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1 Introduction

Contact phenomena are commonly seen in engineering applications and in daily life. Due
to the complicated mechanism involved in contact processes, mathematical models of
contact problems are in the form of variational inequalities or hemivariational inequal-
ities. An extensive amount of references exist on modeling, mathematical analysis, nu-
merical solution, and engineering applications of contact problems. A few representative
references in this aspect include [5, 7, 9, 10, 18, 19] on variational inequalities arising in
contact mechanics and [6, 11] on related hemivariational inequalities.

Mathematical models of certain contact problems contain so-called history-dependent
operators that reflect the dependence of the models on the history of physical quantities,
usually through an integration of the physical quantities with respect to the temporal vari-
able. The notion of a family of history-dependent (quasi)variational inequalities was first
introduced in [15]. For mathematical analysis of history-dependent variational inequal-
ities and hemivariational inequalities in contact problems, see [12, 13, 17], and for the
numerical solution of the problems, see [8, 20, 21].

In this paper, we consider the numerical solution of a new kind of history dependent
variational inequalities. The major novelty of this paper is the numerical treatment of a
doubly-history dependent operator in the form of a repeated time integration. The rest of

the paper is organized as follows. In Sect. 2, we present a variational inequality in viscoelas-
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tic contact. Solution existence and uniqueness of the variational inequality are shown in
[13] through an application of a result on an abstract sweeping process. We provide an
elementary proof of the same result that is more accessible to the reader. In Sect. 3, we
introduce and study a fully discrete scheme for the variational inequality; in particular,
we derive an optimal order error estimate for the numerical solution under appropriate
solution regularity assumptions. In Sect. 4, we report simulation results on numerical ex-
amples to illustrate the performance of the method with an emphasis on numerical con-

vergence orders.

2 Avariational inequality in viscoelastic contact
We follow [13] and consider a quasi-static contact problem for viscoelastic material. Let
Q C R? be a Lipschitz domain, representing the configuration of the viscoelastic body. The
boundary I' = 92 is split into three measurable parts I';, I'y, and I's; the portion I's is fur-
ther split into two parts: I's; and I's , where different contact conditions will be specified.
We assume meas(I";) > 0 and meas(I'3 ;) + meas(I's ) > 0. The latter assumption allows the
case where one of the two subsets I'3; and I's; is empty, and then the corresponding con-
tact condition below is suppressed from the problem. The body is subject to the action
of volume forces of a total density fy in € and surface tractions of a total density f, on
I'y, and it is fixed on I';. We assume a frictionless contact with unilateral constraint in the
velocity variable on I's 1, and a version of Coulomb’s law of dry friction on I's,. Let [0, T]
be the time interval of interest. We use a prime to indicate the derivative with respect to
the temporal variable.

For a vector v € R%, we write v = (v;) with its components v; € R, 1 <i < d. We adopt
the summation convention on a repeated index. Over the space R?, we use the canonical

inner product and norm defined by
u-v=u;, v|=(v-v)"? foru,veR?

We use the symbol S to denote the space of symmetric matrices of order d. For 7 = (1) €
sS4, 7 = 7j; € Rfor 1 <i,j < d. The canonical inner product and norm on the space S? are

0T =0Ty, lz|=(r-1)"* foro,7 eS%

The unit outward normal vector exists a.e. on I', and it is denoted as v. For a vector field
v defined on I', its normal and tangential components are v, = v- v, v; = v—v,v. Similarly,
for a stress tensor o defined on I', the normal and tangential components are o, = (o) - v,
0. =0V—0,V.

The classical formulation of the contact problem is to find a displacement field u: 2 x
[0, T] and a stress field o :  x [0, T'] such that, for ¢ € [0, T,

o(t) = Ae(u' (1)) + Be(u(t)) + /t R(t-s)e(uls)ds ing, (2.1)
0

Divo(t) +f(£) =0 in £, (2.2)

u(t)=0 only, (2.3)

o(t)v=£,(t) onTy, (2.4)
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u,(¢) <0, o,(t) <0, ou(B)u(t) =0, o.()=0 onTsy, (2.5)
o @=F, o0 <ulou®], e =ulou)] |5§3|
if u’ (£) #0 on T3y, (2.6)
and
u(0)=uy in Q. (2.7)

A brief description on the mechanical interpretations of the equations and relations in
the above problem is as follows. Formula (2.1) represents a general constitutive law for a
viscoelastic material with long memory, where A is a viscosity operator, 5 is an elasticity
operator, the long memory feature is reflected by the integral term in which R is the re-
laxation tensor (cf. [12]). The process is quasi-static and (2.2) is the equilibrium equation,
where fj is the density of the volume forces applied to the deformable body. The homoge-
neous displacement boundary condition (2.3) is specified on I';. A traction boundary con-
dition (2.4) is specified on I'y, where f, denotes the density of the traction; note that I'; is
allowed to be an empty set, and then the boundary condition (2.4) is suppressed. Contact
conditions are specified on I';; and I';5. Over I's 1, (2.5) describes the frictionless con-
tact with unilateral constraints on the velocity (cf. [4]). Over I's 5, a version of Coulomb’s
law of dry friction with the simplifying assumption that the normal stress on the contact
boundary is known (cf. [16]); in (2.6), F is a nonnegative valued function, u > 0 is a fric-
tion coefficient, and wF represents a friction bound. Since the problem involves the time
derivative of the displacement, an initial value condition (2.7) is supplemented, u, being a
given initial displacement field.

Let us introduce some function spaces and sets. The function space for stress and strain
fields at a fixed time is

Q={t = (tjzijea | Ty =T € L*(Q),1 <i,j < d}.

This is a Hilbert space with the inner product

(O’,T)Q = / oljrijdx, 0,T € Q;
Q

and the induced norm ||t = (7, r)lQ/Z. The function space for displacement and velocity

fields at a fixed time is

V={veH'(Q)?|v=00nT}}.
Since meas(I";) > 0, by the Korn inequality (cf. [14, p. 79]), V becomes a Hilbert space
with the inner product (u,v)y = (e(u), &(v))g, and the associated norm ||v||y = [le(V)]|q is

equivalent to the standard H*(2)?-norm on V. The set of admissible velocity fields is

K={veV]v,<0ae.onl3;}.
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We further introduce the space of bounded, symmetric fourth-order tensor fields
Qo =1{&€ = Err=ijiki=a | Eijia = it = Exiy € L(Q), 1 < iy j, k, 1 < d},
which is a real Banach space with the norm

& = max ||&Eiwllieq, €€ .
” ”Qoo lfi,j,k,lgd” L}kl”L () Qoo

We make the following assumptions on the problem data.
H(A) 3 constants 0 < m4 < M 4 < oo such that

[ Allge < Mas

Ae-e>male)? VeeSe

H(B) B: © x $* — $% is such that B(-,0) € Q, B(-, &) is measurable on 2 for all & € S¢,

and
|B(x,&1) — B(x,&2)| <Lpler —&>] Ver,e,€S% ae.xeQ.
Hi(R) R € C([0, TT; Qco).
H(f) fo € W0, T; L2(Q)7), f, € W10, T; LX(T2)?).

H(C) F e I*(I'35), F(x) > 0a.e. x € '35, u € L®(I'33), n(x) > 0a.e. x € I'zy.
Then define f € W1(0, T; V) by the formula

(f(t)rv> = (fO(t)’V)LZ(Q)d + (fZ(t)’v)LZ(rz)d’ ve V,

for t € [0, T]. By a standard procedure, one can obtain the following weak formulation of
the contact problem (2.1)—(2.7).

Problem 2.1 Find a displacement field u: [0, T] — V such that, for a.e.t € (0,T),

u'(t) ek, (Ae (W'(0) + Be(u(®) + /t R(t - s)e(u(s)) ds, e (v - u’(t)))
0 Q

+ ./r [F(vy — () + wE(Iv:] = |0.(2)|) ] da
32
> (f@),v-u'(1)) VveK, (2.8)
and
u0)=uy in Q. (2.9)
The following well-posedness result is shown in [13].
Theorem 2.2 Under assumptions H(A), H(B), H1(R), H(f), and H(C), for any uy € V,

Problem 2.1 has a unique solution u = u(ng) € W°(0, T; V). Moreover, the mapping uy —
u(ug): V— WbH>(0, T; V) is Lipschitz continuous.
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The proof of Theorem 2.2 is carried out in [13] through an application of a result on
an abstract sweeping process. In the rest of the section, we provide an elementary proof
of the result through a fixed-point argument. For this purpose, we introduce the velocity

variable
w(t) = u'(2). (2.10)

Note that given w(t) and the initial displacement ug, we can recover the displacement u(t)
by

u(t) =Iw(t) =ug + /tw(s) ds. (2.11)
0

Then Problem 2.1 can be reformulated in terms of w.

Problem 2.3 Find a velocity field w € C([0, T1; V) such that Vt € [0, T],

w(t) e K, (Ae (w(?)) + Be(Iw(p)) + /t R(t-s)e(Iw(s)) ds,e(v - w(t))>
0 Q

. / [E(vy = wo(®) + RE(Ive| - | w2 (8)]) ] da
32

> (£(6),v-w(t)) VveK. (2.12)

Note that the variational inequality (2.12) contains a doubly-history dependent term

/t R(t —s)e (Iw(s)) ds.
0

For this reason, (2.12) is called a doubly-history dependent variational inequality. The ex-
istence and uniqueness result of Problem 2.3 is the following.

Theorem 2.4 Under assumptions H(A), H(B), Hi(R), H(f), and H(C), for any uy € V,
Problem 2.3 has a unique solutionw € C([0, T]; V).

Proof We rewrite (2.12) as

w(t) e K, (.A;s(w(t)),@(v—w(t)))Q + / [F(vs = wy () + WF(Ive| = |W:(2)|)] da

32

> (£(2), v —w(0)) - (Be (Iw(1))

+ /t R(t - s)e(Iw(s)) ds, e (v - w(t))) Vv eK. (2.13)
0 Q

Let z € C([0, T]; K). Then at any time ¢ € [0, T], z(¢) € K and the variational inequality
w(t) € K,

(Ae(w(d), e(v-w®)), + / [E(vy = (0)) + WE(Ive] - [w(0)])] da

I3
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> (f(t),v - w(t)) - (Be (Iz(t)) + /Ot R(t - s)e(]z(s)) ds,e (v - w(t))) .

Vv e K (2.14)

has a unique solution w(t) € K (cf. [1, Theorem 11.3.1]).
Now we show that the function w: [0, 7] — K is continuous. We take t;,£, € [0, T] in
(2.14) respectively to get

W(tl) ek,

(Ae(wt). e(v—w(t)), + / [E(v, = (1)) + WE(Iv:] = |we (12)])] da

Iz2

> (f(t1), v - w(ty)) - (Be (Iz(t)) + /0 1 R(t1 - s)e(Iz(s)) ds, e (v - w(tl))) .

Vv ek, (2.15)
and
W(tz) ek,

(Ae(w(t), e (v -w(ta))), + / [F(vo = wo () + LE(Iv:| - |w:(8)|)] da

I'32

> (f(tz),v - w(tz)) - <B€ (Iz(tz)) + /0 ’ Rty — S)e(lz(s)) ds, e(v - W(tz))) .

Vv eKk. (2.16)
We take v = w(ty) in (2.15) and v = w(t;) in (2.16) then add the inequalities to get
(AS (W(tl)) - AS (W(tz)), €(W(t1)) — & (W(t2)))Q
< (f(tr) — £(t2), w(t1) — w(ta)) + (Be (Iz(t1)) — Be(Iz(t,)), e (w(tz) — W(tl)))Q

+ (/tl Rty - s)e(Iz(s)) ds
0

_ / "Rt - e (12(5)) ds,e(w(tz)—w(tl))) . (2.17)
0 Q

Using assumption H(A), we get
mae(wi(®) - e(wa(t) |, < (Ae(w(t) — Ae(w(ta), (w(t1)) - e(W(5)) . (2.18)
Together with (2.18), we apply the Cauchy—Schwarz inequality on (2.17) to derive

ma ||W1(t) - ws(t) || v

< ||f(t1) —f(t2)] ) + ||Be([z(t1)) - Be([z(tz))

lo

/tl R(t, —s)e (Iz(s)) ds — /tz R(ty — s)e([z(s)) ds
0 0

. (2.19)

Q

Page 6 of 21
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By assumption H(B) and (2.11), we obtain

||Be(lz(t1)) - Be (Iz(tz)) ||Q <Lgp HIz(tl) —1z(t) || v

9]
|l ar
t

= Lglzllcqo,mvlt2 — t1l.

<Lp

Furthermore,

EGI +G2r
Q

/tl R(t1 - s)e(Iz(s)) ds - ftz Rty - s)e(Iz(s)) ds
0 0

where

G =

/tl Rty - s)e(Iz(s)) ds - /tl Rty - s)e(Iz(s)) ds
0 0

’

Q

Gy =

/tl Rty — s)e(lz(s)) ds — /tz Rty —s)e (Iz(s)) ds
0 0 Q

Using (2.11), we obtain

G =

/Otl (R(t1 —8) =Rty — s))e([z(s)) ds

Q

ds
v

< HR(tl—S)—R(tz—S)”Qm/OI

u0+/ z(r)dr
0

51
< | Rt -9) - Rt —S)||ro fo (lwollv + Tlizllcqoryvy) ds

<Rt -5) =Rtz -9 0 (Tlluolly + T?||zllco,yv))-
Moreover,
ty
G, < ‘/ ||R(t2 —9s)e (Iz(s)) ||st
13

| il as

< IRl cqo,11:000) (IR0llv + Tlizllcqo,r3v)) 182 — £

< IR llc(o,73;000)

Together with (2.19), (2.20), (2.21), (2.22), and (2.23), we have

([ £t) - £(22))|

[wi(6) = wa (@), < v T Lalzlcqo,mvt -t

1
ma

+ IRl co15050) (Iollv + Tzl co,riv)) 122 — T

+ | Rt —9) =Rt - 9)| Qo (Tlhaolly + TNzl cqo,rv)))-

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

Page 7 of 21
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Assumption H(f) implies that the function f: [0, 7] — V* is continuous on [0, 7] (cf. [13]).
Combining (2.24), H;(R), and the continuity of f, we see that w: [0, T] — V is continuous
on [0, T].

Next, we use (2.14) to define an operator A : C([0, T]; K) — C([0, T]; K) by

Az=w VzeC([0,T];K). (2.25)

Let z1,z, € C([0, T]; K) and wy, w, be the solution to (2.14) with z = z; and z = z;, respec-

tively. Similar to the arguments in the derivation of (2.19), we get

[wi() - wa(9)]|,
1 t
< —(LB |12:(8) - 1220 |, + IR I cto, 100 / |721(5) = I2a(s) IIVds)
ma 0

_Lls+ TRl co,73:Q00)
< A

/0 |21(s) = z2(s) |, ds, (2.26)

L + TRl co,71:000)

| Az (2) - Azs(2) ||V < i

/(; || z1(s) — z5(s) || v as. (2.27)

Applying the fixed point theorem [15, Theorem 1], we know that there exists a unique
element z* € C([0, T]; K) such that Az* = z*. Denote w* = Az*. Then from (2.14) we know
that z* € C([0, T]; K) is the unique solution to Problem 2.3. O

Remark 2.5 When I's; = §J, Problem 2.3 is reduced to a variational inequality posed over
the entire space V. When I's, = #J, Problem 2.3 becomes a variational inequality of the
first kind.

3 Numerical analysis of the variational inequality

In this section, we introduce a fully discrete method for Problem 2.3 and derive an optimal
order error bound. Assume that  is a polygonal/polyhedral domain, and let {7"} be a
regular family of partitions of Q into triangles/tetrahedrons that is consistent with the
splitting of the boundary I" into four subsets I'y, I'y, I'3 1, and I's 5, i.e., if a side/face of an
element has a nontrivial intersection with one of the four subsets, then the side/face lies

entirely on the closure of that subset. Let
V= {vh e C(Q)* |V e P(T) for T e T",v" =0 on Fl}

be the linear element space for {7”} and K" be a subset of V* which is defined by
K" = {vh eVvh vf,’ < 0 at node points on I'3; }

Thus K" is a convex subset of K. The time interval [0, T] is divided uniformly. For a given

positive integer N, let k = T/N be the time step-size. The node points are ¢, = nk, 0 <n <
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N. To approximate the integrals, we use the left endpoint rule

In this section, C denotes a generic constant which takes on different values in different
places.

Denote w(t,) = w,, f(t,) = f,. Let uﬁ € K" be an approximation of uy. Then the fully
discrete scheme for Problem 2.3 is introduced as follows.

Problem 3.1 Find a discrete velocity field w' .= (wK"\N_ - V" such that, for 0 <n <N,

wih e K,
n-1
(Ae(w];h) + Be <ug +k Zw}‘h>
j=0

+/<ZR e(uo +k2wkh) kh))Q

+/ [F(Vi-wi) + uE (V2] - |[Wi )] da = (£, v - Wiy wWrek". — (3.1)
32

v

We have the following result for Problem 3.1.

Theorem 3.2 Under assumptions H(A), H(B), H1(R), H(f), and H(C), for any up € V,
Problem 3.1 has a unique solution w* c K".

Proof For n =0, (3.1) is to find w&" € K" such that

(As(o) (v i) g+ [ (2] = wil ) do
32

> (fo, v —wgh>—(B€(ug),e(vh —wgh))Q _/r F(V' —wih)da W' e K™
3,2

From the assumptions on the data, we know this elliptic variational inequality has a unique
solution w{" € K" [1, Theorem 13.3.1].

For an integer 1 < n < N, suppose that w ,0<j<n-1,are known. We rewrite (3.1)
as

wih e K,

(Ae(Wh), e (V" —w],(,h))Q + / WE(|v!] - [wh|) da = (f,,,vh -wi) wh e k7,
F32

where

n-1 n-1 j-1
(£, v") = (£, V") - <Be (ug + ka]]fh> +hY R(ta-t)e (ug + kaﬁf),e(vh))
Q

j=0 j=0 m=0
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- / B'da.
'3

Again, from the assumptions on the data, this elliptic variational inequality has a unique
solution w¥* € K”'. Thus, by an induction argument, we know that there is a unique solu-
tion wf C K to Problem 3.1. O

To derive an optimal order error estimate for Problem 3.1, we make further assumptions:

Hy(R) R € WE(0, T; Quo).

H(ug) up € V N H2(Q)A.

H(w)we Wb(0,T; V)N C([0, T); HX()%).

H(o) o € C([0, T]; HY()%).

Now we provide an optimal order error estimate for the numerical method defined by
Problem 3.1.

Theorem 3.3 Assume H(A), H(B), Hy(R), H(f), H(C), and H(uy). Moreover, assume so-
lution regularities H(w) and H (o). Let ué‘ € K" be the finite element interpolation or the
L2(Q)-projection of wy. The following error bound holds for the numerical solution of Prob-
lem 3.1:

Jmax W = Wi, < Clh+ k). (3.2)

Proof We establish the framework for error estimation. Using |[v]y = |le(v)|lq and as-

sumption H(A), we have
malwa=wi [, = malle(wi—wi) [
< (Ae(w,) - Ae(w,"), e (wn = wy))
— (Aeton), (o, — W) + (As (), o ~v1)

+ (Ae (wln(h),e(vh - w,,))

Q
o (3.3)

Now we introduce a residual term R, (v, w,) which plays an important role in the proof.

Taking t = ¢, and v = v/ in (2.12), we get

(As(w,,) + Be (Iw(t,)) + / " Rty — s)e(Iw(s)) ds, e (V" - w,,))
0 Q

+ / [F(vi’ - w,,,v) + uF(‘vi” - |w,,,fl)] da > <f,,,vh - w,,). (3.4)
Iz
Then define R,(v",w,) by
R,,(vh,w,,) = (Ae(w,,) + Be([w(t,,)) + /tﬂ R(t, —s)e (Iw(s)) ds,e(vh _ w,,))
0

Q

+ / [F(ij - wn,\,) + ,uF(|vi’| - |w,,,f|)] da - <fn,vh —wn>. (3.5)
I'32

Page 10 of 21
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Note that v € K and K" C K; therefore R, (v",w,,) > 0. Taking v = w’,jh in (3.4), we have

(Ae(wy), &(w, - wknh))Q < (Be([w(tn)) + /tn Rty - s)e(Iw(s)) ds,e(wﬁh - wn)>
0 Q

. / [E = wi,) + (W5 | = Wy 1)] da
32
(W w,) (3.6)

In addition, (3.1) can be rewritten as follows:

(Ae(w,") & (w," - v"))

Q
n-1 n-1 j-1
< (Be (ug + /(Zw]’fh) +k Z Rt, - t))e (u’g +k Zw’,‘f),e(vh - wﬁh))
j=0 j=0 m=0 Q
+ / [F(Vﬁ - wﬁf’v) + MF(|V£’| - |wf§f’r )] da - (f,,,vh - wﬁh>. (3.7)
32

By (3.3), (3.6), and (3.7), we derive an error bound of ||w, — w¥"||} as follows:
2
mal|wy -wi'||, Sh +L+15+14 (3.8)

where

n-1
b= (Bs (uﬁ + kZW,"h> - Be(Iwit,)), &(v" —wﬁh)) ,

Jj=0 Q

n-1 j-1 tn
I, = (k Z’R(t,, —t)e (ug +k waj’) - / R(t, —s)e (Iw(s)) ds, e‘(vh - wﬁh)) ,
j=0 m=0 0

Q

I3 = (As(wﬁh) - Ae(wn),e(vh - w,,))Q,

I, =R, (vh,wn).
In the following we bound each of the terms /;, 1 <i <4.

Firstly, we focus on the estimation of 1;. By Taylor’s formula, for s € [¢;, £j,1], there exists
& € [tj, tjs1] such that

w(s) =wj + W(§)(s - 1),

where w'(§) € V is the derivative of w at ¢ = &;. Thus the following error bound holds for
the left endpoint rule:

n—1 tn n-1 Ljv1
‘ k Z w; — w(s)ds| < / 1 (w(s) - w,) ds
j=0 0 vooj=0 v

-1

S wel, [ -1 as
— ) V/ti ]

N

~

Page 11 of 21
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n-1
1
< [Iwllwreoo,;v) Z E(t}ﬂ —t) )?
j=0

1
=3 TIwllwco,7;v)k- (3.9)

Using the Cauchy—Schwarz inequality and (3.9), we obtain

n-1
= ek o) Bl e,

j=0 Q
n-1 tn
<Lg ug +kaj‘h - (uo +/ w(.s)ds) ||vh —wﬁh”V
j=0 0 v
n-1 n-1 tn
< LB(”uo - uf,‘”v +kZ||W]/,<h _W/”v + kaj - / w(s)ds ) ||vh _w/n<h||v
j=0 j=0 0 v
n-1
< (B ook Sl )1 G20
j=0
where
Ery=Lg|uo-ug|, + %TLBHWHWLOO(O,T;V)k (3.11)

Then we bound the term I5. First,

L=<)h ||€(Vh - W],;h) | ol (3.12)
where
n-1 j-1
h= ‘ k> Rty t)e <u0 +hY wkh> / Rty - s)e (Iw(s)) ds
j=0 m=0 Q
By the norm triangle inequality,
Jo < Jo1 + 22 (3.13)
where
n-1 j-1
Jar = [k Y Rty - t)e <u0 + kakh> kZR(tn - e (uo + ka,,,> :
j=0 m=0 j=0 m=0 Q
n-1 j-1 t s
Jo2 = kZR(tn G (uo + kzwm> - / R(t, —s)e (uo + / w(r) dr) ds
j=0 m=0 0 0

Note that the assumption R € W1®(0, T; Qs,) implies R € C([0,T]; Qs), and w €
WL>(0, T; V) implies w € C([0, T]; V). Thus we have

n-1 j-1 j-1
J21 < ||R”C([O,T];Qoo)kz € (ug + ka’,‘,f) —¢€ (“0 + kZWM)
j=0 m=0 m=0 Q
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n-1 j-1
I Rlcorien S (nuo T S ] )
j=0 m=0
n-2
< TIRllcqom105 |80 = wh ]|, + TRl corn00k D _ [ Wi = wi| . (3.14)
j=0
For s € [t}, tj,1], we write
s /’*1 »
/ w(r)dr =k W+ wi(s — ) + R(s), (3.15)
0 m=0

where R(s) € V. Note that

~ j-1 U+l S
Ry =X [ 1wyl e+ [ Jw) v
m=0 " tm Ui

b+l

S
(= tn)dr + Iwlicoray [ (r=8)dr

< IWllwi,v) Zf
L)

m /)
1y
= Wz ) 7K + Wz g (s—t)
m= 0
< ”w”Wl'OO(O,T;V)Sk‘ (316)
Therefore,
n-1 j-1
h2 < ) [kR(ts - t)e <u0 +kam> / Rty - s)e (uo + / wi(r) dr) ds
j=0 m=0 ' Q
n-1 t]+1 j_l
< > kRt - t)e | wo +kam / Ritu—s)e( o+ kD Wy | ds
j=0 : m=0 Q
n-1
+ Z( (tn —s)e(w))(s — t;) ds
j=0 Q
b+l ~
+ R(t, — s)e(R(s)) ds ) (3.17)
i Q
Combining (3.14) and (3.17), we obtain
n-2
J2 < TRl co, 100 | o — ug | vt T”R”C([O,T];ro)kZ”Wj —W,]-(h I v
j=0
n-1 j-1 b1 j-1
+ Y kRt - t)e <u0 ¥ kam) - / Rty - s)e (uo + kam> ds
j=0 m=0 5 m=0 Q
2l b1 tiv1 -
+ (‘ Rty —s)ewj)(s—t)ds| + / R(t, — s)e(R(s)) ds ) (3.18)
j=0 G Q 4 Q

Page 13 of 21



Xu et al. Fixed Point Theory Algorithms Sci Eng (2021) 2021:24 Page 14 of 21

By Taylor’s formula, for s € [¢, ¢.1], there exists ¢; € [t, ¢j,1] such that
Rty —s) =Rty — ) + R' ()t - s),

where R'(¢j) € Q is the derivative of R at £ = ¢;. Then we derive

-1

Z

j=0

th—t)e(uo+kam) / Rt—s)e<u0+k2wm>

Q

j=0

nolagiy
< IRl woo0,75000) Z/
j=0 Y

j-1
f t - )R (¢))e <u0 +k2wm) ds

m=0

Q

j-1
(t;—s)e (uo +k Zwm)
m=0

(3.19)

Q

To proceed further on (3.19), we obtain

i1

n-1 j-1
IR llwiosio 700y D / (- s)e <uo +k Zwm)
j=0 V4 m=0

Q

£1+ S—t)ds)

n-1 j-1
< IRllwr,500) ) 5K (||uo||v +kY ||wm||v)

j=0 m=0

n-1
< IRIlwr0,7000) Z(

j=0

u0+kE Wiy
m=0

N =

1
< IR lwior:00) (Tl llv + T [Wllco,7:v)) k- (3.20)

\&}

Next we use (3.16) to deduce

¥

j=0

tjv1

R(t, — s)e(wj(s - t,-)) ds

+ tjﬂ R(t, — s)e(ﬁ(s)) ds

Q

Ui i

)

< IRl c(10,77:000) / </ ) e (wils -1 )HQd“/ He( S))”st)

Ul 5

—

T
)

—

n—

L1 Ly
< IR Nl c0,73:Q00) <||w,-||v/ (S—’f/)dH/ |R(s) ”vds>
t; L,

=0 ] ]

~.
—

n—

1 1
< IRl cq0,73000) <§k2”W”C([O,T];V) + k||W||WLOO(o,T;V)/ SdS)
t,

=0 7

~.

1
< (5 T\wllcqorsv) + T2 Iwl WLOC(O,T;V)) IR Nl c(0,71:Q00) K- (3.21)

Combining (3.12), (3.18), (3.20), and (3.21), we get

(3.22)

n-1
L < (Er2 + T”R”C([O,T];Qoo)kZ”Wj - W]kh ” V) ”Vh - W/;h v

j=0
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where

Ery = T|Rlcoriom w0 —ug |,

1
+ (5 Twllcqo,m;v) + TZHWHWLOC(O,T;V)> 1R ¢ o, 71:000) 5
1, 1
+ ET IR w.co0,75000) 1W Il cil0, 710 K + 5T”R”WLOO(O,T;QOO)”uO”Vko

According to (3.10) and (3.22), we define Ery by

n-1

Ery=Er +Ery+ (L + T||’R||c([0,T];QOO))kZ||w,- —w}‘h I,
=0

Then

6L +1 SETHHVh —WﬁhHV
SEFH(”Vh - Wy,

4
R LA ey A

+wu=w')

I

<

Thirdly, we give an estimation of I3 and present an error bound of |w, —

assumption H(A), we have
|[Ae(wy') — Ae(w,)| < [ Al |e(wy") - e(w,)]

< Male(W) —e(w,)].

Furthermore, we combine the definition of norm || - || and (3.26) to derive

1
2

| Ae(wy) - Ae(w,) |, = (/ | Ae (W) — Ae(w,)|* a’x)
o

1
<My (/ e (wh) — e(wn)|2dx> ’
Q
= Mae(w;) - ew)
Therefore, applying the Cauchy—Schwarz inequality on I3, we get

B = [ Ae(wlh) — Aetw,) | e(v" - w,)]

< Mafw, = wall, [v" = wa],
M
T R L M
Together with (3.8), (3.25), and (3.28), we get

My

4
(4= eV + 1) [ — W < (E . 1) Ve —wills o tie S22

&

Page 15 of 21

(3.23)

(3.24)

(3.25)

wh|| . By

(3.26)

(3.27)

(3.28)

(3.29)
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For sufficiently small ¢ > 0, we have
||w,,—w];hH%,§C(||vh—w,,H%,+14 +Er12{). (3.30)
We take the square root of both sides of (3.30) to get

”w,, —wﬁhHV < C(”vh —w,,HV ++/1y + Erq +Er2)

n-1

+C(Ls + TIR I corr00)k Y[ Wi = W], (3.31)
j=0

Recall discrete Gronwall’s inequality [5]: Assume that {g,,}Z,Y=0 and {e,,}],)’=o are two se-

quences of nonnegative numbers satisfying
n-1
e, < Cg, + CZkej, n=0,1,...,N.
j=0

Then

max e, < C max g,.
0<n<N 0<n<N

Thus, we use Gronwall’s inequality on (3.31) to derive

Jmax [w, —w,"|,

< Coglnzg[vhiglgh(||wn V4 VI |+ C(uo -], + ). (3.32)

Next, we derive an upper bound for the residual term I,. The weak formulation (2.12) is
used to get point-wise equations. Define a function space

u-= {v e C®(Q)¥v=00onT; U Fglz}.
Let

o (t) = Ae(w(?)) + Be(Iw(?)) + /:R(t —s)e(Iw(s))ds in Q.
We take v = w(¢) £ ¥ in (2.12), where ¥ € . Then

(a(t),s(j:V))Q + / [F(:i:?/'v) + ,uF(|wZ(t) :i:'\7f| - |w,(t)|)] da > (f(t), :i:V). (3.33)

Iz

Note that V=0 on '3, we get

(o(2),e(®¥)) 0= (£@),9). (3.34)
Recall Green’s formula

(a(t),e(V))Q + (Diva(t),'\7>v*xv = / o(t)v-vda. (3.35)
r
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We combine (3.34) and (3.35) to get

(Dive(0,9),. ., + (fo6), ) 2000 = / oty -Fda~ (£(0),3) o p i (3.36)

Iy

Since V is arbitrary, we can follow the technique in [5, Sect. 8.1] to obtain the following

point-wise relations:

Divo(t) +fo(f) =0 a.e.in (3.37)
and

o(t)v =£,(t) a.e.onTs. (3.38)

Denote o (t,) = 0, £5(t,) = £»,,, and £y(t,,) = £o,,. We take ¢ = t,, in equation (3.37) and mul-
tiply (v — w,,) to both sides of the equation. Integrating over 2, we get

/ Divo, - (vh - wn) dx + / fo,, - (vh - w,,) dx=0. (3.39)
Q Q

Applying Green’s formula again, we have

/Diva,,-(vh—wn)dx+/an'e(vh—wn)dx
Q

Q

= / o,V - (vh -w,)da +/ o,V - (vh - w,)da +/ o,V - (vh -wy)da.  (3.40)
I Iy

I's

We use (3.40), (3.38), and (3.39) to derive
/ o, e(vh —w,,)dx—/ fo, - (vh —w,,)dx—f £, - (vh —w,,)da
Q Q ry
= / o,V - (vh —w,,) da. (3.41)
I's
Combining (3.5), (3.41), H(f), and H(o), we get

L= / o,V - (vh —w,)da+ f [F(V’j - W) + /LF(|V1:| — Wy, )] da
I's '3

< (o vl 2y + Il 2 + 1420 ) [V = Wi o -

= C”Vh — Wy ||L2(r3)d' (3.42)
Substituting (3.42) into (3.32), we obtain

1
sz e =y = € gma | nd (hon =+ o =L )}

+C(|Juo —uy||, + k). (3.43)
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| | e

> o
:Fl ‘Qlllfo L[

I

I13 1 l—‘32

Rigid obstacle Layer of asperities

Figure 1 The viscoelastic contact model

Figure 2 The mesh partition of £2

Finally, we draw the conclusion of the numerical analysis for the fully discrete method.
Using the regularity assumptions uy € H>(Q)4, w € C([0, T]; H*(2)%) and finite element

interpolation error estimates [2, 3], we derive the result of Theorem 3.3 that

ki
Orﬁnnegx”wn -W, ” v < Ch+k), (3.44)
i.e., the fully discrete scheme is of first order both in the time step-size and the spatial

meshsize. O

4 Numerical examples

In this section we report numerical examples for the contact problem. A three-
dimensional viscoelastic body is in contact with a foundation. The body is subjected to the
action of traction. Let domain 2 represent the cross section of the body and assume that
the plane stress hypothesis is valid. As depicted in Fig. 1, Q = (0,L;) x (0, L,) is a rectangle

whose boundary I' is divided as follows:
'y = {0} x (0,L2), [y =[0,L1] x {L2} U{L1} x (0, L),

L L
I'31=10, 5 | % {0}, I3 = 7,14 x {0}.
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171
77
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Figure 3 The configuration of Q att=1s
Table 1 Convergence orders of the errors with h = k
h k lu(, Ty —uff Iy Order
1/8 1/8 1.1919E-1 -
1/16 1/16 6.4970E-2 0.8754
1/32 1/32 3.3671E-2 0.9482
1/64 1/64 1.5125E-2 1.1546
The viscosity tensor A satisfies
(A1) =207 + L (T + T22)8y, 1 <i,j <2, (4.1)

where 6 and ¢ represent the viscosity coefficients satisfying & > 0and ¢ > 0, and §;; denotes

the Kronecker symbol. The elasticity tensor 5 satisfies

E Ex .
—KZ(Tu +T0)8, 1<ij<2, (4.2)

(B‘L’)ij = ml’,’j + 1

where E denotes the Young modulus, and « denotes the Poisson ratio of the material. The
relaxation tensor R(s) = e71%I, where I is an identity matrix.

The fully discrete method is used to solve the contact problem. The intervals [0, L;] and
[0, L,] are divided into 1/4 equal parts, and uniform triangular finite element partitions are
introduced; see Fig. 2. Continuous linear finite element spaces are used for computation,
and the following parameters are used in numerical experiments:

L =2m, L, =1m, 6=0.1, =01,
E=0.1N/m? k =0.3, T =1s,

—0.1x1(2 — x1)t, t<0.2

N/m on|0,L;] x {Ly}
-0.1%1(2 —x1)0.2, £t>0.2

0.01(1 — xy)t, t<05

0| N/m on {L} x (0,L,),
0.01(1 - x,)0.2, t>0.5

fo=0in Q and uy =0 in Q.
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Table 2 Convergence orders of the errors with fixed time step-size

h k llut- ) - ulf; Order
1/16 1/128 49313E-2 -

1/32 1/128 2.7174E-2 0.8598
1/64 1/128 1.3199E-2 1.0418

Table 3 Convergence orders of the errors with fixed spatial step-size

h k luC- ) - ulll Order
1/128 1/8 6.3619E-2 -

1/128 1/16 3.3138E-2 0.9410
1/128 1/32 1.5130E-2 1.1311

The configuration of the deformable body 2 with & =k = % at ¢t = 1s is illustrated in

Fig. 3. The numerical solution with # = k = 1—§8

the convergence orders in H' norm are reported in Table 1, Table 2, and Table 3 which

is used as the “reference” solution, and

illustrate the performance of the fully discrete method.
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