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Abstract
We consider a nonlinear elasticity problem in a bounded domain, its boundary is
decomposed in three parts: lower, upper, and lateral. The displacement of the
substance, which is the unknown of the problem, is assumed to satisfy the
homogeneous Dirichlet boundary conditions on the upper part, and not
homogeneous one on the lateral part, while on the lower part, friction conditions are
considered. In addition, the problem is governed by a particular constitutive law of
elasticity system with a strongly nonlinear strain tensor. The functional framework
leads to using Sobolev spaces with variable exponents. The formulation of the
problem leads to a variational inequality, for which we prove the existence and
uniqueness of the solution of the associated variational problem.
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1 Introduction
The study of partial differential equation problems with variable exponents comes from
the theory of nonlinear elasticity, elastic mechanics, fluid dynamics, electrorheological
fluids, image processing, etc. (see [2, 15, 19]).

First, we introduce the notations needed in this article. Let � be a connected open
bounded domain ofRN (N = 3) with Lipschitz boundary �. To a given field of displacement
u, we associate a nonlinear deformation tensor E defined by

E
(∇u(x)

)
=

1
2
(T∇u + ∇u + T∇u∇u

)
,

whose components are

Eij
(∇u(x)

)
=

1
2

(
∂ui

∂xj
+

∂uj

∂xi
+

3∑

m=1

∂um

∂xi

∂um

∂xj

)

, 1 ≤ i, j ≤ 3. (1.1)
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The corresponding nonlinear constraints tensor σ (u) = (σij(u(x)))1≤i,j≤3 is then given by

σij
(
u(x)

)
=

3∑

k,h=1

aijkh(x)Ekh
(∇u(x)

)
, 1 ≤ i, j ≤ 3, (1.2)

which describes a nonlinear relation between the stress tensor (σij)i,j=1,2,3 and the defor-
mation tensor (Eij)i,j=1,2,3. The coefficients of elasticity aijkh (see [3]) satisfy the following
symmetry properties:

aijkh = ajikh = aijhk for all 1 ≤ i, j, k, h ≤ 3. (1.3)

The aim of this paper is to prove the existence and uniqueness of weak solution for the
following nonlinear problem, encountered in the theory of nonlinear elasticity [3]: Let w
be a bounded domain in R

2 situated in the plane of equation x3 = 0. We suppose that w
represents the lower surface of the domain occupied by the substance. The upper surface
�1 is defined by

{(
x′, x3

) ∈R
3, x3 = h

(
x′) and x′ ∈ w

}
,

where h is a function defined and bounded on w, that is to say, there exist h∗ and h∗ in R

such that

0 < h∗ ≤ h
(
x′)≤ h∗, ∀(x′, 0

)
= (x1, x2, 0) ∈ w.

We study the displacement of a substance in

� =
{(

x′, x3
) ∈R

3 :
(
x′, 0

) ∈ w and 0 < x3 < h
(
x′)}

the boundary ∂� = � = w ∪ �1 ∪ �L, where �L is the lateral surface of �.
The outer normal vector unitary on � is denoted by n = (n1, n2, n3). The outer normal

vector unitary on w is the vector (0, 0, –1).
Einstein’s convention, which consists of making the sum on the repeated indices, will be

used unless otherwise stated.
We define the normal and the tangential components un and ut = (ut1 , ut2 , ut3 ), of the

displacement variable u by

un = u.n = uini, uti = ui – unni, i and j = 1, 2, 3. (1.4)

For normal and tangential components σn and σt = (σt1 ,σt2 ,σt3 ) of the strain tensor, the
definition is as follows:

σn = (σ .n).n = σijninj, σti = σijnj – σnni i and j = 1, 2, 3. (1.5)

In this section, we are interested in the following equation:

–
∂

∂xj
σij
(
u(x)

)
= fi(x), i and j = 1, 2, 3, (1.6)

where f = (f1, f2, f3) represents a mass density of the external forces.
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For boundary conditions, it is assumed that

u = 0 on �1, (1.7)

u = g on �L, (1.8)

u.n = 0 on w. (1.9)

Condition (1.9) means that there is a tangential force exerted by the surface w on the sub-
stance. This tangential effort cannot exceed a certain threshold. The Tresca law assumes
that this threshold is fixed and known

|σt| ≤ K on w, (1.10)

where K is a given positive function called coefficient of friction and |σt| is the modulus
of the tangential constraint defined on w by (1.5).

As long as the tangential constraint σt has not reached the threshold
K , the substance moves with a given displacement s, which is the displacement of the

lower surface w (adhesion). When the threshold is reached, the substance and the surface
move tangentially relative to each other and there is proportional sliding. What can be
summarized as follows [8]:

|σt| < K ⇒ ut = s,
|σt|= K ⇒ ∃λ ≥ 0 such as ut = s – λσt ,

}

on w, (1.11)

where the positive real λ is unknown.
This problem models the behavior of a heterogeneous material with the above Tresca

friction free boundary condition. The consideration of this general material is in no way
restrictive. Indeed, we can apply this study to the most particular elastic materials, but this
particular case makes it easy to describe the different stages of this work. The tensor of
the constraints considered here is nonlinear and grouped, as special cases, some models
used in Ciarlet [3], Lions [12], and Dautray and Lions [4]. Let us cite by way of example
(see [3, 12]).

The complete problem (P0) is therefore to find the displacement field u, satisfying the
following equation and boundary conditions:

– ∂
∂xj

σij(u(x)) = fi(x) in �, 1 ≤ i ≤ 3,
σij(u(x)) =

∑3
k,h=1 aijkh(x)Ekh(∇u(x)) in �, 1 ≤ i, j ≤ 3,

Eij(∇u(x)) = 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
+
∑3

m=1
∂um
∂xi

∂um
∂xj

) in �, 1 ≤ i, j ≤ 3,
u = 0 on �1,
u = g on �L,
u.n = 0
|σt| < K ⇒ ut = s,
|σt|= K ⇒ ∃λ ≥ 0 such as ut = s – λσt ,

⎫
⎪⎬

⎪⎭
on w.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(P0)

We consider the functional framework of the considered problem (P0) using Lebesgue
and Sobolev spaces with variable exponents, see for example [6]. However, it is not neces-
sary to use this notion of Lebesgue and Sobolev spaces with variable exponents to study
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this problem. But we see it as a good generalization to the same study with Lebesgue and
Sobolev spaces with fixed exponents.

Several authors studied the system of elasticity with laws of particular behavior and using
various techniques in Sobolev spaces with constant exponents. For example, in [3] Ciarlet
used the implicit function theorem to show the existence and uniqueness of a solution; in
[4] Dautray and Lions studied the linear problem in a regular boundary domain; in [21]
Zoubai and Merouani studied the existence and uniqueness of the solutions of the nonlin-
ear elasticity system by topological degree; and in [13, 20] Zoubai and Merouani studied
the existence and uniqueness of the solution of Dirichlet’s and Neumann’s problems in
Sobolev spaces with variable exponents.

In Sect. 2, we recall some definitions and properties of Lebesgue and Sobolev spaces
with variable exponents (see for example [5–7, 10, 11] for the proofs and more details).
This notion of Sobolev spaces with variable exponents is also used in many works (see for
example [1, 9, 14]).

The need to work with the concept of Sobolev spaces with variable exponents is moti-
vated by the appearance of these spaces when modeling electrorheological and thermorhe-
ological fluids (see [16]) and in image restoration (see [2]).

In Sect. 3, using this notion of Sobolev spaces with variable exponents, we give the con-
venient functional framework for the considered problem (P0) to lead to variational prob-
lem 3.1. Then we prove in Theorem 3.2 the existence part by checking all hypotheses of
Theorem 8.1 page 251 in [12]. And finally, in Sect. 4, we obtain also the uniqueness of the
solution to variational problem (3.1).

2 Generalized Lebesgue and Sobolev spaces
Let � ⊂ R

N , let p(·) : � −→ [1, +∞] be a measurable function, called the variable expo-
nent. In the following, we adopt the following notations:

C+(�) =
{

p(·) ∈ C(�), p(x) ≥ 1 for all x ∈ �
}

,

and

p– = ess inf
x∈�

p(x), p+ = ess sup
x∈�

p(x).

We define the generalized Lebesgue space Lp(·)(�), also called Lebesgue space with vari-
able exponent, as the set of measurable functions u : � →R for which the convex modulus

ρp(·)(u) =
∫

�

∣∣u(x)
∣∣p(x) dx (2.1)

is finished.
For x ∈ �, p(x) > 1, the function of R+ → R given by Y �→ Y p(x) is convex, so also the

function u �→ ρp(·)(u).
Moreover, for 1 < p+ < +∞, we put the function

u �→ ‖u‖Lp(·)(�) = inf

{
λ > 0 : ρp(·)

(
u
λ

)
=
∫

�

∣∣
∣∣
u(x)
λ

∣∣
∣∣

p(x)

dx ≤ 1
}

. (2.2)
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Note that ‖u‖Lp(·)(�) = 0 implies that λ = 0, then we must have u = 0, so that this inf bound
is finite. For every α ∈R and u ∈ Lp(·)(�), using the convexity of ρp(·), we have

‖αu‖Lp(·)(�) = inf

{
λ > 0 : ρp(·)

(
αu + (1 – α)0

λ

)
≤ 1

}

= inf

{
λ > 0 : |α|ρp(·)

(
u
λ

)
≤ 1

}

= |α| inf

{
λ > 0 : ρp(·)

(
u
λ

)
≤ 1

}
= |α|‖u‖Lp(·)(�).

Also let u and v be in Lp(·)(�) such that

ρp(·)
(

u
‖u‖Lp(·)(�)

)
≤ 1 and ρp(·)

(
v

‖v‖Lp(·)(�)

)
≤ 1,

so

ρp(·)
(

u + v
‖u‖Lp(·)(�) + ‖v‖Lp(·)(�)

)
≤ ‖u‖Lp(·)(�)

‖u‖Lp(·)(�) + ‖v‖Lp(·)(�)
ρp(·)

(
u

‖u‖Lp(·)(�)

)

+
‖v‖Lp(·)(�)

‖u‖Lp(·)(�) + ‖v‖Lp(·)(�)
ρp(·)

(
v

‖v‖Lp(·)(�)

)
≤ 1.

So with λ = ‖u‖Lp(·)(�) + ‖v‖Lp(·)(�) we obtain

‖u + v‖Lp(·)(�) ≤ ‖u‖Lp(·)(�) + ‖v‖Lp(·)(�),

therefore the given function (2.2) defines a norm of Lp(·)(�), called the norm of Luxem-
bourg [5].

The space (Lp(·)(�),‖.‖Lp(·)(�)) is a Banach space and D(�) is dense in Lp(·)(�). Moreover,
if p– > 1, Lp(·)(�) is [6] uniformly convex and therefore reflexive, and its dual is isomorphic
to Lp′(·)(�) where 1

p(x) + 1
p′(x) = 1 for x ∈ �.

We also have the following inequality called Hölder type inequality:

∣
∣∣∣

∫

�

uv dx
∣
∣∣∣≤

(
1

p– +
1

p′–

)
‖u‖Lp(·)(�)‖v‖Lp′(·)(�) ≤ 2‖u‖Lp(·)(�)‖v‖Lp′(·)(�)

for all u ∈ Lp(·)(�) and all v ∈ Lp′(·)(�).
Now we define the generalized Sobolev space also called Sobolev space with variable

exponent

W 1,p(·)(�) =
{

u ∈ Lp(·)(�);∇u ∈ (
Lp(·)(�)

)N}

which endowed with the norm

u �→ ‖u‖W 1,p(·)(�) = ‖u‖Lp(·)(�) + ‖∇u‖Lp(·)(�)

is a Banach space.
The space W 1,p(·)

0 (�) denotes the completion of C∞
0 (�) in W 1,p(·)(�).
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Let p(·) ∈ C+(�), p– ≥ 1, and u ∈ W 1,p(·)
0 (�), we have the inequality of Poincaré

‖u‖Lp(·)(�) ≤ C‖∇u‖Lp(·)(�),

where C depends on p(·) and therefore on �.
In particular, see for example in [6] Theorem 8.1.6 page 249, see also [5, 7, 10, 11] that if

p– > 1, the space W 1,p(·)
0 (�) is a separable, reflexive Banach space, and uniformly convex.

Its dual space is denoted by W –1,p′(·)(�).
In the writing of variational formulations, the convex modulus ρp(·) appears, which leads

us to state the following results.

Proposition 2.1 ([11]) If un, u ∈ Lp(·)(�) and p+ < +∞, the following relationships are true:

(i) ‖u‖Lp(·)(�) < 1 (resp. = 1, > 1) ⇔ ρp(·)(u) < 1 (resp. = 1, > 1),

(ii) ‖u‖Lp(·)(�) > 1 ⇒ ‖u‖p–

Lp(·)(�) ≤ ρp(·)(u) ≤ ‖u‖p+

Lp(·)(�),

(iii) ‖u‖Lp(·)(�) < 1 ⇒ ‖u‖p+

Lp(·)(�) ≤ ρp(·)(u) ≤ ‖u‖p–

Lp(·)(�),

(iv) lim
n→∞ρp(·)(un) = 0 ⇔ lim

n→∞‖un‖Lp(·)(�) = 0.

Proposition 2.2 ([11]) If q ∈ C+(�) and if for all x ∈ �, q(x) < p∗(x), then the injection of
W 1,p(·)(�) into Lq(·)(�) is continuous and compact, where

p∗(x) =

⎧
⎨

⎩

Np(x)
N–p(x) if p(x) < N ,

∞ if p(x) ≥ N .

In particular, the injection of W 1,p(·)
0 (�) into Lp(·)(�) is continuous and compact.

Proposition 2.3 ([18]) We note

px(·) =

⎧
⎨

⎩

(N–1)p(x)
N–p(x) if p(x) < N ,

∞ if p(x) ≥ N .

Let q ∈ C+(∂�). If for all x ∈ ∂�, q(x) < p∂ (x), then the following injections of W 1,p(·)(�) ↪→
Lp∂ (·)(∂�) ↪→ Lq(·)(∂�) are continuous and compact.

Definition 2.1 The continuous function p : � → [1, +∞) satisfies Hölder’s continuity
condition if there is a constant C such that

∣∣p(x) – p(y)
∣∣≤ C

– log|x – y| ∀x, y ∈ � with |x – y| <
1
2

.

Remark 2.1 Although this condition of regularity is not necessary to define Lebesgue
and Sobolev spaces with variable exponents, it proves to be very useful for these spaces
to introduce some properties, such that C∞(�) is dense in W 1,p(·)(�) and W 1,p(·)

0 (�) =
W 1,p(·)(�) ∩ W 1,1

0 (�).
Moreover, if 1 < p– ≤ p+ < N , then the Sobolev injection of W 1,p(·)(�) into Lq(·)(�) re-

mains true for q(·) = p∗(·) (for more details, see [5]).
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Remark 2.2 According to the Poincaré inequality, it is obvious that the norms

u �→ ‖∇u‖Lp(·)(�) and u �→ ‖u‖W 1,p(·)(�)

are equivalent on W 1,p(·)
0 (�).

Remark 2.3 Let a ≥ 0, b ≥ 0 and let 1 ≤ p– ≤ p+ < +∞, then for all x ∈ �

(a + b)p(x) ≤ 2p+–1(ap(x) + bp(x)).

3 Variational problem and existence result
We introduce now the following functional space:

V (�) =
{
ϕ ∈ (

W 1,p(·)
�1∪�L

(�)
)3 ∩ (

W 2,p(·)(�)
)3 : ϕ · n = 0 on w

}

with

W 1,p(·)
�1∪�L

(�)=
{
ϕ ∈ W 1,p(·)(�) : ϕ = 0 on �1 ∪ �L,

}
,

‖.‖V (�) = ‖.‖(W 1,p(·)
�1∪�L

(�))3 .

G ∈ (
W 2,p(·)(�)

)3 such that G|�1∪�L = g and G · n = 0 on w. (3.1)

The variational formulation of problem (P0), see for example [8], leads to the following
variational problem.

Problem 3.1 Let f ∈ (Lp′(·)(�))3 and G satisfying (3.1) be given.
Find u such that u – G ∈ V (�) and satisfying the following variational inequality hold

3∑

i,j=1

3∑

k,h=1

∫

�

aijkh(x)Ekh(∇u)
∂

∂xj

(
ϕi – (ui – Gi)

)
dx′ dx3 + J(ϕ) – J(u – G)

≥
∫

�

f
(
ϕ – (u – G)

)
dx′ dx3, ∀ϕ ∈ V (�), (3.2)

where

J(ϕ) =
∫

w
K |ϕ – s|dx′.

To prove the existence of a solution to Problem 3.1, let us assume the following assump-
tions:

(H1) 3 < p(x) < +∞ for x ∈ �,

(H2) ∃α0 > 0; ∃β > 0 such that α0 ≤ aijkh(x) ≤ β a.e. in �, ∀i, j, k, h = 1 to 3

(H3) f = (f1, f2, f3) ∈ (
Lp′(·)(�)

)3, p′(x) =
p(x)

p(x) – 1
.
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Taking

Wp(·)
�1∪�L

(�) =
(
W 1,p(·)

�1∪�L
(�)

)3 ∩ (
W 2,p(·)(�)

)3,

we need the three properties of the operator Ekh in the following theorem.

Theorem 3.1 For u such that u – G ∈ Wp(·)
�1∪�L

(�), with for x ∈ � 3 < p(x) < +∞, the com-
ponents Ekh of the deformation tensor of St. Venant E satisfy the following properties:

1. (Continuity) Ekh is a continuous function, k, h = 1 to 3;
2. For all v ∈ W p(·)

�1∪�L
(�), we have Ekh(∇u) ∂vi

∂xj
∈ L1(�),∀i, j, k, h = 1 to 3;

3. (Coercivity) ∃α > 0; such as Ekh(ξ )ξ ≥ α|ξ |p(·),∀k, h = 1 to 3.

Proof First 1. For x ∈ �, p(x) > 3, and u, v ∈ W 1,p(·)(�), we have uv ∈ W 1,p(·)(�).
So, for v ∈ Wp(·)

�1∪�L
(�), we have

∂vh

∂xk
,
∂vk

∂xh
and

3∑

m=1

∂vm

∂xk

∂vm

∂xh
∈ W 1,p(·)(�),

thus Ehk(∇v) ∈ W 1,p(·)(�). Moreover, for p(x) > 3, we have the continuous injection of
W 1,p(·)(�) in C(�), thus 1. holds.

Second 2. For x ∈ �,

∣
∣Ehk(∇u)

∣
∣p(x) =

(
1
2

)p(x)
∣∣
∣∣
∣

(
∂uh

∂xk
+

∂uk

∂xh
+

3∑

m=1

∂um

∂xk

∂um

∂xh

)∣∣
∣∣
∣

p(x)

,

using Remark 2.3, we have

∣∣Ehk(∇u)
∣∣p(x) ≤

(
1
2

)p(x)

× 2p+–1

(∣
∣∣
∣
∂uh

∂xk
+

∂uk

∂xh

∣
∣∣
∣

p(x)

+

∣∣∣
∣∣

3∑

m=1

∂um

∂xk

∂um

∂xh

∣∣∣
∣∣

p(x))

.

Using again Remark 2.3, we obtain

∣
∣∣∣
∂uh

∂xk
+

∂uk

∂xh

∣
∣∣∣

p(x)

≤ 2p+–1
(∣∣∣∣

∂uh

∂xk

∣
∣∣∣

p(x)

+
∣
∣∣∣
∂uk

∂xh

∣
∣∣∣

p(x))
,

thus Ehk(∇u) ∈ Lp(·)(�) for h, k = 1 to 3. As p(x) > p′(x), as soon as p(x) > 3 and � is
bounded, we get Ehk(∇u) ∈ Lp′(·)(�) for h, k = 1 to 3.

Thus, for v ∈ W p(·)(�), we have ∂vi
∂xj

∈ Lp(·)(�) for i, j = 1 to 3. Hence, by the Hölder in-
equality, we obtain that 2. holds. The third 3. property comes from [17]. �

Theorem 3.2 Let given f ∈ (Lp′(·)(�))3, G satisfying (3.1), and the hypotheses (H1) to (H3)
hold. Then there exists a solution u to Problem 3.1.

Proof For the existence part, we apply Theorem 8.5 page 251 in [12] and the first three
properties of Ekh cited in Theorem 3.1. First, we rewrite variational inequality (3.2) in the
form of this Theorem 8.5 page 251 in [12].
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• As we see for example in [6] Theorem 8.1.6 page 249, (W 1,p(·)
�1∪�L

(�))3 ∩ (W 2,p(·)(�))3 is
a separable and reflexive Banach space, then its closed subspace V (�) is also a
separable and reflexive Banach space.

• The application V (�) →R defined by

ϕ �→
3∑

i,j=1

3∑

k,h=1

∫

�

aijkh(x)Ekh(∇u)
∂ϕi

∂xj
dx′ dx3

is linear and continuous, so it is an element of V ′(�). We note by T(u – G) this
application, so we have

〈
T(u – G),ϕ

〉
V ′(�),V (�) =

3∑

i,j=1

3∑

k,h=1

∫

�

aijkh(x)Ekh(∇u)
∂ϕi

∂xj
dx′ dx3.

• Similarly, we have the application V (�) → R, which associates

ϕ �→
∫

�

f ϕ dx′ dx3

is linear and continuous, so is an element V ′(�). We note by f this application, so we
have

〈f ,ϕ〉V ′(�),V (�) =
∫

�

f ϕ dx′ dx3,

therefore, problem (3.2) becomes

〈
T(u – G) – f ,ϕ – (u – G)

〉
V ′(�),V (�) + J(ϕ) – J(u – G) ≥ 0, ∀ϕ ∈ V (�),

with

J(ϕ) =
∫

w
K |ϕ – s|dx′.

• We check now that the operator T is pseudo-monotonic.
a) Let u be bounded in V (�), we have

∥∥T(u)
∥∥

V ′(�) = sup
‖ϕ‖V (�)=1
ϕ∈V (�)

∣∣〈T(u),ϕ
〉∣∣

= sup
‖ϕ‖V (�)=1
ϕ∈V (�)

∣
∣∣
∣∣

3∑

i,j=1

3∑

k,h=1

∫

�

aijkh(x)Ekh(∇u)
∂ϕi

∂xj
dx′ dx3

∣
∣∣
∣∣

≤ sup
‖ϕ‖V (�)=1
ϕ∈V (�)

3∑

i,j=1

3∑

k,h=1

∣∣
∣∣

∫

�

aijkh(x)Ekh(∇u)
∂ϕi

∂xj
dx′ dx3

∣∣
∣∣.

Let u ∈ V (�), by Remark 2.3 we get Ekh(∇u) ∈ Lp(·)(�), and as p(x) > p′(x), as soon
as p(x) > 3 and � bounded, we have

Ekh(∇u) ∈ Lp′(·)(�) ∀1 ≤ k, h,≤ 3. (3.3)
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Using now hypothesis (H2) and the Hölder inequality, with (3.3) we obtain

∥∥T(u)
∥∥

V ′(�) ≤ 2β sup
‖ϕ‖V (�)=1
ϕ∈V (�)

3∑

i,j=1

3∑

k,h=1

∥∥Ekh(∇u)
∥∥

Lp′(·)(�)

∥∥∥
∥
∂ϕi

∂xj

∥∥∥
∥

Lp(·)(�)

≤ 6β sup
‖ϕ‖V (�)=1
ϕ∈V (�)

3∑

i=1

3∑

k,h=1

∥∥Ekh(∇u)
∥∥

Lp′(·)(�)‖ϕi‖W 1,p(·)(�)

≤ 18β sup
‖ϕ‖V (�)=1
ϕ∈V (�)

3∑

k,h=1

∥∥Ekh(∇u)
∥∥

Lp′(·)(�)‖ϕ‖(W 1,p(·)(�))3

≤ 18β sup
‖ϕ‖V (�)=1
ϕ∈V (�)

3∑

k,h=1

∥
∥Ekh(∇u)

∥
∥

Lp′(·)(�)‖ϕ‖V (�)

≤ 18β

3∑

k,h=1

∥
∥Ekh(∇u)

∥
∥

Lp′(·)(�).

From (3.3) and (2.1) we get

∫

�

∣∣Ekh(∇u)
∣∣p′(x) dx = ρp′(·)

(
Ekh(∇u)

)
< ∞, ∀1 ≤ h, k ≤ 3,

and from (ii)–(iii) of Proposition 2.1 we have

min
{∥∥Ekh(∇u)

∥∥p′–

Lp′(·)(�) ,
∥∥Ekh(∇u)

∥∥p′+

Lp′(·)(�)

}≤ ρp′(·)
(
Ekh(∇u)

)
< ∞.

For all h and all k ∈ {1, 2, 3}, we get that ‖Ekh‖Lp′(·)(�) is bounded for all h and all
k ∈ {1, 2, 3}, consequently ‖T(u)‖V ′(�) is bounded.

b) Let u, v, w ∈ V (�) and λ ∈R, we check that the application of R in R:
λ �→ 〈T(u + λv), w〉 is continuous. For this, let us consider {λn} to be a sequence of R
that converges to λ. Let us denote

Fn(x) =
3∑

i,j=1

3∑

k,h=1

aijkh(x)Ekh(∇u + λn∇v)
∂wi

∂xj

and

F (x) =
3∑

i,j=1

3∑

k,h=1

aijkh(x)Ekh(∇u + λ∇v)
∂wi

∂xj
.

The Ekh being continuous, we therefore have, for all h and all k ∈ {1, 2, 3},

Fn(x) =
3∑

i,j=1

3∑

k,h=1

aijkh(x)Ekh(∇u + λn∇v)
∂wi

∂xj
converges to

3∑

i,j=1

3∑

k,h=1

aijkh(x)Ekh(∇u + λ∇v)
∂wi

∂xj
a.e. in �,
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and we have also with (H2) and the definition of Ekh:

∣∣
∣∣
∣

3∑

i,j=1

3∑

k,h=1

aijkh(x)Ekh(∇u + λn∇v)
∂wi

∂xj

∣∣
∣∣
∣

≤
3∑

i,j=1

3∑

k,h=1

β
∣
∣Ekh(∇u + λn∇v)

∣
∣
∣∣
∣∣
∂wi

∂xj

∣∣
∣∣

≤ 1
2
β

3∑

i,j=1

3∑

k,h=1

(∣∣
∣∣
∂uh

∂xk
+ λn

∂vh

∂xk

∣∣
∣∣ +

∣∣
∣∣
∂uk

∂xh
+ λn

∂vk

∂xh

∣∣
∣∣

+
3∑

m=1

∣
∣∣∣
∂um

∂xk
+ λn

∂vm

∂xk

∣
∣∣∣

∣
∣∣∣
∂um

∂xh
+ λn

∂vm

∂xh

∣
∣∣∣

)∣
∣∣∣
∂wi

∂xj

∣
∣∣∣.

As the sequence (λn)n∈N is convergent in R, then ∃m ∈ R : |λn| ≤ m, so

∣
∣Fn(x)

∣
∣≤ 1

2
β

3∑

i,j=1

3∑

k,h=1

((∣∣
∣∣
∂uh

∂xk

∣∣
∣∣ + m

∣∣
∣∣
∂vh

∂xk

∣∣
∣∣

)
+
(∣∣
∣∣
∂uk

∂xh

∣∣
∣∣ + m

∣∣
∣∣
∂vk

∂xh

∣∣
∣∣

)

+
3∑

m=1

(∣∣∣
∣
∂um

∂xk

∣
∣∣
∣ + m

∣
∣∣
∣
∂vm

∂xk

∣
∣∣
∣

)(∣∣∣
∣
∂um

∂xh

∣
∣∣
∣ + m

∣
∣∣
∣
∂vm

∂xh

∣
∣∣
∣

))∣∣∣
∣
∂wi

∂xj

∣
∣∣
∣.

We define now the function L by

L(x) =
1
2
β

3∑

i,j=1

3∑

k,h=1

((∣∣∣∣
∂uh

∂xk

∣
∣∣∣ + m

∣
∣∣∣
∂vh

∂xk

∣
∣∣∣

)
+
(∣∣∣∣

∂uk

∂xh

∣
∣∣∣ + m

∣
∣∣∣
∂vk

∂xh

∣
∣∣∣

)

+
3∑

m=1

(∣∣∣
∣
∂um

∂xk

∣
∣∣
∣ + m

∣
∣∣
∣
∂vm

∂xk

∣
∣∣
∣

)(∣∣∣
∣
∂um

∂xh

∣
∣∣
∣ + m

∣
∣∣
∣
∂vm

∂xh

∣
∣∣
∣

))∣∣∣
∣
∂wi

∂xj

∣
∣∣
∣.

We obtain that L ∈ Lp(·)(�).
Thus from Lebesgue’s dominated convergence theorem, we deduce that

〈
T(u + λnv), w

〉−→ 〈
T(u + λv), w

〉
,

which shows that T is hemi-continuous.
c) By hypothesis (H2) and the monotony of Ekh, we have

〈
T(u) – T(v), u – v

〉
=

3∑

i,j=1

3∑

k,h=1

∫

�

aijkh(x)
(
Ekh(∇u)

– Ekh(∇v)
)
(

∂ui

∂xj
–

∂vi

∂xj

)
dx′ dx3 ≥ 0,

so T is monotonous. As it is also bounded and hemi-continuous, then T is
pseudo-monotonic.

• The functional J is proper, convex, and lower semi-continuous on V (�). Indeed, let u
and v be two elements of V (�), and λ ∈ [0, 1], we have
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d) J is convex, indeed

J
(
λu + (1 – λ)v

)

=
∫

w
K
(∣∣λu + (1 – λ)v – s

∣∣)dx′s|) dx′ =
∫

w
K(
∣∣λ(u – s) + (1 – λ)(v – s)

∣∣dx′

≤
∫

w
K
(∣∣λ(u – s)

∣∣)dx′ +
∫

w
K
(∣∣(1 – λ)(v – s)

∣∣)dx′

≤ λ

∫

w
K |u – s|dx′ + (1 – λ)

∫

w
K |v – s|dx′ = λJ(u) + (1 – λ)J(v).

e) J is lower semi-continuous, indeed

∣
∣J(u) – J(v)

∣
∣ =

∣∣
∣∣

∫

w
K
(|u – s| – |v – s|)dx′

∣∣
∣∣||dx′ ≤

∫

w
|K ||u – v|dx′

≤ ‖K‖L∞(w)|w| 1
p(·) ‖u – v‖(Lp′(·)(w))2

w| 1
p(x) C‖u – v‖(W 1,p(x)(�))3 ≤ C‖K‖L∞(w)|w| 1

p(x) ‖u – v‖V (�),

where C is the constant of the continuous injection from V (�) on (Lp′(·)(w))2. Thus, J is
Lipschitzian, so it is fortiori lower semi-continuous on V (�).

We can now apply Theorem 8.5 page 251 in [12] to obtain the existence of u such that
u – G in V (�) satisfying variational inequality (3.2). �

4 On the uniqueness of the result
Theorem 4.1 Let the functions

∂ui

∂xj
: � −→

]
–∞,

1
3

]
, x −→ ∂ui

∂xj
(x) for i, j = 1 to 3;

then the operators

Eij(·) of Wp(·)(�) in
(
Wp(·)(�)

)′, i, j = 1 to 3,

are monotonous.

Proof We have the following result in [13]. We give also the proof for the convenience of
the readers. Using the rule 1

2 (a2 + b2) ≥ –ab, with a = ∂um
∂xi

and b = ∂um
∂xj

, we have

Eij(u) ≥ 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
–

1
4

3∑

m=1

((
∂um

∂xi

)2

+
(

∂um

∂xj

)2)

=
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
–

1
4

( 3∑

m=1

(
∂um

∂xi

)2

+
3∑

m=1

(
∂um

∂xj

)2
)

, i, j = 1 to 3,



Boukrouche et al. Fixed Point Theory Algorithms Sci Eng         (2022) 2022:14 Page 13 of 16

and consequently, ∀i, j = 1 to 3,

〈
Eij(u) – Eij(v), u – v

〉≥ 1
2

〈(
∂ui

∂xj
+

∂uj

∂xi

)
–
(

∂vi

∂xj
+

∂vj

∂xi

)
, u – v

〉

–
1
4

〈( 3∑

m=1

(
∂um

∂xi

)2

+
3∑

m=1

(
∂um

∂xj

)2
)

–

( 3∑

m=1

(
∂vm

∂xi

)2

+
3∑

m=1

(
∂vm

∂xj

)2
)

, u – v

〉

. (4.1)

To conclude, we must prove that the second member of (4.1) is positive. For that, we sep-
arate the second member of (4.1) in linear and nonlinear parts.

Let the linear function �
Jx−→R

3 ×R
3

Aij−→R be defined by

(Aij ◦ Jx)(x) = Aij

(
∂u
∂xi

(x),
∂u
∂xj

(x)
)

=
1
2

(
∂ui

∂xj
(x) +

∂uj

∂xi
(x)

)
, i, j = 1 to 3,

and the nonlinear function �
Jx−→ R

3 ×R
3

Bij−→ R be defined by

(Bij ◦ Jx)(x) = Bij

(
∂u
∂xi

(x),
∂u
∂xj

(x)
)

= –
1
4

( 3∑

j=1

(
∂uj

∂xi
(x)

)2

+
3∑

i=1

(
∂ui

∂xj
(x)

)2
)

.

The functions Aij and Bij are continuous for p(·) > 3. It remains to show that, ∀i, j = 1 to 3,
the Aij are increasing on R, the Bij are increasing on R

–, and the Aij + Bij are increasing on
] – ∞, 1

3 ].
1. Let us show that the Aij are increasing: let the function

�
Jx−→R

∂ui
∂xj−→ R be defined by

(
∂ui

∂xj
◦ Jx

)
(x) =

∂ui

∂xj
(x), i, j = 1 to 3.

We note

∂u
∂xj

(x) = tj and
∂u
∂xi

(x) = τi

and

∂ui

∂xj
(x) = tij and

∂uj

∂xi
(x) = τji.

The function t �−→ 1
2 t of R −→R, being increasing on R, we have

1
2

〈
∂ui

∂xj
–

∂vi

∂xj
,
∂ui

∂xj
–

∂vi

∂xj

〉
=

1
2

∫

�

(
∂ui

∂xj
–

∂vi

∂xj

)(
∂ui

∂xj
–

∂vi

∂xj

)
dx

=
1
2

∥∥
∥∥
∂ui

∂xj
–

∂vi

∂xj

∥∥
∥∥

2

L2(�)
≥ 0.

Therefore, the Aij are increasing.



Boukrouche et al. Fixed Point Theory Algorithms Sci Eng         (2022) 2022:14 Page 14 of 16

2. Let us show that the Bij are increasing: let the function

�
Jx−→R

3 ×R
3 Bij→R

be defined by

(Bij ◦ Jx)(x) = Bij(tj, τi) = –
1
4

( 3∑

j=1

(
∂uj

∂xi
(x)

)2

+
3∑

i=1

(
∂ui

∂xj
(x)

)2
)

, i, j = 1 to 3.

As in point 1., we note

tij =
∂ui

∂xj
(x), τji =

∂uj

∂xi
(x), ∀i, j = 1 to 3,

Bij(tj, τi) = –
1
4

( 3∑

j=1

(
∂uj

∂xi
(x)

)2

+
3∑

i=1

(
∂ui

∂xj
(x)

)2
)

,

so

Bij(tj, τi) = –
1
4

( 3∑

i=1

t2
ij +

3∑

j=1

τ 2
ji

)

≥ –
1
4

(
6 × Max

1≤i,j≤3

(
t2
ij, τ

2
ji
))

= –
3
2
κ

2.

For the function f (κ) = – 3
2κ

2 being continuous and increasing on R
–, we deduce that the

Bij are increasing on R
–.

3. We show that the Aij + Bij are increasing: the proofs of points 1. and 2. imply that
the sum Aij + Bij, ∀i, j = 1 to 3, corresponds to the sum of the two functions f (κ) + g(κ) =
κ – 3

2κ
2, R −→ R, obviously continuous and increasing on ] – ∞, 1

3 ], as the derivative of
the convex function h(x) = 1

2 x2 – 1
2 x3 on ] – ∞, 1

3 ]. So, (4.1) is verified, and consequently

〈
Eij(u) – Eij(v), u – v

〉≥ 〈
(Aij + Bij)(u) – (Aij + Bij)(v), u – v

〉≥ 0, ∀i, j = 1 to 3.

In other words, the Eij(u), i, j = 1 to 3, are monotonous Wp(·)(�) in (Wp(·)(�))′, i, j = 1
to 3. �

Theorem 4.2 Variational inequality (3.2) has a unique solution satisfying Theorem 3.2.

Proof Suppose now that variational inequality (3.2) has two solutions u1, u2 satisfying
Theorem 3.2, and (Ekh(ξ ) – Ekh(η))(ξij – ηij) = 0 if and only if ξ = η. So we have

3∑

i,j=1

3∑

k,h=1

∫

�

aijkh(x)Ekh(∇u1)
∂

∂xj

(
ϕi – (u1i – Gi)

)
dx′ dx3

+
∫

w
K
(|ϕ – s| –

∣
∣(u1 – G) – s

∣
∣)dx′

≥
∫

�

f
(
ϕ – (u1 – G)

)
dx′ dx3, ∀ϕ ∈ V (�) (4.2)
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and

3∑

i,j=1

3∑

k,h=1

∫

�

aijkh(x)Ekh(∇u2)
∂

∂xj

(
ϕi – (u2i – Gi)

)
dx′ dx3

+
∫

w
K
(|ϕ – s| –

∣∣(u2 – G) – s
∣∣)dx′

≥
∫

�

f
(
ϕ – (u2 – G)

)
dx′ dx3, ∀ϕ ∈ V (�). (4.3)

We take ϕ = u2 – G in (4.2) and ϕ = u1 – G in (4.3), so

3∑

i,j=1

3∑

k,h=1

∫

�

aijkh(x)
(
Ekh(∇u1) – Ekh(∇u2)

) ∂

∂xj

(
(u1i – Gi) – (u2i – Gi)

)≤ 0,

but according to Theorem 4.1 on the monotony of Ekh, we have

3∑

i,j=1

3∑

k,h=1

∫

�

aijkh(x)
(
Ekh(∇u1) – Ekh(∇u2)

) ∂

∂xj
(u1i – u2i) ≥ 0,

so

3∑

i,j=1

3∑

k,h=1

∫

�

aijkh(x)
(
Ekh(∇u1) – Ekh(∇u2)

) ∂

∂xj
(u1i – u2i) = 0.

Thus ∇u1 = ∇u2 in (Lp(·)(�))9, and by the inequality of Poincaré, we get u1 = u2 in
(Lp(·)(�))3, and so u1 = u2 dans (W 1,p(·)(�))3. �
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