex for all μ ∈ �,

μ →Lς (v,μ) is strictly concave for all v ∈ K .

We use now Proposition 1 to complete the proof. �

Proposition 5 Assume (h1)–(h7). Then, Problem 3 has at least one solution that is unique
in its first argument. If, in addition, ψ is strictly convex then Problem 3 has a unique solu-
tion (uς ,λς ) ∈ K × �.

Proof We apply Proposition 3. Furthermore, as v →Lς (v,μ) is strictly convex for all μ ∈ �

we deduce that Problem 3 has at least one solution that is unique in its first argument. If,
in addition, ψ is strictly convex then we will apply Proposition 4. �

3 Well-posedness results
To start, we deliver an existence, uniqueness, and stability result by using a Banach fixed-
point argument.

Theorem 1 Assume that (h1)–(h7) hold true. If, in addition MJ < ma, then Problem 1 has
at least one solution that is unique and stable in its first component.

Proof Let ς ∈ K and let (uς ,λς ) ∈ K ×� be a solution of Problem 3. We define an operator

T : K → K , Tς = uς .

According to Proposition 5 the operator T is well defined. Let us prove that T is a con-
traction. To start, we take ς1, ς2 ∈ K and we denote by (uς1 ,λς1 ) and (uς2 ,λς2 ) two corre-
sponding solutions of Problem 3. Thus, for every i ∈ {1, 2} we can write, for all v ∈ K and
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μ ∈ �,

a(uςi , v – uςi ) + b(v – uςi ,λςi ) + j(v) – j(uςi ) + J(ςi, v) – J(ςi, uςi )

≥ (f , v – uςi )X ,

b(uςi ,μ – λςi ) – ψ(μ) + ψ(λςi ) ≤ 0.

By setting v = uς2 and μ = λς2 if i = 1 and v = uς1 and μ = λς1 if i = 2, then,

ma‖uς1 – uς2‖2
X ≤ MJ‖ς1 – ς2‖X‖uς1 – uς2‖X ,

and from this we deduce that

‖uς1 – uς2‖X ≤ MJ

ma
‖ς1 – ς2‖X .

Therefore,

‖Tς1 – Tς2‖X ≤ MJ

ma
‖ς1 – ς2‖X .

As MJ < ma, we conclude that T is a contraction. Thus, we can apply Banach’s fixed-point
theorem.

Let ς∗ be the unique fixed point of T . It is easy to observe that the pair (uς∗ ,λς∗ ) ∈ K ×�

is a solution of Problem 1.
Let (ui,λi) ∈ K × � (i ∈ {1, 2}) be two solutions of Problem 1. Thus, for all v ∈ K and

μ ∈ �,

a(ui, v – ui) + b(v – ui,λi) + j(v) – j(ui) + J(ui, v) – J(ui, ui) ≥ (f , v – ui)X ,

b(ui,μ – λi) – ψ(μ) + ψ(λi) ≤ 0.

Setting v = u2 and μ = λ2 if i = 1 and v = u1 and μ = λ1 if i = 2, then we are led to

(ma – MJ )‖u1 – u2‖2
X ≤ 0.

As MJ < ma, we obtain u1 = u2.
Let f1, f2 ∈ X be two data and let (u1,λ1), (u2,λ2) be two corresponding solutions. Then,

for each i ∈ {1, 2} we can write,

a(ui, v – ui) + b(v – ui,λi) + j(v) – j(ui)

+ J(ui, vi) – J(ui, ui) ≥ (fi, v – ui)X for all v ∈ K ,

b(ui,μ – λi) – ψ(μ) + ψ(λi) ≤ 0 for all μ ∈ �.

Setting v = u2, μ = λ2 if i = 1 and v = u1, μ = λ1 if i = 2 then,

a(u1 – u2, u1 – u2) ≤ |(f1 – f2, u1 – u2)X | + MJ‖u1 – u2‖2
X .
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As MJ < ma we deduce that

‖u1 – u2‖X ≤ 1
ma – MJ

‖f1 – f2‖X .

As a result, the solution is stable in its first component. �

Corollary 1 Admit (h1)–(h4), (h6), and (h7) and the smallness assumption MJ < ma. Then,
Problem 2 has at least one solution (u0,λ0) that is unique and stable in its first component.

Proof We set ψ ≡ 0 in Problem 1 and then we apply Theorem 1. �

Theorem 2 (A uniqueness result) Assume that (h1)–(h7) hold true together with the small-
ness assumption MJ < ma. If, in addition, ψ is strictly convex, then Problem 1 has a unique
solution.

Proof According to Theorem 1, we can denote by u the unique first component of each
pair solution of Problem 1. Assuming that (u,λ1) and (u,λ2) are two solutions of Problem 1,
by the second line of Problem 1 we can write

ψ(λ1) – b(u,λ1) ≤ ψ(μ) – b(u,μ); (15)

ψ(λ2) – b(u,λ2) ≤ ψ(μ) – b(u,μ). (16)

Therefore, λ1 and λ2 are minimizers for the following functional

Hu : � →R, Hu = ψ(μ) – b(u,μ).

Keeping in mind the properties of ψ(·) and b(·, ·), by using a standard minimization argu-
ment, see, e.g., Theorem 1.36 in [21], it is easy to observe that Hu has a unique minimizer.
Note that, when � is unbounded, the property ψ(μ) ≥ cψ‖μ‖q

Y (q > 1) is crucial in order
to obtain the coercivity of Hu. In consequence, Problem 1 has a unique solution. �

Remark 1 It is worth underlining that, under the hypotheses of Theorem 2, the unique
solution of Problem 1 is the unique saddle point of the functional Lς∗ , where ς∗ is the
unique fixed point of the operator T .

Remark 2 The smallness assumption MJ < ma was introduced for mathematical reasons.
Obtaining results without any smallness assumption is left open.

4 A convergence result
In this section we pay attention to a special situation when Problem 1 can be seen as a
perturbed problem by considering ψ(μ) = εψ̄(μ) (ε > 0).

Problem 4 Let ε > 0. Given f ∈ X, find (uε ,λε) ∈ K × � such that,

a(uε , v – uε) + b(v – uε ,λε) + j(v) – j(uε) (17)

+ J(uε , v) – J(uε , uε) ≥ (f , v – uε)X for all v ∈ K ,

b(uε ,μ – λε) – εψ̄(μ) + εψ̄(λε) ≤ 0 for all μ ∈ �. (18)
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We admit the following hypotheses:
(H1) (h1) – (h4); (h6) – (h7); MJ < ma;
(H2) ψ̄ : Y → [0,∞) is strictly convex and lower semicontinuous and, in addition, there

exist cψ̄ , c̄ψ̄ > 0 and q̄ > 1 such that, for all μ ∈ Y ,

cψ̄‖μ‖q̄
Y ≤ ψ̄(μ) ≤ c̄ψ̄‖μ‖q̄

Y .

The following boundedness result will be helpful.

Lemma 1 Let ε > 0 and let (uε ,λε) be the unique solution of Problem 4. Then, (uε)ε>0 and
(λε)ε>0 are bounded sequences in K and �, respectively.

Proof Let ε > 0 and let (uε ,λε) be the unique solution of Problem 4. Let us set v = 0X and
μ = 0Y in Problem 4. Hence,

a(uε , uε) ≤ (f , uε)X – b(uε ,λε) + j(0X) – j(uε) + J(uε , 0X) – J(uε , uε),

–b(uε ,λε) – εψ̄(0Y ) + εψ̄(λε) ≤ 0.

Combining these above relations, as J(uε , 0X) = 0, ψ̄(0Y ) = 0 and j(·),ψ(·), J(·, ·) are non-
negative maps, then

a(uε , uε) ≤ (f , uε)X + j(0X).

Hence,

ma‖uε‖2
X ≤ 1

2k
‖f ‖2

X +
k
2
‖uε‖2

X + j(0X),

where k > 0. By setting k = ma we are led to

‖uε‖X ≤ M :=

√
2

ma

(‖f ‖2
X

2ma
+ j(0X)

)
. (19)

Hence, (uε)ε>0 is a bounded sequence in K .
If � is bounded, then there exists c� > 0 such that

‖λε‖Y ≤ c� for all ε > 0.

As a result, in the case � is bounded, (λε)ε is a bounded sequence in �. If � is unbounded
(recall that, according to (h6), K ⊆ X is a linear subspace), we set v = uε – w

‖w‖X
with w ∈

K , in (17). As a(·, ·) is bilinear continuous of rank Ma, j(·) is nonnegative and Lipschitz
continuous of rank Lj, and

J(uε , v) ≤ cJ (‖uε‖X + 1)‖v‖X ≤ cJ (‖uε‖X + 1)2,

then, keeping in mind (19) we arrive at

b(w,λε)
‖w‖X

≤ ‖f ‖X + MaM + cJ (M + 1)2 + Lj.
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By the inf-sup property of the form b(·, ·), we obtain

‖λε‖Y ≤ 1
α

[‖f ‖X + MaM + cJ (M + 1)2 + Lj
]
. (20)

As a consequence, (λε)ε>0 is a bounded sequence in the unbounded subset �. �

Recall that, according to Corollary 1, Problem 2 has at least one solution (u0,λ0) ∈ K ×�

that is unique in its first argument.
In order to deliver the main result of this section we need the following additional as-

sumption.
(H3) Let (uε)ε>0 ⊂ K be such that uε → u in X as ε → 0 and let (λε)ε>0 ⊂ � be such that

λε ⇀ λ in Y as ε → 0. Then, b(uε ,λε) → b(u,λ) as ε → 0.
Let (uε)ε>0 ⊂ K be such that uε → u in X and let v ∈ K . Then, lim supε→0[J(uε , v) –

J(uε , uε)] ≤ J(u, v) – J(u, u).

Theorem 3 Assume (H1)–(H3). Let ((uε ,λε))ε>0 ⊂ K × � be a sequence such that, for
each ε > 0, (uε ,λε) is the unique solution of Problem 4. Then, there exists a subsequence
((uε′ ,λε′ ))ε′ ⊂ K × � and there exists a solution of Problem 2 (u0, λ̄0) such that uε′ → u0

and λε′ ⇀ λ̄0 as ε′ → 0.

Proof Let ε > 0, let (uε ,λε) ∈ K × � be the unique solution of Problem 4 and let (u0,λ0) ∈
K × � be a solution of Problem 2. Keeping in mind Lemma 1 and passing eventually to a
subsequence, we deduce that there exist ũ ∈ K and λ̃ ∈ � such that uε′ ⇀ ũ and λε′ ⇀ λ̃

as ε′ → 0.
Let ε′ > 0. According to Problem 4 we can write:

a(uε′ , v – uε′ ) + b(v – uε′ ,λε′ ) + j(v) – j(uε′ ) (21)

+ J(uε′ , v) – J(uε′ , uε′ ) ≥ (f , v – uε′ )X for all v ∈ K ,

b(uε′ ,μ – λε′ ) – ε′ψ̄(μ) + ε′ψ̄(λε′ ) ≤ 0 for all μ ∈ �. (22)

On the other hand,

a(u0, v – u0) + b(v – u0,λ0) + j(v) – j(u0) (23)

+ J(u0, v) – J(u0, u0) ≥ (f , v – u0)X for all v ∈ K ,

b(u0,μ – λ0) ≤ 0 for all μ ∈ �. (24)

We take v = uε′ in (23) and v = u0 in (21) to obtain,

a(u0 – uε′ , uε′ – u0) + J(uε′ , u0) – J(uε′ , uε′ ) + J(u0, uε′ ) – J(u0, u0) (25)

+ b(uε′ – u0,λ0 – λε′ ) ≥ 0.

Setting now μ = λε′ in (24) and μ = λ0 in (22), we obtain

b(uε′ – u0,λ0 – λε′ ) ≤ ε′ψ̄(λ0) – ε′ψ̄(λε′ ) ≤ ε′ψ̄(λ0). (26)
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Combining (25) and (26) we are led to

‖uε′ – u0‖2
X ≤ ε′

ma – MJ
ψ̄(λ0).

By passing to the limit as ε′ → 0 in the relation above, we obtain that uε′ → u0. Due to the
uniqueness of the limit, we conclude that ũ = u0.

Because (λε′ )ε′ is a weakly convergent sequence and 0 ≤ ψ̄(λε′ ) ≤ c̄ψ̄‖λε′ ‖p
Y (p > 0), then

ε′ψ̄(λε′ ) → 0 as ε′ → 0. Therefore, keeping in mind the working hypotheses and passing
to the limit as ε′ → 0 in Problem 4 we conclude that (u0, λ̃) ∈ K × � verifies Problem 2.
Thus, we can consider λ̄0 = λ̃. �

Remark 3 The entire sequence (uε)ε>0 is strongly convergent to u0 when ε → 0 because
the unique limit u0 is independent of the subsequences (uε′ )ε′>0.

5 Examples
In this section we are going to illustrate the theory by means of examples of contact models
involving multicontact zones.

Let us consider an elastic body that occupies a bounded domain 	 ⊂R
3, with a Lipschitz

continuous boundary. The boundary, denoted by 
, is partitioned in three measurable
parts 
D, 
N , and 
C with positive measure. The body 	 is clamped on 
D, body forces
of density f0 act on 	 and surface traction of density f2 acts on 
N . On the part 
C the
body is or can be in contact (frictional or frictionless) with foundations or obstacles. The
mathematical model can be described by means of the following boundary value problem.

Problem 5 Find u : 	̄ →R
3 and σ : 	̄ → S

3 such that

Divσ + f0 = 0 in 	,

σ = Eε(u) in 	,

u = 0 on 
D,

σν = f2 on 
N ,

contact conditions and friction laws on 
C .

(27)

As usual, u = (ui) stands for the displacement field, ε = ε(u) = (εij(u)) denotes the in-
finitesimal strain tensor, E is the elastic tensor and σ = (σij) is the Cauchy stress tensor
in the linearized theory. By means of 	̄ we denote 	 ∪ ∂	. Herein, S3 denotes the space
of second-order symmetric tensors on R

3. Every field in R
3 or S3 is typeset in boldface.

Everywhere below, by · and : we will denote the inner product on R
3 and S

3, respectively,
and by ‖ · ‖R3 , ‖ · ‖S3 we will denote the Euclidean norm on R

3 and S
3, respectively. The

unit outward normal vector to the boundary is denoted by ν and is defined almost ev-
erywhere. The normal and the tangential components of the displacement field will be
denoted by uν = u · ν and uτ = u – uνν , respectively; the normal and the tangential compo-
nents of the Cauchy vector σν on the boundary will be given by the formulas σν = (σν) · ν ,
σ τ = σν – σνν .
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In order to deliver a first example, we consider the Problem 5 in which the line (27)
consists of the following relations:

–σν = F , ‖σ τ‖R3 ≤ k|σν |, σ τ = –k|σν | uτ

‖uτ‖R3
if uτ 
= 0 on 
α ; (28)

–σν = pν(uν), ‖σ τ‖R3 ≤ pτ (uν), σ τ = –pτ (uν)
uτ

‖uτ‖R3
if uτ 
= 0 on 
β ; (29)

σν ≤ 0, uν ≤ 0, σνuν = 0, σ τ = 0 on 
δ ; (30)

uν = 0, ‖σ τ‖R3 ≤ ζ , σ τ = –ζ
uτ

‖uτ‖R3
if uτ 
= 0 on 
χ . (31)

In this case, the part 
C is partitioned into four zones 
α , 
β , 
δ , and 
χ . On 
α , the
body is in frictional contact with a foundation such that the normal stress is imposed, on

β the body is in frictional contact with normal compliance with an obstacle, on 
δ the
body can be in frictionless unilateral contact with a rigid obstacle and on 
χ the body is
in bilateral frictional (Tresca) contact with a rigid foundation. For details on (28)–(31) the
reader can consult, e.g., [9, 21] and the references therein. Herein, k is a friction coefficient,
F is the imposed normal stress, pν , pτ are given normal compliance functions and ζ is a
friction bound. Using a variational technique governed by Lagrange multipliers (λ can
be introduced by means of σ τ ), see, e.g., [15], one can arrive at a variational formulation
related to Problem 1 via the following example.

Example 1
• X = {v ∈ H1(	)3 : γ v = 0 a.e. on 
D} and Y is the dual of S (Y = S′), where

S = γ (X) = {̃v = γ v|v ∈ X}. Herein and everywhere below γ stands for the Sobolev
trace operator for vectors, γ : H1(	)3 → L2(
)3.

• a : X × X →R, a(u, v) =
∫
	
E(ε(u)(x)) : ε(v)(x) dx where E : S3 → S

3 is a fourth-order
tensor such that Eijkl = Eklij = Ejikl ∈ R, 1 ≤ i, j, k, l ≤ 3 and there exists mE > 0,
Eτ : τ ≥ mE‖τ‖2

S3 for all τ ∈ S
3.

• b : X × Y →R, b(v,μ) = 〈μ,γ v〉 where 〈·, ·〉 denotes the duality pairing between Y
and S.

• j : X → [0,∞), j(v) =
∫

α

kF|vν |d
 where k, F > 0.
• J : X × X → [0,∞), J(u, v) =

∫

β

[pν(uν)|vν | + pτ (uν)‖vτ‖R3 ] d
, where
pν , pτ : R→ [0,∞) are given Lipschitz continuous functions such that
pν(r) = pτ (r) = 0 for all r ≤ 0.

• K = {v ∈ X|vν ≤ 0 a.e. on 
δ}. The set K is an unbounded closed convex set that
contains 0X .

• � = {μ ∈ Y : 〈μ,γ v〉 ≤ ∫

χ

ζ‖vτ‖R3 d
}. The set � is a bounded closed convex set
that contains 0Y .

• If ψ ≡ 0, this example is related to a weak formulation of Problem 5. If ψ(μ) = ε‖μ‖2
Y ,

this example is related to a “perturbed weak formulation”.

In order to deliver a second example, we consider the following relations:

uν = 0, ‖σ τ‖R3 ≤ g(‖uτ‖R3 ), σ τ = –g(‖uτ‖R3 )
uτ

‖uτ‖R3
if uτ 
= 0 on 
∂ ; (32)

uν ≤ 0, σν ≤ 0, σνuν = 0 on 
δ ; (33)
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uν = 0, ‖σ τ‖R3 ≤ ζ , σ τ = –ζ
uτ

‖uτ‖R3
if uτ 
= 0 on 
χ ; (34)

–σν = F , ‖σ τ‖R3 ≤ k|σν |, σ τ = –k|σν | uτ

‖uτ‖R3
if uτ 
= 0 on 
α . (35)

In this case, the part 
C is partitioned into four zones 
∂ , 
δ , 
χ , and 
α . On 
∂ the body
is in bilateral frictional contact with a rigid foundation; herein we use a slip-dependent
friction law, g being a given slip-dependent friction bound. Details on (32) can be found in
[9, 20] and the references therein. The other contact conditions and friction laws were al-
ready encountered in the previous example. By a variational approach with Lagrange mul-
tipliers (λ is defined by means of σν ), we are led to Problem 1 by setting X, Y , a, b, j, J ,ψ , K ,
and � as follows.

Example 2
• X = K = {v ∈ H1(	)3 : γ v = 0 a.e. on 
D, vν = 0 a.e. on 
∂ ∪ 
χ }. The correspondence

law for a(·, ·) as in the previous example.
• S = {̃v|̃v = γ (v) · ν |
δ

,ν |
δ
= const.}, and Y = S′. The correspondence law for b(·, ·) as in

the previous example.
• j : X → [0,∞), j(v) =

∫

χ

ζ‖vτ‖R3 d
.
• � = {μ ∈ Y : 〈μ, vν〉 ≤ 0 for all v ∈K}, where K = {v ∈ X : vν ≤ 0 a.e. on 
δ}.
• J : X × X → [0,∞), J(u, v) =

∫

∂

g(‖uτ‖R3 )‖uτ‖R3 d
 where g : R→ [0,∞) is a
Lipschitz continuous function.

• If ψ(μ) = εc(μ,μ) where c(·, ·) is a symmetric, bilinear, continuous, and Y -elliptic
form, then this second example is related to a “perturbed weak formulation”.

We can continue by giving more examples involving other contact conditions and fric-
tion laws. For simplicity, we will “play” with the aforementioned contact conditions and
contact laws in order to deliver an example of a contact problem with more than four
contact zones. For instance, we consider Problem 5 setting on the line (27) the follow-
ing contact conditions and friction laws: (29), (32), (33), (34), and (35). In this case, 
C is
partitioned into five parts 
β , 
∂ , 
δ , 
χ , and 
α . A weak formulation of Problem 5 via
Lagrange multipliers can be related to Problem 1 by means of the next example.

Example 3
• X = {v ∈ H1(	)3 : γ v = 0 on 
D, vν = 0 on 
χ ∪ 
β ∪ 
∂}; K = X .
• S = {̃v|̃v = γ (v) · ν |
δ

,ν |
δ
= const.}, Y = S′.

• The correspondence laws for a(·, ·), b(·, ·), ψ , as in the previous examples.
• j : X → [0,∞), j(v) =

∫

α

kF|vν |d
 +
∫

χ

ζ‖vτ‖R3 d
.
• J(u, v) =

∫

∂

g(‖uτ‖R3 )‖uτ‖R3 d
 +
∫

β

[pν(uν)|vν | + pτ (uν)‖vτ‖R3 ] d
.
• � as in the previous example.

Herein, again, λ can be defined by means of σν .

These three examples fulfil the working hypotheses. Their verification is rather stan-
dard. However, for the convenience of the reader we can refer to, e.g., [16, 21] for helpful
arguments.
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5. Eck, C., Jarušek, J., Krbeč, M.: Unilateral Contact Problems: Variational Methods and Existence Theorems. Pure and

Applied Mathematics, vol. 270. Chapman/CRC Press, New York (2005)
6. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28. SIAM,

Philadelphia (1999)
7. Germain, P., Muller, P.: Introduction à la Mécanique des Milieux Continus. Masson, Paris (1980)
8. Han, W., Reddy, B.D.: On the finite element method for mixed variational inequalities arising in elastoplasticity. SIAM J.

Numer. Anal. 32(6), 1778–1807 (1995)
9. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Studies in Advanced

Mathematics. AMS, Providence (2002)
10. Haslinger, J., Hlavác̆ek, I., Nec̆as, J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P.G.,

Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. IV, pp. 313–485. North-Holland, Amsterdam (1996)
11. Hüeber, S., Matei, A., Wohlmuth, B.: Efficient algorithms for problems with friction. SIAM J. Sci. Comput. 29(1), 70–92

(2007)
12. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)
13. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods.

SIAM, Philadelphia (1988)
14. Laursen, T.: Computational Contact and Impact Mechanics. Springer, Berlin (2002)
15. Matei, A.: Weak solvability via Lagrange multipliers for contact problems involving multi-contact zones. Math. Mech.

Solids 21(7), 826–841 (2016)
16. Matei, A., Ciurcea, R.: Contact problems for nonlinearly elastic materials: weak solvability involving dual Lagrange

multipliers. ANZIAM J. 52, 160–178 (2010)
17. Reddy, B.D.: Mixed variational inequalities arising in elastoplasticity. Nonlinear Anal., Theory Methods Appl. 19(11),

1071–1089 (1992)
18. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655.

Springer, Berlin (2004)
19. Sofonea, M., Han, W., Shillor, M.: Analysis and Approximation of Contact Problems with Adhesion or Damage, 1st edn.

Chapman & Hall, London (2005)
20. Sofonea, M., Matei, A.: Variational inequalities with applications. A study of antiplane frictional contact problems. In:

Advances in Mechanics and Mathematics, vol. 18. Springer, New York (2009)
21. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Note

Series, vol. 398. Cambridge University Press, Cambridge (2012)
22. Wohlmuth, B.: Discretization Methods and Iterative Solvers Based on Domain Decomposition. In Lecture Notes in

Computational Science and Engineering, vol. 17. Springer, Berlin (2001)
23. Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Heidelberg (2006)


	On a class of generalized saddle-point problems arising from contact mechanics
	Abstract
	MSC
	Keywords

	Introduction
	Auxiliary results
	Well-posedness results
	A convergence result
	Examples
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Publisher's Note
	References


