Boukrouche et al. Fixed Point Theory Algorithms Sci Eng (2022) 2022:14 Fixed Point Theory and AIgorithms
https://doi.org/10.1186/513663-022-00724-9 for Sciences and Engineering

RESEARCH Open Access

Check for
updates

On a nonlinear elasticity problem with
friction and Sobolev spaces with variable
exponents

Mahdi Boukrouche'”, Boubakeur Merouani? and Fayrouz Zoubai?

"Correspondence:

mahdi.boukrouche@univ-st-etienne.fr Abstract

TInstitut Camille Jordan CNRS UMR . . L ) L .

5208, Université Jean Monnet de We consider a.nonlmear elasticity problem in a bounded dgmaln, its boundary is
Saint-Etienne, CNRS UMR 5208, 23 decomposed in three parts: lower, upper, and lateral. The displacement of the

Dr Paul Michelon, 42023 substance, which is the unknown of the problem, is assumed to satisfy the
Saint-Etienne, France .. e

Full list of author information is homogeneous Dirichlet boundary conditions on the upper part, and not

available at the end of the article homogeneous one on the lateral part, while on the lower part, friction conditions are

considered. In addition, the problem is governed by a particular constitutive law of
elasticity system with a strongly nonlinear strain tensor. The functional framework
leads to using Sobolev spaces with variable exponents. The formulation of the
problem leads to a variational inequality, for which we prove the existence and
unigueness of the solution of the associated variational problem.

MSC: 74B20; 70F40; 46E30; 35R35

Keywords: Nonlinear elasticity problem; Tresca friction law; Sobolev spaces with
variable exponents; Variational problem; Existence and uniqueness results

1 Introduction
The study of partial differential equation problems with variable exponents comes from
the theory of nonlinear elasticity, elastic mechanics, fluid dynamics, electrorheological
fluids, image processing, etc. (see [2, 15, 19]).

First, we introduce the notations needed in this article. Let  be a connected open
bounded domain of R™ (N = 3) with Lipschitz boundary I'. To a given field of displacement

u, we associate a nonlinear deformation tensor E defined by
Lor T
E(Vu(x)) = 5( Vu+Vu+'VuVu),
whose components are

1 ow, du; <= u, d
E,',-(Vu(x))z_ u hael Um OUm

— 4 +y —— |, 1<ij<3. (1.1)
2 Bx,» 3965 =1 axi 8961‘
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The corresponding nonlinear constraints tensor o (1) = (07(#4(x)))1<;i;<3 is then given by

3

oij(u(x)) = Z @ijin(X)En (Vu(x)),  1<i,j <3, (1.2)
k=1

which describes a nonlinear relation between the stress tensor (o) j-1,2,3 and the defor-
mation tensor (Ej);j-1,2,3. The coeflicients of elasticity a;; (see [3]) satisfy the following
symmetry properties:

Wijkh = @iikn = Ak forall 1 <i,j,k,h < 3. (1.3)

The aim of this paper is to prove the existence and uniqueness of weak solution for the
following nonlinear problem, encountered in the theory of nonlinear elasticity [3]: Let w
be a bounded domain in R? situated in the plane of equation x3 = 0. We suppose that w
represents the lower surface of the domain occupied by the substance. The upper surface
I'; is defined by

{(x’,xg) e R3, x5 = h(x’) and x’ € w},

where / is a function defined and bounded on w, that is to say, there exist /1, and #* in R
such that

0<h,<h(x)<h*, Y(x,0)=(x1,%,0)ecw.
We study the displacement of a substance in
Q= {(x’,xg,) eR3: (x',O) ewand 0 <x3 < h(x/)}

the boundary Q2 = I' = wUT'; UT, where T'; is the lateral surface of Q.

The outer normal vector unitary on I' is denoted by n = (u3, 112, n3). The outer normal
vector unitary on w is the vector (0, 0, —1).

Einstein’s convention, which consists of making the sum on the repeated indices, will be
used unless otherwise stated.

We define the normal and the tangential components u, and u; = (4, , Us,, Us,), of the
displacement variable u by

Uy = UK = Ul Uy =u;—uzn;, iandj=1,2,3. (1.4)

For normal and tangential components o, and o; = (0y,,0,,04;) of the strain tensor, the

definition is as follows:
o, = (0.n).n = oyn;nj, oy =oynj—oun; iandj=1,2,3. (1.5)

In this section, we are interested in the following equation:

—%mj(u(x)) =fi(x), iandj=1,2,3, (1.6)
]

where f = (f1,/2,f3) represents a mass density of the external forces.
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For boundary conditions, it is assumed that

u=0 only, (1.7)
u=g only, (1.8)
un=0 onw. (1.9)

Condition (1.9) means that there is a tangential force exerted by the surface w on the sub-
stance. This tangential effort cannot exceed a certain threshold. The Tresca law assumes
that this threshold is fixed and known

loy] <K onw, (1.10)

where K is a given positive function called coefficient of friction and |o;| is the modulus
of the tangential constraint defined on w by (1.5).

As long as the tangential constraint o; has not reached the threshold

K, the substance moves with a given displacement s, which is the displacement of the
lower surface w (adhesion). When the threshold is reached, the substance and the surface
move tangentially relative to each other and there is proportional sliding. What can be
summarized as follows [8]:

oyl <K = u=s,

on w, (1.11)
loy]=K = 3JA>0 suchasu,=s- Aoy,

where the positive real A is unknown.

This problem models the behavior of a heterogeneous material with the above Tresca
friction free boundary condition. The consideration of this general material is in no way
restrictive. Indeed, we can apply this study to the most particular elastic materials, but this
particular case makes it easy to describe the different stages of this work. The tensor of
the constraints considered here is nonlinear and grouped, as special cases, some models
used in Ciarlet [3], Lions [12], and Dautray and Lions [4]. Let us cite by way of example
(see [3, 12]).

The complete problem (P) is therefore to find the displacement field u, satisfying the
following equation and boundary conditions:

—%a,,(u(x)) = filx) inQ,1<i<3,

0 (%)) = Y4y @iikn (%) Exn((Vis() inQ1<ij<3

Ey(Vu() = 3G + 52+ Y5 G ) inQ1<ij<3,

u=0 only, (Py)
u=g only,

un=0

lor| <K =  u=s, on w.

loy]=K = 3JA>0 suchasu,=s- Aoy,

We consider the functional framework of the considered problem (Py) using Lebesgue
and Sobolev spaces with variable exponents, see for example [6]. However, it is not neces-
sary to use this notion of Lebesgue and Sobolev spaces with variable exponents to study
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this problem. But we see it as a good generalization to the same study with Lebesgue and
Sobolev spaces with fixed exponents.

Several authors studied the system of elasticity with laws of particular behavior and using
various techniques in Sobolev spaces with constant exponents. For example, in [3] Ciarlet
used the implicit function theorem to show the existence and uniqueness of a solution; in
[4] Dautray and Lions studied the linear problem in a regular boundary domain; in [21]
Zoubai and Merouani studied the existence and uniqueness of the solutions of the nonlin-
ear elasticity system by topological degree; and in [13, 20] Zoubai and Merouani studied
the existence and uniqueness of the solution of Dirichlet’s and Neumann’s problems in
Sobolev spaces with variable exponents.

In Sect. 2, we recall some definitions and properties of Lebesgue and Sobolev spaces
with variable exponents (see for example [5-7, 10, 11] for the proofs and more details).
This notion of Sobolev spaces with variable exponents is also used in many works (see for
example [1, 9, 14]).

The need to work with the concept of Sobolev spaces with variable exponents is moti-
vated by the appearance of these spaces when modeling electrorheological and thermorhe-
ological fluids (see [16]) and in image restoration (see [2]).

In Sect. 3, using this notion of Sobolev spaces with variable exponents, we give the con-
venient functional framework for the considered problem (P) to lead to variational prob-
lem 3.1. Then we prove in Theorem 3.2 the existence part by checking all hypotheses of
Theorem 8.1 page 251 in [12]. And finally, in Sect. 4, we obtain also the uniqueness of the

solution to variational problem (3.1).

2 Generalized Lebesgue and Sobolev spaces
Let @ C RV, let p() : @ —> [1, +00] be a measurable function, called the variable expo-

nent. In the following, we adopt the following notations:
C.(Q) ={p() € C(Q),p(x) > 1 forall x € 2},
and

p~=essinfp(x),  p"=esssupp(x).
xXe

xeQ

We define the generalized Lebesgue space L”")(2), also called Lebesgue space with vari-

able exponent, as the set of measurable functions u : 2 — R for which the convex modulus

Pp) (1) = /Q ()| dxe 2.1)

is finished.
For x € Q, p(x) > 1, the function of R, — R given by Y > Y?® is convex, so also the
function u > py()(u).

Moreover, for 1 < p* < +00, we put the function

. u
wes llyo :mf{k .0: pp(,)<x> |
Q

u(x) px)

A

dx < 1}. (2.2)
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Note that ||| ;»()(q) = 0 implies that A = 0, then we must have u = 0, so that this inf bound
is finite. For every o € R and u € I/V)(Q), using the convexity of p,(), we have

. oau+(1-a)0
leull 1oy iy = infY A > 02 pp() — <1

- inf{/\ 50 |a|pp(<)(%) < 1}

. u
= |a|1nf{)» >0: pp(.)<x> < 1} = lalllull po )

Also let u and v be in L7V(2) such that

u v
pp<.)(—)§1 and pp(.)(—>51,
el 1p0 (@) IVl 20 ()

SO

u+v lull po) g u
Pp() = Pr0)
”u”LP(‘)(Q) + ||V||Lp<')(g) ”u”LP(‘)(Q) + ”V”LP(‘)(Q) ||u||Lp(->(Q)

”V”Lp(-)(Q) v
+ Op() <1.
||M||Lp(-)(9) + ||V||Lp(-)(g) ||V||Lp(-)(g)

So with A = ||ull ;o)) + IVl 001 () We obtain

[l + V||Lp(')(gz) =< ||M||Lp(‘)(gz) + ||V||Lp(')(g),

therefore the given function (2.2) defines a norm of L”)(2), called the norm of Luxem-
bourg [5].

The space (L*V(R), [I-l 21 ) is @ Banach space and D(€2) is dense in LPO(). Moreover,
if p~ > 1, I?V(Q) is [6] uniformly convex and therefore reflexive, and its dual is isomorphic
to L7 )(Q) where ﬁ + zﬁ =1forx e Q.

We also have the following inequality called Holder type inequality:

/ uvdx
Q

for all u € LFV)(Q2) and all v € L7 ().
Now we define the generalized Sobolev space also called Sobolev space with variable

1 1
= (p_ + [7) ||M||Uz(-)(g)||V||Lp’(-)(g) = 2||M||uz(-)(g)||V||Lp’(-)(g)

exponent

WPO(Q) = {u e 179(Q); Vu € (170()) )
which endowed with the norm

u > |lullyreo ) = lull oo @) + I VULl o o)

is a Banach space.
The space Wol’p(‘)(sz) denotes the completion of Cj°(2) in wirh(Q).

Page 5 of 16
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Let p() € C,(Q),p" > 1,andu e Wol’p(')(Q), we have the inequality of Poincaré
”u”m(-)(g) =< C”VM”LP(‘)(Q)}

where C depends on p(-) and therefore on .

In particular, see for example in [6] Theorem 8.1.6 page 249, see also [5, 7, 10, 11] that if
p~ > 1, the space Wol ? (')(Q) is a separable, reflexive Banach space, and uniformly convex.
Its dual space is denoted by WP 0(Q).

In the writing of variational formulations, the convex modulus p, appears, which leads
us to state the following results.

Proposition 2.1 ([11]) Ifu,,u € I’")(Q) and p* < +00, the following relationships are true:

(i) ll2tll o0y < 1 (resp.=1,>1) & py) <1 (resp.=1,>1),
W) Nl >1 = 1,00 < 000 < Il o

i) Nl <l = 1ul0q <00 < 14l,0q

(iv)  lm pyy(n) =0 & Hm [latyllpo)q) = 0-

Proposition 2.2 ([11]) If g € C,(RQ) and if for all x € Q, q(x) < p*(x), then the injection of
WhPO(Q) into L1Y)(Q) is continuous and compact, where

Nj .
Noe  fP@ <N,

00 if p(x) > N.

prx) =

In particular, the injection of Wol’p(')(ﬂ) into LPV)(Q) is continuous and compact.

Proposition 2.3 ([18]) We note

WN-Dp(x) -
o | ST ip <N,

00 ifp(x) = N.

Letq € C.(dR). Ifforall x € 3R, q(x) < p° (x), then the following injections of W) (Q) —
Lpd(')(aﬂ) < L10)(dQ) are continuous and compact.

Definition 2.1 The continuous function p : Q@ — [1, +o0) satisfies Holder’s continuity
condition if there is a constant C such that

C — 1
p®) -pO)| < ——— Vx,ye Qwith [x—yl < -
—log 2

v =yl
Remark 2.1 Although this condition of regularity is not necessary to define Lebesgue
and Sobolev spaces with variable exponents, it proves to be very useful for these spaces
to introduce some properties, such that C*(Q) is dense in W?0)(Q) and Wol'p (')(Q) =
whrO(Q) N Wy ().
Moreover, if 1 < p~ < p* < N, then the Sobolev injection of W?)(Q) into L1V(Q) re-
mains true for g(-) = p*(-) (for more details, see [5]).
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Remark 2.2 According to the Poincaré inequality, it is obvious that the norms
ur> [[Vulpog and  u=> flullyo g

are equivalent on W, Q).

Remark 2.3 Leta>0,b>0andlet1 <p~ <p* < +00, then for all x € Q
(a+ b)p(x) < 219*71(,117(96) + bp(x)).

3 Variational problem and existence result
We introduce now the following functional space:

V(Q) = {‘/’ € (erurL(Q)) (\)72”’(')(9))3 :p-n=0o0n w}

with
Wit (@)-{p e WPO(Q):9=00n T UTL, },
e = s
Ge (Wz'p(')(Q))s such that G|rur, =g and G- n=0onw. (3.1)

The variational formulation of problem (Py), see for example [8], leads to the following
variational problem.

Problem 3.1 Letf € (L7 (Q))? and G satisfying (3.1) be given.
Find u such that u — G € V() and satisfying the following variational inequality hold

Sy | a,,kh<x>Ekh<w)—( (s~ G)) d' dxs + () ~J(u ~ G)

ij=1k,h=1

> / flo-(u-G)dx dxs, Ve V() (3.2)
Q
where
J(p) = / Kl —s|dx'.

To prove the existence of a solution to Problem 3.1, let us assume the following assump-
tions:

(H1) 3<px)<+o00 forxeQ,

(Hy) 3eo>0; 3B >0suchthat g < ajp(x) <paein, Vijkh=1to3

B /() 3 / _ p(x)
(H3) f— (fl: 2’f3) € (Lp (Q)) P (x) = p(x) -1
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Taking

A 3
Wi, (@) = (Wi, (@) n (W 0(@)
we need the three properties of the operator Ey, in the following theorem.

Theorem 3.1 For u such that u— G € W’;(I'LFL(Q), with for x € Q 3 < p(x) < +00, the com-
ponents Ey, of the deformation tensor of St. Venant E satisfy the following properties:

1. (Continuity) Ey, is a continuous function, k,h =1 to 3;

2. Forall ve W\ (), we have Ekh(w)g%; e LYQ),Vi,jk,h=1t03;

3. (Coercivity) 3o > 0; such as Ey,(£)€ > a|&|PV,Vk,h =1 to 3.

Proof First 1. For x € Q, p(x) > 3, and u,v € W?0)(Q), we have uv € W»0(Q).
So, forve W?(;LFL(Q), we have

3
% 8Vk and Z %av—m e lep(')(Q)’

axi B_xh = 0Xp 0xy

thus Ej(Vv) € W0(Q). Moreover, for p(x) > 3, we have the continuous injection of
WLrO(Q) in C(S2), thus 1. holds.
Second 2. For x € €,

W9\ (u, duw <= du,, du
E(V p(x) _(z oup  OUk OlUm OUm
’ 3 u)’ 2 0X " oxy, * 2; 0xr 0xy

m=

p(*)

using Remark 2.3, we have

@) 1 px) .
|En(Vu) "™ < (5) x ¢t

Using again Remark 2.3, we obtain

p(*) p(x)
< 2””( )

thus Ej(Vu) € LPO(Q) for ik = 1 to 3. As p(x) > p/(x), as soon as p(x) > 3 and Q is
bounded, we get E;(Vu) € LF'O(Q) for h,k =1 to 3.

Thus, for v € W?0(Q), we have 2 8"’ e IPY)(Q) for i,j = 1 to 3. Hence, by the Holder in-
equality, we obtain that 2. holds. Thé third 3. property comes from [17]. O

314;, 3u/<

Z oy, Bum
Ay Bxh dxr 9%y,

Buh Buk 314;, P auk
—_— + —_— —_— —_—

Bxk 8xh axk axh

Theorem 3.2 Let given f € (L7 (Q))3, G satisfying (3.1), and the hypotheses (H;) to (Hs)
hold. Then there exists a solution u to Problem 3.1.

Proof For the existence part, we apply Theorem 8.5 page 251 in [12] and the first three
properties of Ey, cited in Theorem 3.1. First, we rewrite variational inequality (3.2) in the
form of this Theorem 8.5 page 251 in [12].
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+ Aswe see for example in [6] Theorem 8.1.6 page 249, (W/rl’lpé'llL(Q))3 N (W2P0(Q))3 is
a separable and reflexive Banach space, then its closed subspace V(2) is also a
separable and reflexive Banach space.

+ The application V(£2) — R defined by

s Z Z / ijten (%) Exin( VM)— dx’ dxs

ij=1 k,h=1

is linear and continuous, so it is an element of V’(2). We note by T'( — G) this
application, so we have

3

(T(u G), )v’(sz V) ZZ/“’W‘ x)Ekh(Vu)—dx dxs.

ij=1 k,h=1

« Similarly, we have the application V(£2) — R, which associates

0 /f@dx/dxg
Q

is linear and continuous, so is an element V’(£2). We note by f this application, so we
have

fro)vievie = /wa dx’ dxs,
therefore, problem (3.2) becomes
(Tw-G)-fro—(u- G)>v’(sz),v(sz) +J(@)-J(u-G) =0, VoeV(Q),
with
@)= [ Kip=sids.

« We check now that the operator T is pseudo-monotonic.
a) Let u be bounded in V(£2), we have

|70

v = Sup ‘(T(u),go)’
lellv)=1
peV(Q)

= sup
lellvie)-1
pe (

Z Z / alikh(x)Ekh(Vu)— dx’ dx3

ij=1k,h=1

3 3

= Yy

lellv)=1 ij=1 kh=1
peV(Q)

i /
[ a0 32 .
Xj

Let u € V(R), by Remark 2.3 we get Ex,(Vu) € LPY(R), and as p(x) > p/(x), as soon
as p(x) > 3 and 2 bounded, we have

Ew(Vu) e I70(Q) V1 <kh, <3. (3.3)

Page 9 of 16
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Using now hypothesis (H5) and the Holder inequality, with (3.3) we obtain

09
8xj

3 3
V/(Q) < 2,3 sup Z Z ||Ekh(vu)||l},/()(9)

llellvi)=1 ij=1 k,h=1
peV(Q)

|70

1°0)(Q)

3 3
<68 sup ZZ||Ekh(VM)HLp/<.>(Q)||§0i||W1,p(-)(Q)

lellve=1 =1 kp=1
@eV(Q)

3
<188 sup E HEkh(VM)”Lp/(.)(g)||‘P||(W1,p(‘)(g))3
lellv)-1 kh=1
peV(Q)

3

<188 sup Y [Ew(Vi)| 0 lelvie
lellve=1 g p=1
PeV(Q)

3
<188 Z ”Ekh(vu)”[}/(‘)(gz)'
kh=1

From (3.3) and (2.1) we get
/ |Ekh(Vu)|p/(x) dx = Pp' () (Ekh(Vu)) <00, V1<hk<3,
Q

and from (ii)—(iii) of Proposition 2.1 we have

E(Vu) HPH } <Py (Ekh(Vu)) < 00.

min{ ||Ekh(Vu)Hp/7 LP’(')(Q)

')’

For all #and all k € {1, 2, 3}, we get that || Ex ||L,,/(.)(Q) is bounded for all / and all
k € {1,2,3}, consequently || T(u)||y(q) is bounded.
b) Let u,v,w € V(2) and A € R, we check that the application of R in R:
A+ (T(u + Av),w) is continuous. For this, let us consider {1,} to be a sequence of R
that converges to A. Let us denote

3 3
aWi
Fulx) = i E,(V A VV)—
(%) E E jn(X) Exn (Ve + 1, Vv) o,
ij=1 k,h=1
and
3 3 aW
F :§ § i) En (Vi + AV .
(%) i,j=1kh:1a}kh(x) (Vi + AVY) 7%,

The Ejyy, being continuous, we therefore have, for all # and all k € {1,2,3},

3 3
ow;

Fu(x) = E E i (X)Exn (Ve + AHVV)S—l converges to
X
ij=1 kh=1 J

3 3

ow; )
E E i X)Exn(Vu + AVY) — ae. in Q,
- 396,’
ij=1 k,h=1
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and we have also with (H,) and the definition of E:

3

3
Z Z Aijkh (x)Ekh(

ij=1kh=1 %
<ZZ,B|Ekh (Vi 2, V9)|| 5 Ows
ij=1 k,h=1
1 i Z( auh 3Vh ouy Vg
2 st 8xk 8xk oxy, 0xy,
3
8um va oy, AV,

P

m=

8wt
8xj ’

As the sequence (A,),en is convergent in R, then Im e R: |1,| < m, so

ome T o || B T 0

3 3
1 duy, vy ouy vk
Fu <= — —
| (x _2 2;((3961( 8xk>+<8xh axh>
23: 8um va 0,y oV, ow;
— — | +m|— .
el 8xk axk axh Bxh 396]'
We define now the function L by
314;, 3Vh ouy vk
Lx)= - K hadlS
() = ﬂ Z Z (( 8xk Bxk ) ¥ ( oxy axy, )
ij=1 k,h=1
ad Ol 8 OVm a m el m a i
. Z u U [ (|32 |, 27 [\ 21|
8xk Bxk 0xy, Xy 0x;

We obtain that L € L?V().
Thus from Lebesgue’s dominated convergence theorem, we deduce that

(T @+ xv), w) — (T(u + Av),w),

which shows that T is hemi-continuous.
¢) By hypothesis (H;) and the monotony of Ey;, we have

(T(w) - TW),u—v) ZZ/dl,kh (@) (En(Vu)

ij=1k,h=1

du; 0v;
_Ekh(VV))(a—Z - %) dx' dx; > 0,
/) ]

so T is monotonous. As it is also bounded and hemi-continuous, then T is

pseudo-monotonic.

+ The functional J is proper, convex, and lower semi-continuous on V(£2). Indeed, let u

and v be two elements of V(£2), and A € [0, 1], we have

Page 11 0of 16
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d) / is convex, indeed

J(Au+ (1= 1)v)

:/K(!ku+(1—k)v—s!)dx/s|)dx’:/I((|A(u—s)+(1—A)(v—s)|dx’

5/K(|)»(u—s)|)dx’+/1<(|(l—A)(V—s)|)dx’

§A/I(|u—s|dx/+(1—A)f](|v—s|dx/=)J(M)+(1—)»)](V)~

e) / is lower semi-continuous, indeed

) =Jw)| = | | K(lu—s|-|v—s|)dx ||dx/§/|1<||u—v|dx’
w w
< K o lep 2t = VIl 00 2
1
wlp Cllu = vl wrrw (g3 < CIK|zoo@w) [WIPD lu = viivie),

where C is the constant of the continuous injection from V(£2) on (L7 O(w))2. Thus, J is
Lipschitzian, so it is fortiori lower semi-continuous on V(£2).
We can now apply Theorem 8.5 page 251 in [12] to obtain the existence of u such that
— G in V() satisfying variational inequality (3.2). O

4 On the uniqueness of the result
Theorem 4.1 Let the functions

du; 1 ou;
Mg ]—oo,—], x—>—u(x) fori,j=1to3;
0x; 3 0x;

then the operators
() . () ’ P
Ej(-) of WPO(Q) in (WPV(Q)), ij=1t03,
are monotonous.

Proof We have the following result in [13]. We give also the proof for the convenience of

the readers. Using the rule 3 (a? + b?) > —ab, with a = d”’” and b = 5 Gk, we have

du; Oy, 1< 17 2
sz (5 5e) -5 2((5e) + (52))

1/0u; Oy 1{< 3 0l
=—|—+— - ’ ,j=1to3,
2<ax, Bxl) 4 2;( ) +Z( ax,) bI= e

m=1
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and consequently, Vi,j =1 to 3,

(Eij(w) - Ej(v),u—v) > 1<<% + %> - (% +

2 896]' Bxi ij

Sy

(=) e

m=1

To conclude, we must prove that the second member of (4.1) is positive. For that, we sep-

arate the second member of (4.1) in linear and nonlinear parts.

Jx Ajj
Let the linear function € —> R3 x R? —> R be defined by

2

(Ajo])(x) = Ai/<8—u(x), 8_u(x)> L <%(x) +

Bxi E)x}- Bx,

8x,»

(x)>, i,j=1to3,

Jx By
and the nonlinear function 2 —> R? x R?> —> R be defined by

(Bjj o Jx)(x) = Bz‘/<8—u(x), a_u(x)> _ 1 (

0X; 0x; 4 par

The functions A; and Bj; are continuous for p(-) > 3. It remains to show that, Vi,j =1 to 3,
the A are increasing on R, the B;; are increasing on R™, and the A;; + B;; are increasing on

]-o0,1].

1. Let us show that the A; are increasing: let the function

du;j

ou;

Jx o i el i
Q = R —> R be defined by ( 0]x> (x) = —u(x),
8x, ij

We note
ou ou
— ()=t d —) =1
o, (x) =t an 3% x) =1
and
aui abt]‘
B_x/(x) =t; and B_xi(x) =T

The function ¢ — %t of R — R, being increasing on R, we have

1 aui 8vi 8ui avi _ 1/ abt,' aV,‘
2\dx;  Ax dx;  dx;| 2Jo\dx  da
B 1‘ du; v
- 2 8xj 896]' 12(Q)

Therefore, the A; are increasing.

814,‘

av;
— - —V> dx
896/ axj

>0.

2 (50 -2

i=1

i,j=1to3.
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2. Let us show that the Bj; are increasing: let the function

Jx Bi'
QSRR R

be defined by

1 3 814, 2 > 314,‘ 2 .
(Bj o Jo)(x) = By(tj, ) = — Z(a?"”) +Z(a7(")> , ij=1to3.
. i i=1 J

As in point 1., we note

BMi auj ..
tij = a—xj(x), Tji = B_x,-(x)' Vi,j=1to3,

ou; 22 ou; 2
(5ew) +2 (5 w) )

SO

1 2 2 3 5
> —1(6 X 1¥?§3(t5/’ 7-';‘1‘)) =5

For the function f () = —%%2 being continuous and increasing on R~, we deduce that the
Bjj are increasing on R™.
3. We show that the A; + Bj are increasing: the proofs of points 1. and 2. imply that

the sum A; + By, Vi,j = 1 to 3, corresponds to the sum of the two functions f(s) + g(sc) =
3
2

the convex function /(x)

w-322R— R, obviously continuous and increasing on ] — oo, %], as the derivative of

= 1x* - 1x* on] - 00, 1]. So, (4.1) is verified, and consequently
(Eij(u) = Ej(v),u —v) > ((Aj + By)(u) — (Aj + By)(v),u —v) >0, Vi,j=1to3.

In other words, the E;j(u),i,j = 1 to 3, are monotonous wWPO(Q) in (WP(Q)Y, i,j = 1
to 3. O

Theorem 4.2 Variational inequality (3.2) has a unique solution satisfying Theorem 3.2.

Proof Suppose now that variational inequality (3.2) has two solutions u;, u, satisfying
Theorem 3.2, and (Ex (&) — Exn(n))(&; — 1) = 0 if and only if £ = . So we have

3 3
0
N OB (Vi) (g = = G) i

ij=1 k=1

+/K(|<p—s|— |(u1—G)—s|)dx'

> /Qf(go —(u; - G)) dx' dxs, Yo € V(Q) (4.2)
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and

3
Z / ﬂz;kh(x)Ekh(Vuz)—( i — (i — Gy)) d’ dxs
ij=1 k,h=1 Q ]

+/K(|<p—s| - |(u2—G)—S|)dx’

> f((p —(uy — G)) dx' dxs, Yo € V(Q). (4.3)
Q

We take ¢ = uy — G in (4.2) and ¢ = u; — G in (4.3), so

Z Z / ijien (%) (Exn (V1) — Ekh(vuz)) ((Mn Gi) — (u2i — Gy)) <0,

ij=1 k,h=1

but according to Theorem 4.1 on the monotony of Ey;,, we have

ZZ/azjkh(x) (Exn(Vur) - Ekh(Vuz)) (un—uzl)>0

ij=1 k,h=1

SO

ZZ/%/&, ) (Exn(Vuur) - Ekh(vuZ))a (1; — uzi) = 0.

ij=1kh=1

Thus Vu, = Vu, in (I79(R))°, and by the inequality of Poincaré, we get u; = u, in
(LP9(2))?, and s0 u; = uy dans (W20(Q))3. O
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