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Abstract
This paper starts off by the celebrated Knaster–Kuratowski–Mazurkiewicz principle in
the formulation by Ky Fan. We provide a novel variant of this principle and build an
existence theory for extended real-valued equilibrium problems with general, then
monotone and pseudomonotone bifunctions. We develop our existence theory first
in general topological vector spaces, then in reflexive Banach spaces, where we
investigate the issue of coerciveness for existence on unbounded sets. Thereafter we
use the Clarke generalized differential calculus for locally Lipschitz functions and
derive existence results for nonlinear variational-hemivariational inequalities and
hemivariational quasivariational inequalities. As application, we treat a unilateral
contact problem in solid mechanics with nonmonotone friction.
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1 Introduction
This paper starts off by the celebrated Knaster–Kuratowski–Mazurkiewicz (KKM) prin-
ciple in the formulation by Ky Fan [22, 23], which is known to be equivalent to topological
fixed point theorems [28]. First, we provide a new refined version of the Fan-KKM prin-
ciple, which relies on a general coercivity condition and unifies some results on this topic
in [17, 21]. Based on this refined version of the Fan-KKM principle, we build a broad ex-
istence theory for extended real-valued equilibrium problems with general bifunctions,
then with bifunctions of monotone type, including monotone and (Brèzis or topologi-
cally) pseudomonotone bifunctions. We show how by this equilibrium theory existence
results for variational inequalities of monotone type with set-valued operators can be
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derived. The setting of our exposition is first in general topological vector spaces, then
in reflexive Banach spaces, where we discuss the issue of coerciveness for existence on
unbounded sets in depth. Thereafter we use the Clarke generalized differential calculus
[18, Sect. 2.1] for locally Lipschitz functions and obtain existence results for nonlinear
variational-hemivariational inequalities and hemivariational quasivariational inequalities.
For this latter class of nonlinear variational problems, we present a direct approach to ex-
istence results based on equilibrium theory without additional resorting to Banach’s con-
traction theorem as exposed in the monograph of Sofonea and Migorski on variational-
hemivariational inequalities [57].

We emphasize that extended real-valued equilibrium problems – a further novel feature
of the present paper – cannot be reduced to classical equilibrium problems as pioneered by
Blum and Oettli [7]. Although a reduction is trivial for equilibrium problems with convex,
lower semicontinuous real-valued functions, the standard trick for extended real-valued
convex, lower semicontinuous functions that works with the epigraph of such functions
fails, since the transfer to a product space does not preserve compactness and coerciveness
properties.

For existence on noncompact sets, we avoid, similarly to [40], coercivity conditions in-
volving interior points, since the topological interior and the algebraic interior of convex
sets in infinite-dimensional function spaces may be empty.

As application, we treat a unilateral contact problem in continuum mechanics with non-
monotone friction in the framework of nonlinear variational-hemivariational inequali-
ties. The theory of hemivariational inequalities has been introduced and studied by Pana-
giotopoulos [50] in the 1980s and 1990s as a generalization of variational inequalities with
an aim to model many problems coming from mechanics when the energy functionals are
nonconvex; see [25, 44, 51, 56].

The paper is organized as follows. In the next section, we establish our novel variant of
the Fan-KKM principle and a general existence theorem for extended real-valued equilib-
ria. In Sect. 3, we are concerned with monotone and pseudomonotone bifunctions, and
develop further the existence theory for extended real-valued equilibria. Section 4 pro-
vides an application of the equilibrium theory to variational inequalities of monotone type
with set-valued operators. Then in Sect. 5, we switch from topological vector spaces to re-
flexive Banach spaces, and in this setting, we discuss the issue of coerciveness in depth.
Next, in Sect. 6, we use the Clarke generalized differential calculus for locally Lipschitz
functions and obtain existence results for nonlinear variational-hemivariational inequal-
ities and hemivariational quasivariational inequalities. As a model application, we study
a scalar variational problem with the p-Laplacian and nonmonotone, possibly set-valued
boundary conditions. In Sect. 7, we present an application to a full vectorial contact prob-
lem. Here we treat a unilateral contact problems with material nonlinearity and nonmono-
tone friction. The paper ends in Sect. 8 with some concluding remarks giving an outlook
to some related directions of research.

2 A variant of the Fan-KKM principle and a general existence theorem for
extended real-valued equilibria

Let us give some notations and terminology used in the following. In a topological vector
space E, F (E) is the set of all finite-dimensional subspaces of E, ordered by inclusion.
Conv X and cl X or X denote the convex hull and the topological closure of a subset X
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of E, respectively; 2X stands for the power set, the set of all subsets of X;N (X) is the set
of all (nonempty) finite subsets of X, ordered by inclusion. The topological dual of E is
written E∗. A map M : X → 2X is called a KKM covering if for every N ∈N (X), we have

Conv N ⊂
⋃

x∈N

M(x).

The starting point of our investigations is the following extension of Fan [22, Lemma1] of
the classical Knaster–Kuratowski–Mazurkiewicz theorem to an arbitrary Hausdorff topo-
logical vector space.

Theorem 2.1 Let X be any nonempty subset of a Hausdorff topological vector space, and
let M : X → 2X be a KKM covering with closed values. If M(x) is compact for at least one
x ∈ X, then

⋂{M(x) : x ∈ X} �= ∅.

The proof by Fan uses the finite intersection property of compact sets and employs the
Knaster–Kuratowski–Mazurkiewicz theorem; see also [2, Chap. 11] and [5, Appendix B]
for this line of proof and the proof of the KKM theorem from Sperner’s lemma. Since
compactness is a strong assumption in infinite-dimensional spaces, we later relax this as-
sumption to a general coercivity condition, which demands the relative compactness of an
appropriate intersection of some sets M(x). Moreover, in view of the later application to
existence results for variational inequalities, we have to drop the assumption of closedness
of the sets. Instead, similarly as in the approach by Brèzis, Nirenberg, and Stampacchia [9],
we work with a refined closedness assumption, which looks for the first look very techni-
cal but can be easily verified by topologically pseudomonotone bifunctions, as we will see
later.

Here is our novel variant of the Fan-KKM Lemma that encompasses [26, Lemma 1.2]
and more recent refinements due to Chowdhury and Tan [17] and Ding and Tarafdar [21].

Theorem 2.2 Let X be a nonempty convex subset of a topological vector space, and let
M : X → 2X be a KKM covering. Suppose

(i) there exists a convex compact subset C0 of X such that clX(
⋂

x∈C0
M(x)) is compact,

(ii) for any N ∈N (X) and any x ∈ Conv N ,

M(x) ∩ Conv N is closed in Conv N ,

(iii) for any compact K ⊂ X and any N ∈N (X), we have, for D = Conv N and
D = Conv(C0 ∪ N),

K ∩ D ∩ clX

(⋂

x∈D

M(x)
)

= K ∩ D ∩
⋂

x∈D

M(x). (1)

Then
⋂

x∈X M(x) �= ∅.

Proof 1) We apply Theorem 2.1 in a special situation. Fix N ∈ N (X) and define the set-
valued map MN on Conv N ⊂ X by MN (x) = M(x) ∩ Conv N . Then MN has closed values
by (ii) and hence compact values, since Conv N is compact. Let Ñ ∈ N (Conv N). Then
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Ñ ∈ N (X) by convexity of X, and Conv Ñ ⊂ ⋃{M(x) : x ∈ Ñ}, since M is a KKM covering
by assumption. Moreover, Conv Ñ ⊂ Conv N . Therefore Conv Ñ ⊂ ⋃{MN (x) : x ∈ Ñ}, and
MN is a KKM covering. By Theorem 2.1 there exists zN ∈ Conv N such that zN ∈ M(x) for
all x ∈ Conv N .

2) For any fixed N ∈ N (X), let G = Conv(C0 ∪ N). Then G ⊂ X is compact, since with
N = {x1, . . . , xn} ⊂ X and the standard simplex Sn in R

n+1, G is the continuous image of
the compact C0 × Sn under the map χ given by χ (x0,λ0,λ1, . . . ,λn) = λ0x0 +

∑n
j=1 λjxj for

x0 ∈ K0, (λ0,λ1, . . . ,λn) ∈ Sn.
We want to show that

⋂{M(x) : x ∈ G} ∩ G �= ∅. To this end, let yH ∈ ⋂{M(x) : x ∈
Conv H} ∩ Conv H , which exists for any H ∈ N (G) ⊂ N (X) according to the preceding
step, and define YH =

⋃{yH′ : H ′ ⊃ H , H ′ ∈ N (G)} for any fixed H ∈ N (G). Note that for
all H ′ ⊃ H with H ′ ∈N (G), we have

yH′ ∈
⋂{

M(x) : x ∈ Conv H ′} ⊂
⋂{

M(x) : x ∈ Conv H
}

.

Therefore

(∗) YH ⊂
⋂{

M(x) : x ∈ Conv H
}

.

Since YH is contained in the compact set G ⊂ X and the family {YH : H ∈ N (G)} has the
finite intersection property, there exists some y ∈ G ∩ ⋂{clX YH : H ∈ N (G)}. Now let
y1 ∈ G be arbitrary. Consider H1 = {y1, y} ∈N (G). Then by construction and by (∗)

y ∈ H1 ∩ clX YH1 ⊂ Conv H1 ∩ clX

[⋂{
M(x) : x ∈ Conv H1

}]
.

By (iii) conclude for K := G, D := Conv H1, y ∈ ⋂{M(y) : y ∈ Conv H1} ⊂ M(y1), and there-
fore y ∈ G lies in

⋂{M(y) : y ∈ G}, as desired.
3) Introduce the family

G =
{

G = Conv(C0 ∪ N) : N ∈N (X)
}

,

which is ordered by inclusion. According to the preceding step, for any G ∈ G , there exists
some zG ∈ ⋂{M(x) : x ∈ G} ∩ G. By construction, zG ∈ L ⊂ X, where

L := clX

( ⋂

x∈C0

M(x)
)

is compact by (i).
Define ZG =

⋃{zG′ : G′ = Conv(C0 ∪N ′), N ′ ⊃ N , N ′ ∈N (X)} for any G = Conv(C0 ∪N) ∈
G . Then ZG ⊂ L, and the family {clX ZG : G ∈ G} has the finite intersection property. Hence
there exists z ∈ L such that

z ∈
⋂

G∈G
clX ZG.
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Finally, we show that z ∈ ⋂{M(x) : x ∈ X}. Note that for all N ′ ⊃ N with N ′ ∈N (X) and
G′ = Conv(C0 ∪ N ′), we have

zG′ ∈
⋂

x∈G′
M(x) ⊂

⋂

x∈G

M(x).

Therefore

(∗∗) ZG ⊂
⋂

x∈G

M(x).

Now let x0 ∈ X be arbitrary. Consider N0 = {x0, z} and G0 = Conv(K0 ∪ N0). Then by
construction and by (∗∗)

z ∈ L ∩ G0 ∩ clX ZG0 ⊂ L ∩ G0 ∩ clX

( ⋂

x∈G0

M(x)
)

.

By (iii) conclude with K := L, D := G0, z ∈ ⋂{M(x) : x ∈ G0} ⊂ M(x0), and therefore z ∈⋂{M(x) : x ∈ X}, as desired. �

A discussion of our FKKM theorem in relation to the literature is in order. Clearly, the
coercivity assumption (i) is implied by the assumption of compactness of clX M(x0) for
some x0 ∈ X, which is used in [17] and also by Ansari, Lin, and Yao [4] and Kalmoun [36].
Note that in this case, we choose K = C0 = {x0} in (i), then G = Conv(C0 ∪ N) = Conv Ñ
with Ñ = N ∪ {x0}, and so (iii) simplifies to: For any compact K ⊂ X and any N ∈N (X),

K ∩ Conv N ∩ clX

( ⋂

x∈Conv N

M(x)
)

= K ∩ Conv N ∩
⋂

x∈Conv N

M(x).

Further (1) in (iii) follows from

clX

(⋂

x∈D

M(x)
)

=
⋂

x∈D

M(x),

which follows from the “transfer-closedness” of the sets M(x):

⋂

x∈D

clX
(
M(x)

)
=

⋂

x∈D

M(x),

which is used instead of (iii) by Ansari, Lin, and Yao [4].
(ii) replaces finite-dimensional subspaces used by Brèzis, Nirenberg, and Stampacchia

[9] and in [26, 28] by polytopes, as it is done in [17]. Kalmoun [36] uses, instead, a transfer-
closed map on polytopes.

Finally, (i) is more general than the assumption of compactness of clX(
⋂

x∈N M(x)) for
some N ∈N (X), which is used in [21]. This comes out in the following example.

Example 2.1 Let X be an infinite-dimensional real Hilbert space endowed with norm ‖x‖
and scalar product 〈x, y〉. For x ∈ X, define

M(x) =
{

y ∈ X : 〈y, x〉 ≤ ‖x‖2}.
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Then M(x) = X if x = 0, and M(x) is a closed convex halfspace of X if x �= 0. Furthermore,
for all x ∈ X and r = ‖x‖, we have

Kr =
{

y ∈ X : ‖y‖ ≤ r
} ⊂ M(x),

since by the Cauchy–Schwarz inequality, for all y ∈ Kr ,

〈y, x〉 ≤ ∣∣〈y, x〉∣∣ ≤ ‖y‖ ‖x‖ ≤ ‖x‖2.

This shows that M is a KKM covering. Indeed, let N ∈N (X). Define ρ = max{‖x‖ : x ∈ N}.
Then Conv N ⊂ Kρ and Kρ ⊂ ⋃{M(x) : x ∈ N}, and the claim follows.

Since M(x) is weakly closed for all x ∈ X, (ii) and (iii) of Theorem 2.2 are satisfied. With
K1 convex and weakly compact, we next claim that

⋂{M(x) : x ∈ K1} = {0}. Indeed, as-
sume that there exists y1 ∈ ⋂{M(x) : x ∈ K1}, y1 �= 0. Then choose x1 = τy1 with 0 < τ < 1
such that x1 ∈ K1. Then y1 ∈ M(x1) leads to τ ≥ 1, which is absurd. Hence condition (i) is
satisfied. Therefore Theorem 2.2 applies with respect to the weak topology.

On the contrary, we cannot find some N ∈ N (X) such that
⋂{M(x) : x ∈ N} is com-

pact. Indeed, consider the finite-dimensional subspace F = span N . Since X is of infinite
dimension, there exists z �= 0 such that z ⊥ F , and hence Rz ⊂ ⋂{M(x) : x ∈ N}.

Based on the FKKM Theorem 2.2, we establish the following general existence theorem
for extended real-valued equilibria.

Theorem 2.3 Let C be a closed convex subset of a real Hausdorff topological vector space E.
Let the extended real-valued function f : C → (–∞, +∞], f �≡ ∞, and a real-valued bifunc-
tion ϕ : C × C →R, nonnegative on the diagonal of C × C, be given such that the following
assumptions are satisfied:

(A1) For all x ∈ C, f + ϕ(x, ·) is quasiconvex on C.
(A2) There exist a compact subset K̃ of E and z̃ ∈ C ∩ K̃ such that for all x ∈ C \ K̃ ,

ϕ(x, z̃) + f (z̃) < f (x).

(A3) For all y ∈ C and N ∈N (C), f – ϕ(·, y) is lower semicontinuous in Conv N .
(A4) For all N ∈ N (C) and every net (xt)t∈T ⊂ C that converges to some x ∈ Conv N , we

have

f (xt) ≤ ϕ(xt , y) + f (y) ∀y ∈ Conv N ,∀t ∈ T

implies

f (x) ≤ ϕ(x, y) + f (y) ∀y ∈ Conv N .

Then there exists a solution x̂ of the extended real-valued equilibrium problem P[ϕ, f ; C],
that is, for all y ∈ C, we have

ϕ(x̂, y) + f (y) ≥ f (x̂).
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Proof We define for any z ∈ C = X the set

M(z) =
{

y ∈ C|f (y) ≤ ϕ(y, z) + f (z)
}

.

To obtain the conclusion, we have to show that M is a KKM covering that satisfies (i)–(iii).
Take K0 = {z̃}, which trivially is convex compact, and (i) holds by (A2).
(ii) follows from (A3).
(iii) is implied by (A4). Indeed, let N ∈ N (C). Then K0 ∪ N = {z̃} ∪ N =: N ′ ∈ N (C) and

G = Conv(K0 ∪ N) = Conv N ′. Further, let K be a compact in C, and let

x′ ∈ G ∩ clC

(⋂

x∈G

M(x) ∩ K
)

.

This means that x′ = lim xt for some net {xt}t∈T ⊂ K and xt satisfy for all t ∈ T and x ∈ G,

f (xt) ≤ ϕ(xt , x) + f (x).

By (A4), for all x ∈ G, we have

f
(
x′) ≤ ϕ

(
x′, x

)
+ f (x),

hence

x′ ∈ G ∩
(⋂

x∈G

M(x) ∩ K
)

,

and (iii) is proved.
Finally, we show that M is a KKM covering by an indirect argument. Assume that there

exist zi ∈ C and λi ≥ 0 (i = 1, , . . . , k) with
∑

λi = 1 such that

z :=
k∑

i=1

λizi /∈ ∪k
i=1M(zi),

that is, z ∈ C satisfies

ϕ(z, zi) + f (zi) < f (z), i = 1, . . . , k.

By quasiconvexity and (A1) we arrive at f (z) < ∞ and

ϕ(z, z) + f (z) < f (z), i = 1, . . . , k,

which contradicts ϕ(z, z) ≥ 0. The theorem is proved. �

3 Existence of extended real-valued equilibria with bifunctions of monotone
type

As introduced by [26, 28] and independently in Aubin’s monograph [5, Def. 2, Sect. 13.2],
in analogy to pseudomonotone operators introduced and studied by Brèzis [8], a bifunc-
tion ϕ : X × X → R is called Brèzis pseudomonotone or topologically pseudomonotone
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(shortly p.m.) on a subset X of E if for any net {xt}t∈T that converges to some x ∈ X and
satisfies lim inft∈T ϕ(xt , x) ≥ 0, we have for all y ∈ X,

ϕ(x, y) ≥ lim sup
t∈T

ϕ(xt , y).

Note that ϕ(x, y) := s(y) – s(x) with a lower semicontinuous (l.s.c.) function s : C → R is
a simple example of a p.m. bifunction.

The following proposition shows that such bifunctions ϕ satisfy the assumption (A4),
provided that the function f is l.s.c.

Proposition 3.1 Let C be a closed convex subset of a real Hausdorff topological vector
space. Let an extended real-valued function f : C → (–∞, +∞], f �≡ ∞ be l.s.c., and let
a real-valued bifunction ϕ : C × C → R be p.m. Then the pair [ϕ, f ] satisfies assump-
tion (A4).

Proof Let N ∈N (C), and let (xt)t∈T be a net that converges to some x ∈ Conv N such that

f (xt) ≤ ϕ(xt , y) + f (y) ∀y ∈ Conv N ,∀t ∈ T .

Choosing y = x ∈ Conv N , by the lower semicontinuity of f we obtain

lim inf
t∈T

ϕ(xt , x) ≥ lim inf
t∈T

[
f (xt) – f (x)

] ≥ 0.

Hence, for all y ∈ Conv N ⊂ C, we get

ϕ(x, y) ≥ lim sup
t∈T

ϕ(xt , y) ≥ lim sup
t∈T

[
f (xt) – f (y)

]

≥ lim inf
t∈T

[
f (xt) – f (y)

] ≥ f (x) – f (y),

since ϕ is p.m. and f is l.s.c., and the proposition follows. �

Thus we immediately obtain the following existence result for extended real-valued
equilibria with p.m. bifunctions.

Theorem 3.1 Let C be a closed convex subset of a real Hausdorff topological vector space E.
Let an extended real-valued l.s.c. function f : C → (–∞, +∞], f �≡ ∞, and a real-valued
p.m. bifunction ϕ : C × C → R, nonnegative on the diagonal of C × C, be given such that
the following assumptions are satisfied:

(B1) For all x ∈ C, f + ϕ(x, ·) is quasiconvex on C.
(B2) There exist a compact subset K̃ of E and z̃ ∈ C ∩ K̃ such that for all x ∈ C \ K̃ ,

ϕ(x, z̃) + f (z̃) < f (x).

(B3) For all y ∈ C and N ∈N (C), ϕ(·, y) is upper semicontinuous on Conv N .
Then there exists a solution x̂ ∈ C ∩ K̃ of the extended real-valued equilibrium problem
P[ϕ, f ; C], that is, for all y ∈ C,

ϕ(x̂, y) + f (y) ≥ f (x̂).
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Next, we sharpen some assumptions in Theorem 3.1 and derive the following corollary.

Corollary 3.1 [26, Satz 1.6] Let C be a closed convex subset of a real Hausdorff topological
vector space E. Let an extended real-valued convex l.s.c. function f : C → (–∞, +∞], f �≡
∞, and a real-valued p.m. bifunction ϕ : C ×C →R, nonnegative on the diagonal of C ×C,
be given such that the following assumptions are satisfied:

(C1) For all x ∈ C, ϕ(x, ·) is convex on C.
(C2) There exist a compact subset K̃ of E and z̃ ∈ C ∩ K̃ such that for all x ∈ C \ K̃ ,

ϕ(x, z̃) + f (z̃) < f (x).

(C3) For all y ∈ C and F ∈F (C), ϕ(·, y) is upper semicontinuous on C ∩ F .
Then there exists a solution x̂ ∈ C ∩ K̃ of the extended real-valued equilibrium problem
P[ϕ, f ; C].

Proof We only have to show that (C3) implies (B3). For that, let N ∈ N (C), N = {zj : 1 ≤
j ≤ k}. Define F = span{zj : 1 ≤ j ≤ k}. Then F ∈ F (C) and Conv N ⊂ C ∩ F . Hence if f is
l.s.c. on C ∩ F , then f is l.s.c. on Conv N . �

Note that in the case C = E, conditions (C3) and (B3) are in fact equivalent. Indeed, for
all x0 ∈ F and F ∈F (E), we can construct some N ∈N (F) such that x0 is an interior point
of Conv N . Hence the continuity on Conv N , N ∈N (E), implies the continuity on F for all
F ∈F (E).

From now on we impose that ϕ vanishes on the diagonal of C × C and that for x ∈
C, ϕ(x, ·) is convex. Let us recall from [7, 26] that a bifunction ϕ : C × C → R is called
monotone on the closed convex subset C of E if for all x, y ∈ C,

ϕ(x, y) + ϕ(y, x) ≤ 0.

Note that ϕ(x, y) := c(y)–c(x) with c : C →R is a simple example of a monotone bifunction.
For a monotone bifunction ϕ, the following relaxed notion of continuity is important: ϕ is
called hemicontinuous on C if for all x, y ∈ C, the function t ∈ [0, 1] → ϕ(ty +(1 – t)x, y) is
upper semicontinuous at t = 0. For a hemicontinuous monotone bifunction ϕ, the “Minty
trick” [10, Lemma 1], [42, Lemma 1] applies:

Proposition 3.2 Let ϕ : C × C → R, let f : C → (–∞, +∞], f �≡ ∞, be convex and l.s.c.,
and let D be a convex subset of C. Consider the statements

(i) x ∈ D,ϕ(x, y) + f (y) – f (x) ≥ 0 ∀y ∈ D;

(ii) x ∈ D,ϕ(y, x) + f (x) – f (y) ≤ 0 ∀y ∈ D.

If ϕ is monotone on D, then (i) implies (ii); if ϕ is hemicontinuous on D, then (i) follows from
(ii).
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Proof (i) ⇒ (ii) is obvious for monotone ϕ. - To show (ii) ⇒ (i), let y ∈ D. Then zs = x +
s(y – x) ∈ D for s ∈ (0, 1], and hence ϕ(zs, x) ≤ f (zs) – f (x). Since ϕ(zs, ·) and f are convex,

0 = ϕ(zs, zs) ≤ sϕ(zs, y) + (1 – s)
[
f (zs) – f (x)

]

≤ s
[
ϕ(zs, y) – f (zs)

]
+ sf (y),

and thus –f (y) ≤ ϕ(zs, y) – f (zs). Letting s → 0 results in –f (y) ≤ ϕ(x, y) – f (x), since ϕ is
hemicontinuous and f is l.s.c. �

Now we can show that a hemicontinuous monotone bifunction ϕ that is l.s.c. in the
second argument together with a convex l.s.c. extended real-valued function f satisfies
assumption (A4) of the general existence Theorem 2.3: Let D be an arbitrary convex subset
of C, and let {xt} ⊂ C be a net converging to some x ∈ D such that ϕ(xt , z) ≥ f (xt) – f (z)
for all z ∈ D and t ∈ T . Since ϕ is monotone, ϕ(z, xt) ≤ f (z) – f (xt) for all z ∈ D and t ∈ T .
Since ϕ(z, ·) and f are l.s.c., we get that ϕ(z, x) ≤ f (z) – f (x) for all z ∈ D. By Proposition 3.2
we conclude that ϕ(x, ·) ≥ f (x) – f (·) on D, as claimed.

Thus Theorem 2.3 applies to conclude the existence of equilibria with monotone bifunc-
tions. However, its assumption (A3) imposes for any y ∈ C the upper semicontinuity of
ϕ(·, y) on finite-dimensional convex parts Conv N for N ∈N (C), which is slightly stronger
than the hemicontinuity. To arrive at an existence result for extended real-valued equilib-
ria with monotone bifunctions that are only hemicontinuous, we again appeal to the basic
Theorem 2.2 and slightly modify the monotonicity argument of [7, Lemma 2].

Theorem 3.2 [26, Satz 1.8] Let C be a closed convex subset of a real Hausdorff topological
vector space. Let an extended real-valued convex l.s.c. function f : C → (–∞, +∞], f �≡ ∞,
and a real-valued hemicontinuous monotone bifunction ϕ : C × C → R that vanishes on
the diagonal of C × C be given such that the following assumptions are satisfied:

(D1) For all x ∈ C, ϕ(x, ·) is convex and l.s.c. on C.
(D2) There exist a compact subset K̃ of E and z̃ ∈ C ∩ K̃ such that for all x ∈ C \ K̃ ,

ϕ(x, z̃) + f (z̃) < f (x).

Then there exists a solution x̂ of the extended real-valued equilibrium problem P[ϕ, f ; C].

Proof In virtue of Proposition 3.2, we have to show the existence of x̂ ∈ C ∩K that satisfies

ϕ(y, x̂) ≤ f (y) – f (x̂)

for all y ∈ C. Thus we apply Theorem 2.2 to the subsets

M(y) =
{

x ∈ C|ϕ(y, x) ≤ f (y) – f (x)
}

, y ∈ C,

of X = C. Since K0 = {z̃} is convex compact and M(z̃) is relatively compact by (D2), (i) is
satisfied. The continuity assumptions on f and ϕ(y, ·) by (D1) ensure that M(y) is closed for
all y ∈ C. Hence (ii) and (iii) hold. It remains to show that M : C → 2C is a KKM map. Let
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{y1, . . . , yk} be an arbitrary finite subset of C, and let {λ1, . . . ,λk} be arbitrary nonnegative
reals with

∑k
i=1 λi = 1. Suppose that

y∗ =
k∑

i=1

λiyi /∈
k⋃

i=1

M(yi).

This means that

ϕ
(
yi, y∗) + f

(
y∗) > f (yi), ∀i = 1, . . . , k.

On the other hand, since ϕ(yi, ·) and f are convex,

ϕ
(
yi, y∗) + f

(
y∗) ≤

k∑

j=1

λj
[
ϕ(yi, yj) + f (yj)

] ∀i = 1, . . . , k.

Hence altogether by linear combination with λi ≥ 0 we have

k∑

i=1

k∑

j=1

λiλjϕ(yi, yj) +
k∑

j=1

λjf (yj) >
k∑

i=1

λif (yi).

This results in

2
k∑

i=1

k∑

j=1

λiλjϕ(yi, yj) =
k∑

i=1

k∑

j=1

λiλj
[
ϕ(yi, yj) + ϕ(yj, yi)

]
> 0,

which contradicts the monotonicity of ϕ. Hence there exists ẑ ∈ C that is an extended
real-valued equilibrium of P[ϕ, f ; C]. In view of (D2), ẑ ∈ K̃ . �

4 Variational inequalities of monotone type with set-valued operators. An
equilibrium approach

In this section, we derive existence results for variational inequalities (VIs) of monotone
type from our existence results for extended real-valued equilibria. Here we focus to vari-
ational inequalities of the first kind with set-valued operators (“multis”) of monotone type
in general topological vector spaces (t.v.s.).

The crucial element in our approach to existence results for multis is the following exten-
sion lemma [29, Theorem 2.2], which is a refined version of the famous Fan–Glicksberg–
Hoffman theorem of alternative, which can be derived from Kneser’s minimax theorem
[37] and from Simons’ more general two-function minimax theorem [55, Theorem 5] or
can be directly proved from the separation theorem [7, 29].

Lemma 4.1 Let C be a convex set in a vector space. Llet K be a compact convex set in a
topological vector space. Let L be a real-valued functional on C ×K such that, for all y ∈ K ,
L(·, y) is convex and, for every x ∈ C, L(x, ·) is concave and upper semicontinuous. Then the
following statements are equivalent.

1. For each x ∈ C, there exists y ∈ K such that L(x, y) ≥ 0.
2. There exists ỹ ∈ K such that L(x, ỹ) ≥ 0 for each x ∈ C.
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Moreover, we need the well-known Berge theorem for maximum functions with set-
valued maps; see [6, Theorem 2, Chap. 6, p. 122]. For that, we recall (see [6, Chap. 6]) that
a set-valued map S : X → 2Y in topological spaces X, Y is upper semicontinuous at x0 ∈ X
if for any open set O ⊃ S(x0) there is a neighborhood U of x0 such that O ⊃ S(x) for any
x ∈ U ; S is upper semicontinuous (u.s.c.), if S is upper semicontinuous at any x0 ∈ X.

Lemma 4.2 Let X and Y be topological spaces, let f : X × Y → R, let S : X → 2Y be a set-
valued map, and let

f̄ (x) = sup
y∈S(x)

f (x, y) ∀x ∈ X.

Suppose that f is upper semicontinuous and S is upper semicontinuous with compact val-
ues. Then f̄ is upper semicontinuous.

Let E be real Hausdorff topological vector space with dual space E∗ and duality 〈·, ·〉.
Further, as before, let C be a closed convex nonempty subset of E. Let S : C → 2E∗ be a
set-valued operator with nonempty, convex, and σ (E∗, E)-compact values S(x) for x ∈ C.

We are interested in the variational inequality problemP(S; C): Find a pair (x̂, ξ̂ ) ∈ E×E∗

such that x̂ ∈ C, ξ̂ ∈ S(x̂), and for all y ∈ C,

〈ξ̂ , y – x〉 ≥ 0.

To apply our theory for equilibria of the previous section, we consider the real-valued
bifunction ϕ : C × C →R,

ϕ(x, y) := max
ξ∈S(x)

〈ξ , y – x〉, (2)

which clearly vanishes on the diagonal of C × C and is convex and l.s.c. on C with respect
to the second argument.

Now we can derive from Theorem 3.2 the following existence result for VIs with mono-
tone set-valued operators.

Theorem 4.1 Let C be a closed convex subset of a real Hausdorff topological vector space E.
Let S : C → 2E∗ be a set-valued hemicontinuous operator, that is, for all x, y ∈ C, t ∈ [0, 1] →
S(tx +(1 – t)y) is upper semicontinuous at t = 0 and is monotone, that is, for all x, y ∈ C,
ξ ∈ S(x), and η ∈ S(y), we have 〈ξ – η, x – y〉 ≥ 0. Suppose there exist a compact subset K̃ of
E and z̃ ∈ C ∩ K̃ such that for all x ∈ C \ K̃ , there exist ζ ∈ S(z̃) such that

〈ζ , x – z̃〉 < 0.

Then there exists a solution x̂ to the variational inequality problem P(S; C).

Proof Obviously, the bifunction ϕ given by (2) is monotone and hemicontinuous by
Lemma 4.2. Since the coercivity condition (D2) is satisfied, Theorem 3.2 yields the ex-
istence of x̂ ∈ C such that for each y ∈ C, there exists ξ ∈ S(x̂) such that 〈ξ , y – x〉 ≥ 0.
Finally, apply Lemma 4.1 to obtain the result. �
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Next, let S : C → 2E∗ be a set-valued operator with nonempty, convex, and σ (E∗, E)-
compact values E(x) for x ∈ C that is u.s.c. from every finite-dimensional part C ∩F (where
F is a finite-dimensional subspace of E) into E∗ equipped with the weak topology σ (E∗, E).
Then S is called pseudomonotone (p.m.) (see, e.g., [52, Definition 2.10.1], going back to
[8]) if the following condition holds:

If a net {xt}t∈T ⊂ C converges to x ∈ C and ξt ∈ S(xt) satisfies lim sup
t∈T

〈ξt , x – xt〉 ≥ 0,

then for each y ∈ C, there is ξ ∈ S(x) such that 〈ξ , y – x〉 ≥ lim sup
t∈T

〈ξt , y – xt〉.

Here we focus on this notion of generalized monotonicity. For other notions of gener-
alized monotonicity for multis and their relation to topological pseudomonotonicity, we
refer to [52, Sect. 2.10].

Again, we use construction (2). It is evident that a p.m. set-valued operator gives a p.m.
bifunction ϕ. So by a similar reasoning as before, in particular, using Lemmas 4.1 and
4.2, we can conclude from Theorem 3.1 the following existence result for VIs with p.m.
set-valued operators.

Theorem 4.2 Let C be a closed convex subset of a real Hausdorff topological vector space E.
Let S : C → E∗ be a p.m. set-valued operator that is u.s.c. from every part C ∩ F into E∗ for
any finite-dimensional subspace F of E. Suppose there exist a compact subset K̃ of E and
z̃ ∈ C ∩ K̃ such that for all x ∈ C \ K̃ , there exists ζ ∈ S(z̃) such that 〈ζ , x – z̃〉 < 0. Then there
exists a solution x̂ to the variational inequality problem P(S; C).

5 Extended real-valued equilibrium problems of monotone type in a reflexive
Banach space

Let V be a reflexive Banach space with dual V ∗. We denote by 〈·, ·〉 the duality pairing
between V and V ∗ and by ‖ · ‖ and ‖ · ‖∗ the norm and the dual norm on V and V ∗, re-
spectively. We denote by “⇀” and “→” the weak and strong convergence in V , respectively.
As before, C stands for a nonempty closed convex subset of V .

In the following, we use weak sequential convergence on V and, in particular, the com-
pactness of the unit ball of V with respect to weak sequential convergence. Moreover,
since from any weakly convergent net in a reflexive Banach space there can be extracted a
weakly convergent subsequence (with the same limit) (see [11, Prop. 7.2]), we can simplify
the definition of a p.m. bifunction ϕ as follows. Now ϕ : C × C → R is called Brèzis pseu-
domonotone or topologically pseudomonotone (p.m.) on C if for any sequence {xn}n∈N ⊂ C
that converges weakly to some x ∈ V and satisfies lim infn∈N ϕ(xn, x) ≥ 0, we have

ϕ(x, y) ≥ lim sup
n∈N

ϕ(xn, y)

for all y ∈ C. The stability of monotonicity with respect to addition is evident, and it can
be shown that the sum of two p.m. bifunctions is p.m., too; see [30, Proposition].

Also, for further use, we note that a hemicontinuous monotone operator T defined
throughout V is continuous on finite-dimensional subspaces and pseudomonotone on V ;
see [8, Propositions 6 and 9] and [59, Proposition 27.6]. Hence, in particular, the bifunction
ϕT (x, y) := 〈Tx, y – x〉 associated with T is p.m. on V .
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Now we are in a position to apply our general existence theory of Sect. 3 and derive
existence results for extended real-valued equilibrium problems of monotone type in the
setting of a reflexive Banach space, first, on bounded sets and then on unbounded sets,
where we discuss the issue of coercivity following [26].

5.1 Extended real-valued equilibrium problems of monotone type on bounded
sets

Let V be a reflexive Banach space with norm ‖ · ‖ and dual V ∗. As before, C stands for
a nonempty closed convex subset of V . In the following, let an extended real-valued func-
tion f : C → (–∞, +∞], f �≡ ∞, be convex and l.s.c., and let a real-valued bifunction
ϕ : C × C → R vanish on the diagonal of C × C and be convex and l.s.c. with respect
to the second argument. We are interested in the existence of a solution x̂ of the extended
real-valued equilibrium problem P[ϕ, f ; C], that is,

ϕ(x̂, y) + f (y) ≥ f (x̂)

for all y ∈ C. From Theorem 3.1 we immediately obtain the following:

Corollary 5.1 Let, in addition, C be bounded in the reflexive Banach space V , and let
a p.m. bifunction ϕ : C × C → R be such that for all y ∈ C and N ∈ N (C), ϕ(·, y) is upper
semicontinuous on Conv N . Then there exists a solution x̂ ∈ C ∩ K̃ of the extended real-
valued equilibrium problem P[ϕ, f ; C].

This result can be compared with the recent existence result in [14, Theorem 2.1], where
an additional maximal monotone bifunction appears, and instead of P[ϕ, f ; C], a regular-
ized equilibrium problem (with f = 0) with the duality map as a regularizer is considered.

When the bifunction ϕ is only defined on C × C, where C is a proper subset of V , we
can appeal to Theorem 3.2 and directly obtain the following Hartman–Stampacchia-like
result [34].

Corollary 5.2 Let, in addition, C be bounded in the reflexive Banach space V , and let
ϕ : C × C →R be a hemicontinuous and monotone bifunction. Then there exists a solution
x̂ of the extended real-valued equilibrium problem P[ϕ, f ; C].

5.2 Extended real-valued equilibrium problems of monotone type on
unbounded sets. Coercivity

Throughout this subsection, we assume that the equilibrium problemP[ϕ, f ; D] is solvable
for any bounded closed convex subset D ⊂ C. For brevity, we write ψ(x, y) := ϕ(x, y)+ f (y)–
f (x).

First, we consider the coercivity condition that goes back to Moré [43, Theorem 2] deal-
ing with the solution of complementarity problems.

Proposition 5.1 In addition, assume tha

ϕ(x, z̃) + f (z̃) ≤ f (x), ∀x ∈ C with ‖x‖ = ρ,

for some z̃ ∈ C with ρ > ‖z̃‖. Then there exists a solution of P[ϕ, f ; C] in K(0,ρ) := {x ∈ V :
‖x‖ ≤ ρ}.
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Proof By assumption there exists a solution x̄ of P[ϕ, f ; Cρ], where Cρ := C ∩ K(0,ρ). We
distinguish two cases.

Suppose ‖x̄‖ < ρ . Then choose x1 ∈ C with ‖x1‖ > ρ . Take x2 = τx1 + (1 – τ )x̄. For suffi-
ciently small τ > 0, we have x2 ∈ Cρ , and hence

0 ≤ ψ(x̄, x2) ≤ τψ(x̄, x1),

and thus ψ(x̄, x1) ≥ 0.
Otherwise, ‖x̄‖ = ρ , and hence ψ(x̄, z̃) = 0. For an arbitrary x1 ∈ C with ‖x1‖ > ρ , take

x2 = τx1 + (1 – τ )z̃. For sufficiently small τ > 0, we have x2 ∈ Cρ and hence obtain as above
ψ(x̄, x1) ≥ 0. So in both cases, x̄ solves P[ϕ, f ; C]. �

Next, we consider the coercivity condition that goes back to Stampacchia in [58, Theo-
rem 2.5].

Proposition 5.2
A necessary and sufficient condition for the solvability of P[ϕ, f ; C] is the existence of a

real number ρ > 0 such that a solution xρ of P[ϕ, f ; Cρ] with Cρ = C ∩ K(0,ρ) satisfies
‖xρ‖ < ρ .

Proof Necessity. Just choose ρ > ‖x̄‖ for a solution x̄ of P[ϕ, f ; C].
Sufficiency. Let xρ solve P[ϕ, f ; Cρ] with ‖xρ‖ < ρ . To show that xρ solves P[ϕ, f ; C], let

y ∈ C \ K(0,ρ) be arbitrary. Then z = τy + (1 – τ )xρ ∈ C for τ ∈ (0, 1), and for sufficiently
small τ > 0, we have

‖z‖ ≤ ‖xρ‖ + τ
(‖y‖ – ‖xρ‖

) ≤ ρ.

Hence 0 ≤ ψ(xρ , z) ≤ τψ(xρ , y), and thus ψ(xρ , y) ≥ 0. The conclusion follows. �

In addition, assume that ϕ is monotone. Then the coercivity condition of Proposition
5.2 implies the existence of xρ with ‖xρ‖ < ρ such that ψ(y, xρ) ≤ 0 for all y ∈ Cρ . Hence
xρ satisfies the coercivity condition of Proposition 5.1.

Next, we provide asymptotic coercivity conditions for equilibrium problems on un-
bounded sets.

Theorem 5.1 Let ϕ : C × C → R be p.m. or hemicontinous and monotone. Suppose there
exists x0 ∈ C such that

lim sup
‖x‖→∞,x∈C

[
ϕ(x, x0) – f (x)

]
< –f (x0). (3)

Then there exists a solution to P[ϕ, f ; C].

Proof By assumption there exists a solution xn of P[ϕ, f ; Cn] on the bounded set Cn :=
C ∩ K(0, n) for all n ∈ N. By a contradiction argument we can show that (3) implies that
the norms ‖xn‖ are bounded. Hence there exists a weakly convergent subsequence {xk}k∈K ,
K ⊂N, such that xk ⇀ x̄ for some x̄ ∈ C and x̄ ∈ Ck for sufficiently large k ∈ K .
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For a p.m. bifunction ϕ, we conclude from

lim inf
k→∞,k∈K

ϕ(xk , x̄) ≥ lim inf
k→∞,k∈K

[
f (xk) – f (x̄)

] ≥ 0

that

ϕ(x̄, y) ≥ lim sup
k→∞,k∈K

ϕ(xk , y)

≥ lim inf
k→∞,k∈K

[
f (xk) – f (y)

]

≥ f (x̄) – f (y) ∀y ∈ C.

Hence x̄ solves P[ϕ, f ; C].
For a hemicontinous and monotone bifunction ϕ, we use the Minty trick as follows. By

construction and Proposition 3.2 we have

xk ∈ Ck ,ϕ(y, xk) ≤ f (y) – f (xk) ∀y ∈ Ck .

Since the sets Ck give rise to an ascending set sequence and exhaust the set C, it follows
for all y ∈ C,

ϕ(y, x̄) ≤ lim inf
k→∞,k∈K ,k≥k0(y)

ϕ(y, xk) ≤ lim inf
k→∞,k∈K ,k≥k0(y)

[
f (y) – f (xk)

] ≤ f (y) – f (x̄).

By Proposition 3.2 x̄ solves P[ϕ, f ; C]. �

The asymptotic coercivity condition (3) is in particular satisfied if there is x0 ∈ C such
that

f (x) – ϕ(x, x0)
‖x – x0‖ → ∞ for x ∈ C,‖x‖ → ∞. (4)

A coercivity condition of this type can already be found in [10, Theorem 3].

5.3 Extended real-valued equilibrium problems of monotone type under
asymptotic coercivity condition

Under the asymptotic condition (4), we formulate the following useful existence results.
First, in the monotone case, we combine Theorem 5.1 and Corollary 5.2 to immediately
obtain the following:

Theorem 5.2 Let C be a closed convex subset of the reflexive Banach space V . Let an ex-
tended real-valued function f : C → (–∞, +∞], f �≡ ∞, be convex and l.s.c. and let a real-
valued bifunction ϕ : C × C → R vanish on the diagonal of C × C and be convex and
l.s.c. with respect to the second argument. Further, let ϕ : C × C → R be hemicontinuous
and monotone. Suppose the coercivity condition (4). Then there exists a solution x̂ of the
extended real-valued equilibrium problem P[ϕ, f ; C].

Finally, in this subsection, we treat the pseudomonotone case and formulate the follow-
ing useful existence result, where part (A) extends and improves [27, Theorem 1], [28,
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Theorem 3], and [31, Theorem 2.3] by relaxing the upper semicontinuity condition on
finite-dimensional parts to upper semicontinuity on convex hulls of finite subsets of C. In
part (B), we introduce an applicable growth condition for the bifunction ϕ, which can be
guaranteed in the context of variational-hemivariational inequalities we will study in the
next section.

Theorem 5.3 (A) Let V be a reflexive Banach space. Let the extended real-valued function
f : C → (–∞, +∞], f �≡ ∞, be convex and l.s.c. on the convex closed subset C ⊂ V . Let
ϕ : C × C → R be a bifunction such that for all x ∈ C, ϕ(x, x) ≥ 0 and ϕ(x, ·) is convex and
l.s.c. Moreover, suppose that ϕ is p.m., ϕ(·, y) is upper semicontinuous on the convex hull of
any finite subset of C for all y ∈ C, and (4) holds. Then there exists a solution of the extended
real-valued equilibrium problem P[ϕ, f ; C].

(B) Let, in addition, A : V → V ∗ be a hemicontinuous operator that satisfies

〈
A(x) – A(y), x – y

〉 ≥ ‖x – y‖ G
(‖x – y‖) ∀x, y ∈ V , (5)

where the function G : R+ = [0, +∞) → R+ is strictly increasing with G(0) = 0. Further,
suppose that ϕ satisfies, instead of (4), the following growth condition: there exists a positive
constant c1 such that

ϕ(y, 0) ≤ c1
(
1 + ‖y‖) ∀y ∈ C. (6)

Then there exists a solution x̂ of the extended real-valued equilibrium problemP[A,ϕ, f ; C],
that is, for all y ∈ C,

〈
A(x̂), y – x̂

〉
+ ϕ(x̂, y) + f (y) ≥ f (x̂).

Proof
(A) This is a consequence of Theorem 3.1 in combination with Theorem 5.1.
(B) First, observe that the hemicontinuous and monotone operator A defined through-

out the space V is pseudomonotone and upper semicontinuous on finite-dimensional sub-
spaces. Hence the associated bifunction ϕA(x, y) = 〈Ax, y – x〉 is p.m., and ϕA(·, y) is upper
semicontinuous on the convex hull of any finite subset of C for all y ∈ C; see the proof of
Corollary 3.1.

Since summation preserves pseudomonotonicity (see [30]), the bifunction ψ := ϕA + ϕ

is p.m., and ψ(·, y) is upper semicontinuous on the convex hull of any finite subset of C for
all y ∈ C.

We claim that f (x) – ψ(x, 0), x ∈ C, satisfies the asymptotic coercivity condition (4). In-
deed, (5) and (6) entail the estimate

–ψ(x, 0) ≥ ‖x‖G
(‖x‖) +

〈
A(0), x

〉
– c1

(
1 + ‖x‖) ∀x ∈ C,

and f is bounded below,

f (x) ≥ λ(x) + cf ∀x ∈ C (7)
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with appropriate λ ∈ V ∗ and cf ∈ R. This latter estimate can be obtained by strong sepa-
ration (Hahn–Banach theorem) of the convex closed set epi f = {(x, r) ∈ C ×R : r ≥ f (x)}
from the compact set (x1, f (x1) – 1), where x1 ∈ C is taken such that f (x1) < ∞.

Thus we can again apply the Theorem 3.1 in combination with Theorem 5.1 to obtain
the conclusion. �

6 Variational-hemivariational inequalities. An equilibrium approach
6.1 A class of variational-hemivariational inequalities
Let V be a reflexive Banach space endowed with norm ‖ · ‖. Further, suppose we have a
bounded domain D ⊂ R

d (with d = 1, 2, 3) and a linear compact operator χ : V → Lp(D)
(1 < p < ∞). Important particular cases of this framework are:

(1) V = W 1,p
0 (
) with Lipschitz domain D = 
 ⊂R

d , where d = 2, 3, and χ is the
canonical injection that is compact by the Rellich–Kondrachev theorem; see [1], [52,
Theorem 1.7.4];

(2) V = W 1,p
�D ,0(
) := {v ∈ W 1,p(
) : v|�D = 0} with Lipschitz domain 
 ⊂R

d with
d = 2, 3, where �D and D = �C are boundary parts of ∂
, and χ is the trace map that
is compact by the trace theorem; see [38, Theorem 6.10.5], [56].

In this setting, we treat a class of variational-hemivariational inequalities with the fol-
lowing main ingredients:

– a convex closed subset C of V that can explicitly describe constraints
– an extended real-valued convex l.s.c. function f : C → (–∞, +∞], f �≡ ∞, that can

implicitly describe constraints
– a monotone nonlinearity given by a monotone operator A : V → V ∗

– a nonmonotone nonlinearity given by the generalized Clarke directional derivative of
a locally Lipschitz function j (the so-called “superpotential”) that gives rise to a p.m.
bifunction

To make the latter ingredient precise, let us consider a function j : D × R
d → R such

that j(·, ξ ) : D →R is measurable on D for all ξ ∈R
d and j(s, ·) : Rd →R is locally Lipschitz

on R
d for almost all (a.a.) s ∈ D. Let j0(s, ·; ·) stand for the generalized Clarke directional

derivative [18] of j(s, ·), and let ∂j(s, ξ ) := ∂j(s, ·)(ξ ) denote the generalized subdifferential of
j(s, ·) at the point ξ in the sense of Clarke [18]. Then we define the bifunction ϕ on V × V
by

ϕ(u, v) =
∫

D
j0(s, (χu)(s); (χv)(s) – (χu)(s)

)
ds, ∀u, v ∈ V . (8)

Finally, let l ∈ V ∗ be a continuous linear form, which – similarly as C and f – will be
specified further.

With this data, we consider the nonlinear variational-hemivariational inequality (HVI):
Find u ∈ C such that

〈
A(u), v – u

〉
+ ϕ(u, v) + f (v) ≥ f (u) + 〈l, v – u〉 ∀v ∈ C. (9)

From Theorem 5.3(B) we derive the following existence result, which extends [15, The-
orem 3.1] from hemivariational inequalities with bilinear forms to nonlinear variational-
hemivariational inequalities.
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Theorem 6.1 Let an operator A : V → V ∗ be hemicontinuous and strongly monotone,
that is,

〈
A(v) – A(w), v – w

〉 ≥ cA‖v – w‖p ∀v, w ∈ V , (10)

where cA > 0 and 1 < p < ∞. Suppose that there exist positive constants c1 and c2 such that
for a.a. s ∈ D, all ξ ∈R

d , and all η ∈ ∂j(s, ξ ), the following inequalities hold:
(i) |η| ≤ c1(1 + |ξ |);

(ii) ηTξ ≥ –c2|ξ |.
Then there exists a solution to the HVI (9).

Proof
First, note that conditions (i) and (ii) ensure that the integral in (8) is well defined. Indeed,

it follows from (i) and (ii) that for a.a. s ∈ D,

∣∣j0(s, ξ ;ς )
∣∣ =

∣∣∣ max
η∈∂ j(s,ξ )

ηTς

∣∣∣ ≤ max
η∈∂ j(s,ξ )

|η||ς | ≤ c1
(
1 + |ξ |)|ς | ∀ξ ,ς ∈ R

d (11)

and

j0(s, ξ ; –ξ ) = max
η∈∂ j(s,ξ )

ηT (–ξ ) ≤ c2|ξ | ∀ξ ∈R
d. (12)

Moreover, thanks to [49, Lemma 1] and [31, Lemma 4.1], the functional ϕ is p.m. and
satisfies

ϕ(u, 0) ≤ c3 meas1/2(D)‖χ‖‖u‖ ∀u ∈ V (13)

for some positive constant c3. Hence the given bifunction ϕ satisfies the linear growth con-
dition (6). Finally, relation (5) is satisfied with G(t) = cAtp–1. Thus Theorem 5.3(B) applies
to arrive at the conclusion. �

An example is the following scalar variational problem that models nonmonotone con-
tact problems and employs the p-Laplace operator.

Example 6.1 Let 
 ⊂ R
d be a bounded domain with Lipschitz boundary ∂
 (d = 2, 3).

Decompose ∂
 into three disjoint parts �D, �N , and �C , ∂
 = �D ∪ �N ∪ �c, where zero
boundary conditions are imposed on the Dirichlet part �D with positive measure, surface
tractions t ∈ L2(�N ;Rd) act on the Neumann part �N , and on the contact part �C (with
positive measure), a nonmonotone, generally multivalued boundary condition holds. We
consider the reflexive Banach space V = W 1,p

�D ,0(
) = {v ∈ W 1,p(
) : v|�D = 0} with p ≥ 2,
endowed with the norm

‖v‖1,p =
{∫




‖∇v‖p dx
}1/p

.

Let A : V → V ∗ be the operator defined for u, v ∈ V by

〈
A(u), v

〉
=

∫




‖∇u‖p–2∇u · ∇v dx.
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Hence for some positive constant cA, we have

〈
A(u) – A(v), v – u

〉 ≥ cA‖u – v‖p
1,p

for all u, v ∈ V . It follows that the operator A : V → V ∗ is monotone and relation (5) is
satisfied with G(t) = cAtp–1.

We prescribe nonmonotone, generally set-valued boundary conditions on �c via the
bifunction ϕ : V × V →R given by

ϕ(u, v) :=
∫

�c

j0(γ u(s);γ v(s) – γ u(s)
)

ds ∀u, v ∈ V . (14)

Here j0(ξ ;η) is the generalized Clarke derivative [18] of a locally Lipschitz function j :
R

d → R at ξ ∈ R
d in the direction η ∈ R

d . Further, γ stands for the linear compact trace
operator from V ⊂ W 1,p(
) into Lp(�c) with the norm ‖γ ‖.

Moreover, the given right-hand side f0 ∈ L2(
), f1 ∈ Lp(�N ) defines the linear form

〈l, v〉 :=
∫




f0 · v dx +
∫

�N

f1 · γ v ds.

Let C be a nonempty closed convex subset of V to be specified further.
With this data, we consider the nonlinear variational-hemivariational inequality (HVI):

Find u ∈ C such that

〈
A(u), v – u

〉
+ ϕ(u, v) ≥ 〈l, v – u〉 ∀v ∈ C. (15)

We need the following growth conditions on the locally Lipschitz superpotential j : R →
R:

(i) |η| ≤ cI
(
1 + |ξ |) for all η ∈ ∂j(ξ ) with cI > 0;

(ii) η(–ξ ) ≤ cII|ξ | for all η ∈ ∂j(ξ ) with cII > 0.

According to [48, Lemma 1], the bifunction ϕ : V × V →R is well-defined, pseudomono-
tone, and upper-semicontinuous, and relation (6) is satisfied with

c1 := cIImeas(�c)1/2‖γ ‖. (16)

Thus altogether this example fits to the frame described above, and Theorem 5.3(B) ap-
plies to conclude the existence of a solution to the HVI (15).

Finally, in this subsection, we comment on uniqueness of the solution to the HVI (15).

Remark 6.1 Introduce the upper Lipschitz condition on the bifunction ϕ: There exists
a constant cϕ > 0 such that

ϕ(u, v) + ϕ(v, u) ≤ cϕ‖u – v‖2 ∀u, v ∈ V . (17)
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Then as it is easily seen, the smallness condition cϕ < cA guarantees the uniqueness; see,
e.g., [46, Theorem 5.1] and [47, Sect. 5.1, Theorem 1]. However, this crucial smallness con-
dition is very abstract. For a detailed study of this condition for a class of locally Lipschitz
functions j that takes the jumps of ∂j into account, we refer to [47, Sect. 5.1].

6.2 A more general class of variational-hemivariational inequalities
In this subsection, we turn to a more general class of variational-hemivariational in-
equalities on a reflexive Banach space V . Following [57, Sect. 5.4], there are the follow-
ing ingredients: a convex closed subset C ⊂ V , an operator A : C → V ∗, a bifunction
ψ : C × C → R, and a locally Lipschitz function J : C → R with the Clarke generalized
directional derivative J0. In addition, we introduce an extended real-valued convex and
l.s.c. function f : C → (–∞, +∞], f �≡ ∞, and consider the following extended real-valued
HVI problem: Find an element û ∈ C such that

〈
A(û), v – û

〉
+ ψ(û, v) – ψ(û, û) + J0(û; v – û) + f (v) ≥ f (û) ∀v ∈ C. (18)

We require the following conditions on the data A, ψ , J :
[CA] A : C → V ∗ is such that

(1) A is hemicontinuous;
(2) there exists mA > 0 such that

〈
A(v1) – A(v2), v1 – v2

〉 ≥ mA‖v1 – v2‖2 for all v1, v2 ∈ C.

[Cψ ] ψ : C × C →R is such that
(1) ψ(u, ·) : C →R is convex and l.s.c. on C for all u ∈ C;
(2) there exists αψ > 0 such that there holds the Lipschitz condition

ψ(u1, v2) – ψ(u1, v1) + ψ(u2, v1) – ψ(u2, v2)

≤ αψ‖u1 – u2‖‖v1 – v2‖ for all u1, u2, , v1, v2 ∈ C.

[CJ ] J : C →R is such that
(1) J is locally Lipschitz;
(2) there exists αJ > 0 such that

J0(v1; v2 – v1) + J0(v2; v1 – v2) ≤ αJ‖v1 – v2‖2

Theorem 6.2 Assume that conditions [CA], [Cψ ], and [CJ ] hold. Moreover, suppose the
smallness condition

αψ + αJ < mA. (19)

Then the HVI (18) is uniquely solvable.

Proof Introduce

ϕ1(u, v) := ψ(u, v) – ψ(u, u); ϕ2(u, v) := J0(u; v – u),
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�(u, v) :=
〈
A(u), v – u

〉
+ ϕ1(u, v) + ϕ2(u, v) ∀u, v ∈ C.

Then for all u ∈ C, �(u, ·) is convex and l.s.c. on C, and �(u, u) = 0.
The bifunction ϕ2 is hemicontinuous, that is, for all u, v ∈ C, the function t ∈ [0, 1] →

ϕ2(tv +(1 – t)u, v) = J0(tv +(1 – t)u; (1 – t)(v – u))) is u.s.c. (upper semicontinuous) at t = 0,
since (x.w) → J0(x; w) is u.s.c.; see [18, Prop.2.1.1(b)].

Also, the bifunction ϕ1 is hemicontinuous. To see this, use the shorthand wt := tv +(1 –
t)u for fixed u, v ∈ C. Then wt → u as t → 0, and

lim sup
t→0

[
ψ(u, u) – ψ(u, wt)

] ≤ 0, (20)

since ψ(u, ·) is l.s.c. Then write

ϕ1(wt , v) – ϕ1(u, v) = ψ(wt , v) – ψ(wt , wt) – ψ(u, v) + ψ(u, u)

=
[
ψ(u, u) – ψ(u, wt)

]

+
{
ψ(u, wt) + ψ(wt , v) – ψ(wt , wt) – ψ(u, v)

}
.

Thanks to the Lipschitz condition, the term in the curled brackets is bounded above by

αψ ‖u – wt‖‖v – wt‖ = αψ t(1 – t)‖v – u‖2 → 0 as t → 0.

In virtue of (20), the hemicontinuity follows. Thus the bifunction � is also hemicontinu-
ous. Next, we estimate using [CA](2), [Cψ ](2), and [CJ ](2):

�(u, v) + �(v, u) = 〈Au – Av, v – u〉 + ψ(u, v) – ψ(u, u) + ψ(v, u) – ψ(v, v)

+ J0(u; v – u) + J0(v; u – v)

≤ –(mA – αψ – αJ )‖u – v‖2 ∀u, v ∈ C. (21)

Hence the smallness condition (19) implies that the bifunction � is strongly monotone.
Further, (21) and (19) imply with the lower bound (7) for the convex l.s.c. function f , shown
in the proof of Theorem 5.3, that f (·) –�(·, u0) for some u0 ∈ C satisfies the asymptotic co-
ercivity condition (4). Thus Theorem 5.2 yields the existence of a solution to the HVI (18).

To show the uniqueness, we employ the standard argument: Let ū1, ū2 ∈ C be two dif-
ferent solutions to the HVI (18). Then insert v = ū2, respectively, v = ū1 into the HVI (18).
Add the resulting inequalities

�(ū1, ū2) + f (ū2) ≥ f (ū1),

�(ū2, ū1) + f (ū1) ≥ f (ū2)

to obtain

�(ū1, ū2) + �(ū2, ū1) ≥ 0,

which contradicts (21) and (19). �
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Some remarks on the variational problems in this section and on the previous existence
result are in order.

Remark 6.2
1) When we drop ϕ in (9) and when we drop ψ and J0 in (18), we obtain a standard

elliptic variational inequality with nonlinear monotone operator A. On the other
hand, dropping the operator A in (9) and in (18) leads in view of the ϕ and J0 terms,
respectively, to a hemivariational inequality. Therefore, following [57], (9) and (18)
are called elliptic variational-hemivariational inequalities. In contrast, further in
(18), there is a convex l.s.c. function ψ(, ·) on C depending on v ∈ C. So problem
(18) can also be considered as a quasi-hemivariational inequality (of the second
kind), and thus Theorem 6.2 extends [12, Theorem 4.16].

2) In comparison with [57, Theorem 84, Sect. 5.4], it suffices in Theorem 6.2 all the
maps to be defined on C only and to demand the single smallness condition (19).
The proof of Theorem 6.2 by the equilibrium approach is shorter than that of [12,
Theorem 4.16] and that of [57, Theorem 84, Sect. 5.4], which rely on existence
results for classical variational inequalities and need an extra fixed point argument.

3) It is worth noting that because of the restrictive feature of the smallness condition
(19), in the application to static contact problems in [57, Chap. 8] when (see [57,
(4.9), p.126]), analogously to (14),

J(v) =
∫

�c

j
(
s,γ v(s)

)
d�,

the norm of the trace operator γ : V → L2(�c;Rd) enters the smallness condition;
see [57, Lemma 8, p.126], but the compactness of γ is not required. In contrast,
Theorem 6.1 and Example 6.1 demand the compactness of γ .

7 A frictional unilateral contact problem
In this section, we apply the main result of Sect. 5 to study the existence of solutions for a
broad class of variational-hemivariational inequalities that model unilateral contact prob-
lems with nonmonotone, generally set-valued friction laws in solid mechanics. Similar
nonmonotone friction phenomena occur with adhesion/cohesion and delamination prob-
lems in material science; see, for instance, [20, 35, 45] and the references therein.

Let us consider a deformable body which occupies the Lipschitz domain 
 ⊂ R
d (d =

2, 3). The boundary � = ∂
 is decomposed into three disjoint open parts such that � =
�D ∪ �N ∪ �C with meas(�D) > 0 and meas(�C) > 0. Suppose that the process is static
and, in addition, the body is subjected to volume forces of density f0 in 
 and to surface
tractions of density f1 on �N . On �C the body is in frictional unilateral contact with a rigid
obstacle (foundation). We model the friction by a boundary condition in the tangential
direction involving Clarke’s generalized gradient and leading to the study of a nonlinear
variational-hemivariational inequality problem.

Let Sd be the space of second-order symmetric tensors on R
d . For u = (ui), v = (vi) ∈R

d ,
and σ , τ ∈ S

d , the inner product and the Euclidean norm on S
d and R

d are, respectively,
u · v = ui vi, ‖u‖ = (u · u)1/2, σ · τ = σij τij, ‖σ‖ = (σ · σ )1/2. We also use the usual notation
for the normal components and the tangential parts of vectors and tensors, respectively,
given by uN = u · n, uT = u – uN n, σN = σijni nj, and σT = σn – σN n, ∂N u = ∇u · n, where
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n = (ni) represents the outward unit normal vector to the Lipschitz boundary ∂
, which
is defined almost everywhere.

We consider the following contact problem for a nonlinear elastic body with unilateral
constraints and nonmonotone friction condition, where the friction coefficient is slip de-
pendent.

Problem (P1): Find a displacement field u = (ui) : 
 → R
d and a stress field σ = (σij) :


 → S
d such that

σ (u) = A
(
ε(u)

)
in 
, (22)

Divσ (u) + f0 = 0 in 
, (23)

u = 0 on �D, (24)

σ (u)n = fN on �N , (25)

uN ≤ g, σN (u) ≤ 0, σN (u)(uN – g) = 0 on �C , (26)

–σT (u) ∈ μ
(‖uT‖)∂j(uT ) on �C . (27)

Equation (22) represents the constitutive law for nonlinear elastic materials. The contact
is assumed to be static, and hence we use the equilibrium equation (23), f0 being the body
force density. Equations (24) and (25) are the classical displacement and traction bound-
ary conditions: the body is fixed on �D, and surface tractions of density fN are applied on
�N . Assuming that the foundation is perfectly rigid, we have the unilateral Signorini con-
dition (26) on the surface �C , where g describes the gap between body and foundation.
Relation (27) exhibits the friction law, where ∂j denotes the generalized gradient of the
given locally Lipschitz function j, and μ is the friction coefficient, which is assumed to be
a positive function on �C . The function μ may depend on the slip, that is, on the tangen-
tial displacement. For details on mathematical description of static contact models, see,
for instance, [41, 56].

We require the following conditions on the nonlinear elastic operator A, the superpo-
tential j, and the friction coefficient μ.

[CA] A : 
 × S
d → S

d satisfies
(1) A(·, ε) is measurable on 
 for all ε ∈ S

d ;
(2) A(x, ·) is hemicontinuous for a.a. x ∈ 
;
(3) There exist α0 ∈ L2(
), α0 ≥ 0, and a constant α1 > 0 such that

∥∥A(x, ε)
∥∥ ≤ α0(x) + α1‖ε‖ for all ε ∈ S

d and a.a. x ∈ 
;

(4) There exists a constant α2 ≥ 0 such that for all ε1, ε2 ∈ S
d and a.a. x ∈ 
,

(
A(x, ε1) – A(x, ε2)

) · (ε1 – ε2) ≥ α2‖ε1 – ε2‖2.

[Cj] j : �C ×R
d →R is such that

(1) j(x, ·) is locally Lipschitz on R
d for a.a. x ∈ �C ;

(2) j(·, ξ ) is measurable on �C for all ξ ∈R
d ;

(3) |η| ≤ a(1 + |ξ |) for all η ∈ ∂j(x, ξ ), ξ ∈R
d and a.a. x ∈ �C with a > 0;

(4) η · (–ξ ) ≤ b|ξ | for all η ∈ ∂j(x, ξ ), ξ ∈ R
d and a.a. x ∈ �C with b > 0.
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[Cμ] μ : �C ×R
+ →R

+ is such that
(1) μ(·, s) is measurable on �C for all s ∈ R

+;
(2) There exists Lμ > 0 such that

∣∣μ(x, s1) – μ(x, s2)
∣∣ ≤ Lμ|s1 – s2|, for all s1, s2 ∈R

+ and a.a. x ∈ �C ;

(3) There exists μ0 > 0 such that μ(x, s) ≤ μ0 for all s ∈ R
+ and a.a. x ∈ �C .

Moreover, we suppose that the following regularity conditions are satisfied by the gap
function and the densities of the body forces and surface traction:

g ∈ L2(�c), f0 ∈ L2(
;Rd), fN ∈ L2(�N ;Rd). (28)

To give the weak formulation of problem (P1), we consider the following Hilbert spaces:

V =
{

v ∈ H1(
;Rd) : v = 0 on �D
}

, H = L2(
;Rd), H = L2(
;Sd).

The inner products over the spaces H and V are given respectively by

〈σ , τ 〉H =
∫




σij(x)τij(x) dx for σ , τ ∈H, and 〈u, v〉V =
〈
ε(u), ε(v)

〉
H for u, v ∈ V .

Let γ : V → L2(�;Rd) be the trace operator, which is continuous and compact, and

∥∥γ (v)
∥∥

L2(�;Rd) ≤ ‖γ ‖‖v‖V for all v ∈ V ,

where ‖γ ‖ denotes the norm of γ . We define the load functional l ∈ V ∗ by

〈l, v〉 = 〈f0, v〉H +
〈
fN ,γ (v)

〉
L2(�N ;Rd) for v ∈ V .

In the following, we omit the symbol γ and simply write v for the trace of an element v ∈ V
when considered on a boundary part. The set of admissible displacement fields is given by

C = {v ∈ V : vN ≤ g on �C},

which is a closed and convex subset of V .
Let A : V → V be the nonlinear operator defined by 〈A(u), v〉V := 〈A(ε(u)), ε(v)〉H for

u, v ∈ V . Then the weak formulation of problem (P1) is the following.
Problem (P2): Find a displacement field ū ∈ C such that

〈
A(ū), v – ū

〉
V +

∫

�C

μ
(
x,

∥∥ūT (x)
∥∥)

j0(x, ūT (x); vT (x) – ūT (x)
)

d�(x)

≥ 〈l, v – ū〉 ∀v ∈ C. (29)

Conditions [Cj] and [Cμ] ensure that the integral in (29) is well defined.
By conditions [CA], the operator A : V → V ∗ is well-defined, hemicontinuous and uni-

formly monotone. Introduce the bifunction ϕ : V × V →R by

ϕ(u, v) =
∫

�C

μ
(
x,

∥∥ūT (x)
∥∥)

j0(x, ūT (x); vT (x) – ūT (x)
)

d�(x) ∀u, v ∈ V . (30)
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Then by a similar reasoning as in the proof of [31, Lemma 4.1], we can show that conditions
[Cj] and [Cμ] imply that ϕ is p.m. In addition, ϕ satisfies condition (6). Thus, proceeding
similarly as above in Example 6.1 and as in the proof of Theorem 6.1, we derive from
Theorem 5.3(B) the existence of a solution ū ∈ C to problem (P2).

8 Concluding remarks. An outlook
There is a vast body of literature on the KKM principle with a lot of extensions and ram-
ifications. When these results generalize and as well rely on the classical KKM principle,
then they are obviously equivalent in a broad sense. Nevertheless, further results that, sim-
ilarly to Theorem 2.2, unify some ramifications and reveal the close relationship among
them; see, for example, [53].

In our equilibrium approach to variational inequalities with set-valued operators, we
focused on variational inequalities of the first kind. Extended real-valued set-valued vari-
ational inequalities of the second kind with a lower semicontinuous convex function as a
further ingredient are also worth studying.

Further, we focused on a class of variational-hemivariational inequalities with appli-
cation to static contact problems. Whereas these problems are of interest in their own
right, they are also an important building block in the study of more complicated time-
dependent problems encountered with contact problems in viscoelasticy and viscoplas-
ticity; here we refer, for example, to [19, 33, 54, 56, 57].

We also focused on coercive equilibrium problems and coercive variational inequalities.
With loss of coerciveness, the existence can be guaranteed under extra conditions for the
right-hand side (see the recent paper [32] and the references therein), and the Browder–
Tikhonov regularization methods come into play; see, for example, [3, 13, 16, 24, 39].
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