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Abstract
This work establishes the existence of a weak solution to a new model for the process
of debonding of two elastic 2D-bars caused by humidity and vibrations. A version of
the model was first presented in the PCM-CMM-2019 conference in Krakow, Poland,
and was published in (Shillor in J. Theor. Appl. Mech. 58(2): 295–305 2020). The
existence of a weak solution is proved by regularizing the problem and then setting it
in an abstract form that allows the use of tools for pseudo-differential operators and a
fixed point theorem. Questions of further analysis of the solutions, effective numerical
methods and simulations, as well as possible controls, are unresolved, yet.
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1 Introduction
This work establishes the existence of a weak solution to a system of partial differentia
equations that models the process of debonding, caused by humidity and vibrations, of
two elastic 2D-bars.

In many industrial settings, in transportation and everyday life, metallic plates are usu-
ally joined by welding. However, when the plates are made of different or nonmetallic ma-
terials, they have to be joined with screws or adhesively, or both. This is the case in planes,
cars, and other vehicles, where increasingly more parts are made of plastics. One of the is-
sues with car plates or other parts that are glued together is the process of debonding, that
is, the process by which the adhesive is loosing its strength over time. This is noticeable in
places where there is high humidity and considerable vibrations (driving off the road) and
also large variations in temperature. The debonding of plates that are adhesively bonded
too often has negative or even catastrophic consequences.

There is a very large mechanical engineering literature on debonding, for obvious rea-
sons, see, e.g., [12, 15, 17] and the references therein. There is, also, a growing mathe-
matical literature dealing with models of adhesive contact that include the processes of
debonding, because of their relations to contact processes. There exist many publications
in the Mathematical Theory of Contact Mechanics (MTCM) [6–8, 11, 16, 20, 22] that
deal with contact processes with adhesion, and the host of references therein, and note
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that these references are only a tip of the iceberg. More specific references that deal with
adhesive bonding are [2–4, 8, 22], and the references therein.

This work is based, in part, on the plenary lecture presented by MS in the PCM-CMM-
2019 conference held in Krakow, Poland, 8–12 September 2019, parts of which were pub-
lished in [19]. It is the continuation of the work [13], where the process of debonding of
two linear beams was modeled, analyzed, and simulated. Additional information and ref-
erences can be found in [13, 18].

Here, we extend the model in [13] to the setting where two 2D bars are adhesively joined.
The model for the 2D bar was introduced in [9, 10] and was rigorously derived in [23],
where the existence of the weak solution to the problem of quasistatic contact was es-
tablished. Numerical simulations of quasistatic contact between a 2D bar and a reactive
foundation can be found in [1], and additional information in [1, 19, 23]. Starting with a
3D thermoelastic system and using symmetry and the smallness of the thickness, relative
to the other dimensions, a cross-section of a thermoelastic plate is obtained. The interest
in the new bar system lies in the fact that while the horizontal displacement field depends
on x and y, the vertical displacement depends only on x, which simplifies the mathematical
structure, making it 1.5D system, leading to more transparent contact conditions. It also
makes it more interesting, since it forms a rather unusual mathematical problem. Indeed,
it consists of two 2D partial differential equations (PDEs) for the horizontal displacements,
two for the temperatures, two one-dimensional PDEs for the motion of the central axes,
and two diffusion equations on the contact boundary. Since the bonding field β has to
satisfy 0 ≤ β ≤ 1, its evolution is modeled with a subdifferential set-inclusion on the seg-
ment where the bars are bonded. Thus, the model is highly nonlinear and nonsmooth, has
an unusual structure, and one cannot apply directly any of the usual theoretical tools to
analyze it. As a first step in its analysis, we establish the existence of a weak solution for
a version of the model that excludes thermal effects, thus, the two heat equations for the
temperature are omitted. The model is regularized, truncated and, once the necessary a
priori estimates are obtained, we pass to the regularization limit and obtain a weak solu-
tion. The uniqueness of the solution is unlikely, in view of the mathematical complexity of
the model.

The paper is structured as follows. The basic dynamic system, consisting of the motion
of the bonded two 2D-bars, is described in Sect. 2, following [19, 23], however, thermal
effects are excluded. This is an extension of the model that was introduced, analyzed, and
simulated in [13]. The proof of the existence of weak solutions for the model is provided
in Sect. 3. It is based on approximations, a priori estimates and a fixed point argument.
The further analysis of the model is of interest for future study.

2 The dynamics of two bonded 2D-bars
This section presents a highly nonlinear and nonsmooth system that models the dynamics
of two elastic 2D-bars that are bonded. However, here we take into account the effects of
mechanical vibrations and humidity on the debonding process. The setting is depicted in
Fig. 1.

We let u(x, y, t) denote the horizontal displacement of the 2D-bar; and using symmetry
and a simple assumption, the vertical displacement of the central horizontal axis w(x, t)
depends only on x. Thus, this is actually a “1.5D” system, since w depends only on x. Below,
we use the subscripts x, y, t to denote partial derivatives.
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Figure 1 Two 2D-bars in adhesive contact. The adhesive (red) occupies the interval l1 ≤ x ≤ l2 (y = 0) where
the functions β , the bonding field, and η, the humidity density function, are defined

The model we study describes the debonding process of two such 2D-bars, caused by
mechanical vibrations and humidity diffusion. Our main interest lies in the dynamics of
the bonding field β = β(x, t) that is defined on the contact surface, �B in Fig. 1(red).

The setting is depicted in Fig. 1. The top 2D-bar occupies the domain �1 = {0 < x < l2, 0 <
y < 2h} and the bottom 2D-bar occupies �2 = {l1 < x < L, –2h < y < 0}, where 0 < l1 < l2 < 1,
and, for the sake of simplicity, we scaled all the distances so that the length is L = 1. The
quantities with index 1 refer to the top bar and those with 2 to the bottom bar, thus for
i = 1, 2, we refer to bar �i. The horizontal displacements ui = ui(x, y, t) are defined on �i.
The vertical displacement of the central line w1 = w1(x, t) is defined on �1 ∩ {y = h}, and
w2 = w2(x, t) on �2 ∩ {y = –h}. We denote by ρi the 2D material density, Ei the Young
modulus, and Gi the shear modulus of bar i = 1, 2. These are positive mechanical, found
from measurements.

The debonding process takes place on the surface �B = {l1 < x < l2, y = 0} that is occupied
by the glue (red segment in Fig. 1), where the bonding field β = β(x, t) and the humidity
field η = η(x, t) are defined. We assume that there are no body forces acting in the system;
the vertical tractions p+ = p+(x, t) act on the top boundary of �1 while it is clamped on �D,
and free at x = l2 and on the bottom (0 < x < l1). Similarly, the vertical tractions p– = p–(x, t)
act on the bottom boundary of �2, it is free on x = l1, and on the top for l2 ≤ x < 1, and,
finally a traction p∗(t) acts at x = 1.

The bonding of the two bars is modeled by the bonding field β = β(x, t), which is defined
on �B. It represents the fraction of active surface bonds and has the character of a damage
variable (see, e.g., [2, 3, 8, 20]), namely, 0 ≤ β ≤ 1; indeed, when β = 1, all the adhesive
bonds at the point are active; when β = 0, all the bonds are severed; and when 0 < β < 1,
the fraction β are active bonds, which describes the decrease in the load carrying capacity
of the adhesive.

The debonding process on �B is controlled by the debonding source function �, which
depends on the bonding field, humidity, and the mechanical tractions. Mathematically, we
write it as

�(x, t) = �
(|u2 – u1|, (w1 – w2),β ,η

)
,

on �B. This function contains the information about the processes and must be deter-
mined in conjunction with experimental data, as was noted in [13], but in a simpler set-
ting. We assume that the debonding process also depends on diffusion as the field at a
point is affected by what happens in neighboring points.
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To take into account the constraints 0 ≤ β ≤ 1 and w2(x, t) + h ≤ w1(x, t) – h on �B (so
there is no interpenetration there), we proceed as follows. We let I[0,1](β) and I[0,∞)(r) be
the indicator functions of the intervals [0, 1] and [0,∞), with subdifferential ∂I[0,1](β) and
∂I[0,∞)(r), respectively.

To prevent the top bar from penetrating the lower bar, we add the term

(–1)i∂I[0,∞)
(
w1(x, t) – w2(x, t) – 2h

)

to the right-hand side of the equation of motion for wi, for i = 1, 2. This guarantees that
when w1(x, t) – w2(x, t) – 2h > 0, so there is a gap between the bars, this term vanishes.
When the top bar tries to interpenetrate the bottom bar, w1(x, t)–w2(x, t)–2h = 0, the term
generates enough resistance force to prevent the penetration. More precisely, there exists
a fictitious force ξ ∈ ∂I[0,∞)(w1(x, t) – w2(x, t) – 2h) such that ξ = 0 when w1(x, t) – w2(x, t) –
2h > 0, and when w1(x, t) – w2(x, t) – 2h = 0 then –ξ > 0 is pushing the top bar up, and
ξ < 0 pushing the bottom bar down, preventing penetration. We note that ξ need not be a
function, only a distribution, which complicates the mathematical analysis considerably.

The evolution equation of the bonding field, see, e.g., [8, 20], is assumed to have the form
of a constrained diffusion equation, or set-inclusion,

βt – kββxx + �
(|u2 – u1|, (w1 – w2),β ,η

) ∈ –∂I[0,1](β), (2.1)

β(x, 0) = β0(x) ∈ [0, 1],

where kβ is the bonding diffusion coefficient, and the subdifferential on the right-hand
side of (2.1) guarantees that 0 ≤ β ≤ 1.

Next, we assume that the humidity function evolves by nonlinear diffusion from the
edges (x = l1, y = 0) and (x = l2, y = 0), where the adhesive layer is exposed to the environ-
ment. The coefficient of diffusion D is assumed to depend on the bonding field, stress, and
humidity density in the adhesive layer. Thus,

ηt –
(
D

(|u2 – u1|, (w1 – w2),β ,η
)
ηx

)
x = 0, η(x, 0) = η0(x). (2.2)

The boundary conditions are

η(l1, t) = ηL, η(l2, t) = ηR, (2.3)

were ηL(t) and ηR(t) are given humidity densities at x = l1 and x = l2, respectively. In most
applications it is reasonable to assume that ηL = ηR = ηamb, where ηamb is the ambient hu-
midity density. However, these may be different and both varying with time. Also, 0 ≤ η0(x)
is the initial humidity density in the adhesive, which in practice is likely to be unknown.

The model for the debonding of two adhesively joined 2D-bars caused by vibrations and
humidity is the following.

Problem 1 Find the functions ui, defined on �i, i = 1, 2; the functions w1 defined on �1 ∩
{y = h} and w2 defined on �2 ∩ {y = –h}; and the functions β , η defined on �B, such that
the following equations and conditions hold for 0 < t ≤ T :

ρiuitt – Eiuixx – Giuiyy = 0, (2.4)
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2ρiwitt – Giwixx – (Ei – Gi)uixy

∈ (–1)i∂I[0,∞)
(
w1(x, t) – w2(x, t) – 2h

)
, (2.5)

where (x, y) ∈ �i, t ∈ [0, T];

βt – kββxx + �
(|u2 – u1|, (w1 – w2),β ,η

) ∈ –∂I[0,1](β), (2.6)

ηt –
(
D

(|u2 – u1|, (w1 – w2),β ,η
)
ηx

)
x = 0, η(x, 0) = η0(x). (2.7)

The boundary conditions for β and η are

βx(l1, t) = βx(l2, t) = 0, η(l1, t) = ηL, η(l2, t) = ηR, (2.8)

and the initial conditions

β(x, 0) = β0(x) ∈ [0, 1], η(x, 0) = η0(x). (2.9)

The balance of vertical and horizontal tractions on �B, due to the adhesive, σβv and σβh,
is assumed to be

σβv = βKβv(η)
(
w1(x, t) – w2(x, t) – 2h

)
, (2.10)

σβh = βKβh(η)
∣
∣u1(x, 0, t) – u2(x, 0, t)

∣
∣. (2.11)

Here, Kβv and Kβh are the adhesive stiffnesses, which depend on the humidity.
Next, the tractions acting on the system are

p+ on 0 ≤ x ≤ l2, y = 2h, (2.12)

p– on l1 ≤ x ≤ 1, y = –2h, (2.13)

p∗ on x = 1, –2h ≤ y ≤ 2h, (2.14)

and zero tractions everywhere else, except for �D, where

u1(0, y, t) = 0, w1(0, t) = 0. (2.15)

Finally, the initial conditions for ui, wi are

ui = ui0, uit = ui0, wi = wi0, wit = wi0. (2.16)

We note that the interesting aspects of the physics of the process enter via the debonding
source function � and the humidity diffusion coefficient D, both of which must be found
from experimental data in conjunction with numerical optimization. This is a major issue
in the applications of the model. However, even qualitatively simple forms of � and D may
provide very useful information in concrete applications.
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3 Existence
The system is highly nonlinear and nonsmooth, so it is unlikely to have any classical solu-
tions, so, we reformulate it and look for weak solutions. Moreover, generally, the solutions
are unlikely be unique, therefore, we deal only with proving existence. However, we replace
the the nonpenetration condition in (2.5), represented by the subdifferential for wi, which
physically is an idealized condition, with a more physically reasonable one. For the sake
of simplicity, we rescale the variables so that ρ1 = ρ2 = 1. The system is rather complex,
involving six dependent variables, and so we do not provide all the details in the proof of
existence. We just outline the approach, pointing out that existence can be proved in this
manner.

We first introduce the spaces and subspaces where we seek the various functions, others
being chosen by analogy. Let,

V1 =
{

u ∈ H1(�1) : u(0, ·) = 0
}

, V2 =
{

u ∈ H1(�2)
}

,

W1 =
{

w ∈ H1((0, l2) : w(0) = 0
)}

, W2 = H1(l1, 1),

Z1 = H1(�B), Z2 =
{
φ ∈ H1(�B) : φ = ηamb, x = l1, l2)

}

which are also the spaces of test functions. Here, H1 denotes the usual Sobolev space over
the relevant domain. We let H1 = L2(�1) and H2 = L2(�2).

We seek u1 and u2, for T > 0, in the respective spaces, L2(0, T ; V1) and L2((0, T); V2); w1

and w2 in L2((0, T); W1) and L2((0, T); W2); β in L2((0, T); Z1), and η in L2((0, T); Z2), where
for the sake of simplicity, we set ηL = ηR = ηamb = const > 0.

We start with the equation for u1, and let ψ ∈ V1. It follows from (2.4), using ψ as a test
function and integrations by part, that

–
∫

�1

(E1u1xx + G1u1yy)ψ dx dy

= –
∫

�1

∇ · (E1u1x, G1u1y)ψ dx dy

= –
∫

�1

∇ · (E1ψu1x, G1ψu1y) dx dy +
∫

�1

(E1ψxu1x + G1ψyu1y) dx dy

= –
∫

∂�1

(E1u1x, G1u1y) · nψ dS +
∫

�1

(E1ψxu1x + G1ψyu1y) dx dy

=
∫ l2

0
p+ψ(x, 2h) dx +

∫

�B

βKβv(η)
((

w1(x, t) – w2(x, t)
)

– 2h
)
ψ(x, 0) dx

+
∫

�1

(E1ψxu1x + G1ψyu1y) dx dy.

To write this equality as an abstract equation, we define the operator L1 by

〈L1u,ψ〉 =
∫

�1

(E1ψxu1x + G1ψyu1y) dx dy,
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and note that it is linear, coercive, and bounded as a map from V1 to V ′
1. Next, let B1 be a

Lipschitz function, given by

〈
B1(w1, w2,η,β),ψ

〉
=

∫ l2

0
p+ψ(x, 2h) dx

+
∫

�B

βKβv(η)
((

w1(x, t) – w2(x, t)
)

– 2h
)
ψ(x, 0) dx.

Therefore, we write the equation for u1, see (2.4) (i = 1), in abstract form as

u′′
1 + L1u1 = B1(w1, w2,η,β), u1(0) = u10 ∈ V1, u′

1(0) = u11 ∈ H . (3.1)

Here, the prime denotes a weak time derivative.
The same reasoning applies to u2, see (2.4) (i = 2), with ψ ∈ V2, so we let

〈L2u,ψ〉 =
∫

�2

(E2ψxu2x + G2ψyu2y) dx dy,

and note again that it is linear, coercive (up to a constant), and bounded as a map from V2

to V ′
2. Next, let B2 be a Lipschitz function, given by

〈
B2(w1, w2,η,β),ψ

〉
= –

∫ 1

l1
p–ψ(x, –2h) dx +

∫ 0

–2h
p∗ψ(1, y) dy

–
∫

�B

βKβv(η)
((

w1(x, t) – w2(x, t)
)

– 2h
)
ψ(x, 0) dx.

Then, the abstract form of (2.4) (i = 2) is

u′′
2 + L2u2 = B2(w1, w2,η,β), u2(0) = u20 ∈ V2, u′

2(0) = u21 ∈ H . (3.2)

We note that, thanks to the compact embedding theorems in Sobolev spaces, if
win → wi in L2(0, T ; Wi) and w′

in is bounded in L2(0, T ; W ′
i ), one may conclude that

B(w1n, w2n, θ1n) → B(w1, w2, θ1) in L2(0, T ; V ′
1).

We turn to the equations for w1 and w2. Since the Signorini condition of perfect nonpen-
etration enters as a body force into the equations, rather than as a boundary condition, the
standard methods used previously, do not apply. This may reflect the fact that such a ficti-
tious perfect force does not make sense physically and, indeed, there is no such thing as a
perfectly rigid body. Therefore, we replace it with a more physically realistic condition. To
that end, we introduce the function R such that R(s) = 0 if s ≥ 0 and R(s) = s if s < 0. Then,
we replace ∂I[0,∞)(s) with 1

ε
R(s), assuming that 0 < ε 
 1. Thus, we allow some interpen-

etration, but penalize it heavily. Then we replace the term (w1 – w2), which originally is
nonnegative, with |w1 – w2|, which is nonnegative.

To proceed, we multiply (2.5) (i = 1) with ψ ∈ W1 such that ψ(l2) = 0, integrate over
�1, use integration by parts, note that ψ and w1 do not depend on y, and use algebraic
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manipulations to obtain

4h
∫ l2

0
w′′

1ψ dx + 2h
∫ l2

0
G1w1xψx dx +

∫ l2

0
(E1 – G1)

(
u1(x, 2h) – u1(x, 0)

)
ψx dx

+
2h
ε

∫ l2

0
R
(
w1(x, t) – w2(x, t) – 2h

)
ψ dx = 0.

Here, we used the fact that ψ(l2) = 0, hence,

∫

�1

u1xyψ dx dy = –
∫ l2

0

(
u1(x, 2h) – u1(x, 0)

)
ψx dx.

This is an important observation because in the weak solutions uxy is not well defined. We
define the operators L̂1 and B̂1 by

〈̂L1w1,ψ〉 =
1
2

∫ l2

0
G1w1xψx dx,

〈
B̂1(u1, w1, w2),ψ

〉
=

1
4h

∫ l2

0
(E1 – G1)

(
u1(x, 2h) – u1(x, 0)

)
ψx dx.

Thus, the abstract formulation of (2.5) (i = 1) is

w′′
1 + L̂1w1 +

1
ε

R
(
w1(x, t) – w2(x, t) – 2h

)
= B̂1(u1, w1, w2). (3.3)

Similarly for (2.5) (i = 2), using ψ ∈ W2, such that ψ(l1) = ψ(1) = 0, we define L̂2 and B̂2

by

〈̂L2w2,ψ〉 =
1
2

∫ 1

l1
G2w2xψx dx,

〈
B̂2(u2, w1, w2),ψ

〉
=

1
4h

∫ 1

l1
(E2 – G2)

(
u2(x, –2h) – u2(x, 0)

)
ψx dx.

Thus, the abstract formulation of (2.5) (i = 2) is

w′′
2 + L̂2w2 +

1
ε

R
(
w1(x, t) – w2(x, t) – 2h

)
= B̂2(u2, w1, w2). (3.4)

We note that the L̂i are coercive, bounded, and linear.
To complete the mechanical model, the initial conditions need to be added. We do it

below, when we discuss the smoothed mechanical problem.
Next, we consider the set-inclusion for the bonding field β ,

βt – kββxx + �
(|u2 – u1|, |w1 – w2|,β ,η

) ∈ –∂I[0,1](β),

with the initial condition β(x, 0) = β0(x), for x ∈ [l1, l2]. The boundary conditions are βx = 0.
Let ψ ∈ H1(l1, l2), we define the operator Lβ : H1(l1, l2) → H1(l1, l2)′ by

〈Lββ ,ψ〉 ≡ kβ

∫ l2

l1
βxψx dx = –kβ

∫ l2

l1
βxxψ dx,
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and note that the operator Lβ , is the subgradient of the function

φ(β) =

⎧
⎨

⎩

kβ

2
∫ l2

l1
β2

x dx, if β ∈ H1(l1, l2),

∞ if β ∈ L2(l1, l2) \ H1(l1, l2).

Next, multiplying the equation with ψ as a test function, and using integration by parts,
we obtain the weak form

β ′ + kβLββ + ∂I[0,1](β) � –�
(|u2 – u1|, |w1 – w2|,β ,η

)
, β(0) = β0. (3.5)

We assume that � is bounded and Lipschitz in all its variables. Also, we let H = L2(l1, l2).
We have the following preliminary result.

Proposition 2 Assume that � ∈ L2((0, T); L2(l1, l2)) and its arguments are sufficiently
smooth. Then, there exists a unique solution β ∈ L2(0, T ; H1(l1, l2)) of the problem

β ′ + kβLβ + ∂I[0,1](β) � �, (3.6)

with β(0) = β0 ∈ H1(l1, l2).
The solution satisfies β ′,β ∈ L2((0, T); H), Lβ ∈ L2((0, T); H), and β(t) ∈ (0, 1), for a.a. t.

Proof The proof is based on a sequence of approximations as follows. Let �(β) be a piece-
wise linear and decreasing function on (–∞,∞), with slope –1 for β < 0, equal to 0 on
[0, 1], and increasing with slope 1 for β > 1.

We consider the following sequence of approximate problems, which for n = 1, 2, 3, . . . ,
consists of finding a solution to

β ′
n + Lββn + n∂�(βn) = �, βn(0) = β0.

It follows from the theory of maximal monotone operators (see Brezis [5]) that for each n,
there exists a solution βn to the problem. This solution satisfies β ′

n ∈ L2((0, T) : L2(l1, l2))
and βnxx ∈ L2((0, T) : L2(l1, l2)). Multiplying both sides by β ′

n and integrating yields (H ≡
L2(l1, l2))

∫ t

0

∫ l2

l1

(
β ′

n
)2 dx ds +

kβ

2
∣∣βnx(t)

∣∣2
H + n

∫ l2

l1
�

(
βn(t)

)
dx

≤ C� +
1
2

∫ t

0

∫ l2

l1

(
β ′

n
)2 dx dt,

where C� is a positive constant that depends on �. Hence, we obtain the bound

1
2

∫ t

0

∣∣β ′
n
∣∣2
H ds +

kβ

2
∣∣βnx(t)

∣∣2
H + n

∫ l2

l1
�

(
βn(t)

)
dx ≤ C�.

Similarly, multiplying by βn and integrating yields

1
2
∣∣βn(t)

∣∣2
H ≤ C�(β0),
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where C�(β0) depends also on β0. Therefore, we find

1
2

∫ t

0

∣
∣β ′

n
∣
∣2
H ds +

kβ

2
∥
∥βn(t)

∥
∥2

H1 + n
∫ l2

l1
�

(
βn(t)

)
dx ≤ C�(β0).

Thus, there is a subsequence, still denoted by βn, such that

β ′
n → β ′ weakly in L2((0, T); H

)
,

βn → β strongly in C
(
[0, T]; H

)
,

βn → β weak ∗ in L∞(
(0, T); H1),

n∂�(βn) → ξ ∈ ∂I[0,1](β) weakly in L2((0, T); H
)
,

β(t) ∈ [0, 1] a.a. t.

Passing to the limit as n → ∞, we obtain the desired solution. However, we lose regularity
of β because of the subgradient term. The weak solution is unique because of monotonicity
considerations. �

We turn the equation for η (see (2.7))

ηt –
(
D

(|u2 – u1|, |w1 – w2|,β ,η
)
ηx

)
x = 0, η(x, 0) = η0(x),

with the boundary conditions (2.8), η(l1, t) = ηL, η(l2, t) = ηR. To obtain zero boundary
conditions, we let η̂ = η – ( x–l1

l2–l1
ηR + l2–x

l2–l1
ηL), and the equation in terms of η̂ has the form

η̂t –
(
D

(|u2 – u1|, |w1 – w2|,β , η̂
)
η̂x

)
x = �

(
x, |u2 – u1|, |w1 – w2|,β , η̂

)
,

η̂(x, 0) = η̂0(x).

Thus, without loss of generality, we assume that the initial-value problem has zero bound-
ary conditions, and the equation is replaced with

ηt –
(
D

(|u2 – u1|, |w1 – w2|,β ,η
)
ηx

)
x = �

(
t, x, |u2 – u1|, |w1 – w2|,β ,η

)
,

η(x, 0) = η̂0(x),

where η ∈ H1
0 (l1, l2), and the hat is omitted.

Again, we assume that D, � are Lipschitz continuous and bounded. Also, we assume that
D(·) ≥ δ > 0, so the diffusion coefficient does not vanish and thus the problem is nondegen-
erate. Assume, in addition, that the functions a, b ∈ L∞([l1, l2] × [0, T]), and a(t, x) ≥ δ > 0,
and define the operator A as

〈Aη,σ 〉 ≡
∫ T

0

∫ l2

l1
a(t, x)ηxσx dx dt.

Proposition 3 Under the above assumptions, if f ∈ L2((0, T) : H–1), there exists a unique
weak solution to the problem of finding η ∈ L2((0, T) : H1

0 (l1, l2)), such that

η′ + Aη = f , η(0) = η0.

Moreover, η ∈ L2((0, T) : H1
0 (l1, l2)), and η′ ∈ L2((0, T) : H–1).
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Proof This is a standard result since A is monotone, bounded, hemicontinuous, and coer-
cive as a map from L2((0, T) : H1

0 (l1, l2)) to its dual space. To include the dependence of D
on η, one can use the Schauder fixed point argument or to retard in time the functions on
which the diffusion coefficients depend and then passing to a limit using compactness. �

We conclude that the initial value problem for η has a weak solution.
We now revisit the mechanical system and modify it by adding viscosity, which acts as

smoothing operator of the solutions, and is needed for the a priori estimates below. The
modified system is

u′′
1 + γ K1u′

1 + L1u1 = B1(w1, w2),

u′′
2 + γ K2u′

2 + L2u1 = B2(w1, w2),

w′′
1 + γ K̂1w′

1 + L̂1w1 +
1
ε

R
(
w1(x, t) – w2(x, t) – 2h

)
= B̂1(θ1, w1, w2),

w′′
2 + +γ K̂2w′

2 + L̂2w2 +
1
ε

R
(
w2(x, t) – w1(x, t), +2h

)
= B̂2(θ2, w1, w2),

(3.7)

along with initial conditions. Here, γ is a small positive number, representing material
viscosity. Also, Ki, K̂i are suitable linear maps from an appropriate Sobolev space S to its
dual space S′, which ensure that u′

i and w′
i have two square integrable derivatives. This

Sobolev space is a closed subspace of H2(�i) such that uix = 0 on the boundary of Ii, and
is dense in Vi. Then, the Ki can be considered as Riesz maps from these new spaces to
their duals. We assume sufficient regularity on the initial conditions to justify all of the
following argument and, in particular, the initial data ui0 lie in S.

The regularized abstract form of the full model follows.

Problem 4 Find the functions ui, wi, η and β , (for i = 1, 2) such that

u′′
1 + γ K1u′

1 + L1u1 = B1(w1, w2),

u′′
2 + γ K2u′

2 + L2u1 = B2(w1, w2),

w′′
1 + γ K̂1w′

1 + L̂1w1 +
1
ε

R
(
w1(x, t) – w2(x, t) – 2h

)
= B̂1(w1, w2),

w′′
2 + +γ K̂2w′

2 + L̂2w2 +
1
ε

R
(
w2(x, t) – w1(x, t) + 2h

)
= B̂2(w1, w2),

ηt –
(
D

(|u2 – u1|, |w1 – w2|,β ,η
)
ηx

)
x = �

(
t, x, |u2 – u1|, |w1 – w2|,β ,η

)
,

β ′ + kβLββ + ∂I[0,1](β) � �
(|u2 – u1|, |w1 – w2|,β ,η

)
.

(3.8)

The initial conditions are:

ui(·, 0) = ui0, u′
i(·, 0) = vi0, wi(·, 0) = wi0,

w′
i(·, 0) = vwi0,η(x, 0) = η0(x),β(0) = β0, for i = 1, 2.

We have the following existence result.

Theorem 5 There exists a solution to the system (3.8), for each 0 ≤ γ .
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The theorem guarantees the existence of weak solutions to the equations for two bars
that are in adhesive contact, provided the subgradient acting on the bars for wi is replaced
with a penalization operator approximating the subgradient on �B. Thus, we allow for
γ = 0, so the materials are purely elastic. We only give a sketch of the proof since there are
many dependent variables and the considerations are mostly routine. The proof is based
on the following pair of compactness results, due to [14] and [21], and used below.

Theorem 6 Let q > 1 and let E ⊆ W ⊆ X where the injection map is continuous from W
to X and compact from E to W . Let S be defined by

SR =
{

u ∈ L2(a, b, E);
∥∥u(t)

∥∥
E ≤ R; t ∈ [a, b],

∥∥u(s) – u(t)
∥∥

X ≤ R|t – s|1/q}.

Then, SR is bounded in L∞(a, b, E) and, in addition, the functions are uniformly Hölder
continuous into X. Also, SR ⊆ C([a, b]; W ) and if {un} ⊆ SR, there exists a subsequence {unk }
which converges to a function u ∈ C([a, b]; W ), i.e.,

lim
k→∞

‖unk – u‖∞,W = 0.

The second result need is the following.

Theorem 7 Let E ⊆ W ⊆ X where the injection map is continuous from W to X and com-
pact from E to W . Let p ≥ 1, let q > 1, and define

S ≡ {
u ∈ Lp([a, b]; E

)
: for some C,

∥
∥u(t) – u(s)

∥
∥

X ≤ C|t – s|1/q

and ‖u‖Lp([a,b];E) ≤ R
}

.

Thus, S is bounded in Lp([a, b]; E) and Hölder continuous into X. Then, S is precompact in
Lp([a, b]; W ). This means that if {un}∞n=1 ⊆ S, it has a subsequence {unk } which converges in
Lp([a, b]; W ).

Proof We provide a sketch of the proof. It is based on time delay. We start with the first
two equations in (3.8) for ui when w1, w2 are known, so, we replace the time variable in
wi by the delayed time t – h and for t < h, we use the initial conditions. Therefore, w1, w2

are known on the time interval [t, t + h]. Similarly, in the second pair of equations for w1,
w2, we use w2(t – h) in the equation for w1, and w1(t – h) in the equation for w2. In the
equation for η, we replace t with t – h in all the variables in D(|u2 – u1|, |w1 – w2|,β ,η) and
use the the initial condition if t ≤ h. Next, we do the same in all the variables in �(|u2 –
u1|, |w1 – w2|,β ,η), �(t, x, |u2 – u1|, |w1 – w2|,β ,η). Then, routine considerations, tedious a
priori estimates, along with Proposition 2, yield a solution to this time delayed regularized
system of equations which has the property that uix, uiy vanish on the boundaries and wix,
too. Then, we obtain the necessary estimates on this solution by multiplying through by
–Eiuixx – Giuyy in the equations for ui and use integration by parts and the first term to
argue that there is an estimate on ‖uit(t)‖Vi which is independent of γ . A similar process
is applied to the equations for wi.

Next, having the estimates, we pass to the limit as h → 0, using Theorems 6, and 7,
and the embedding theorems in Sobolev space, and obtain a solution to the regularized
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system without the time delay, along with estimates on ‖uit(t)‖Vi , which are independent
of γ , and similar estimates for wi. Finally, we use these theorems to pass to the limit in a
subsequence for which γ → 0. This yields the existence of a weak solution to the original
problem in which the idealized subgradient term in the equations for wi are replaced with
a penalized version of this subgradient.

The passage to the limits is straightforward since the higher-order operators are linear
and the boundary operators and other functions which are not linear depend on lower-
order terms and can be estimated using compactness considerations in the two theo-
rems. �

We consider the uniqueness of the solution very unlikely, and so we skip it.
Now that the existence of weak solutions has been established, some questions of inter-

est for further research are:
• Perform additional analysis of the solutions, especially about their regularity.
• Construct an efficient and convergent algorithm for computer simulations.
• Find numerically a typical debonding process behavior.
• Study how the debonding depends on the excitation frequency.
• Get an estimate of the degree of debonding from the shift in the vibrations spectrum.
• Correlate the computer experiments with experimental data to find a possible

structure for the debonding source function � and the humidity diffusion
coefficient D.
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