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Abstract
In 1990, Romero presented a beautiful formula for the projection onto the set of
rectangular matrices with prescribed row and column sums. Variants of Romero’s
formula were rediscovered by Khoury and by Glunt, Hayden, and Reams for
bistochastic (square) matrices in 1998. These results have found various
generalizations and applications.
In this paper, we provide a formula for the more general problem of finding the

projection onto the set of rectangular matrices with prescribed scaled row and
column sums. Our approach is based on computing the Moore–Penrose inverse of a
certain linear operator associated with the problem. In fact, our analysis holds even
for Hilbert–Schmidt operators, and we do not have to assume consistency. We also
perform numerical experiments featuring the new projection operator.
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1 Motivation
A matrix in R

n×n is called bistochastic if all entries of it are nonnegative and all its row
and column sums equal 1. More generally, a matrix is generalized bistochastic if the re-
quirement on nonnegativity is dropped. The bistochastic matrices form a convex poly-
tope B, commonly called the Birkhoff polytope, in R

n×n, with its extreme points being
the permutation matrices (a seminal result due to Birkhoff and von Neumann). A lovely
formula provided in 1998 by Khoury [8]—and also by Glunt et al. [5]—gives the pro-
jection of any matrix onto G, the affine subspace of generalized bistochastic matrices
(see Example 3.8). More generally, nonnegative rectangular matrices with prescribed row
and column sums are called transportation polytopes. If the nonnegativity assumption
is dropped, then Romero provided already in 1990 an explicit formula (see Remark 3.5)
which even predates the square case! On the other hand, the projection onto the set of
nonnegative matrices N is simple—just replace every negative entry with 0. No explicit
formula is known to project a matrix onto the set of bistochastic matrices; however, be-
cause B = G ∩ N , one may apply algorithms such as Dykstra’s algorithm to iteratively ap-
proximate the projection onto B by using the projection operators PG and PN (see, e.g.,
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Takouda’s [12] for details). In the case of transportation polytopes, algorithms which even
converge in finitely many steps were provided by Calvillo and Romero [4].

The goal of this paper is to provide explicit projection operators in more general settings.
Specifically, we present a projection formula for finding the projection onto the set of rect-
angular matrices with prescribed scaled row and column sums. Such problems arise, e.g.,
in discrete tomography [13] and the study of transportation polytopes [4]. Our approach
uses the Moore–Penrose inverse of a certain linear operator A. It turns out that our anal-
ysis works even for Hilbert–Schmidt operators because the range of A can be determined
and seen to be closed. Our main references are [3, 7] (for Hilbert–Schmidt operators) and
[6] (for the Moore–Penrose inverse). We also note that consistency is not required.

The paper is organized as follows. After recording a useful result involving the Moore–
Penrose inverse at the end of this section, we prove our main results in Sect. 2. These
results are then specialized to rectangular matrices in Sect. 3. We then turn to numerical
experiments in Sect. 4, where we compare the performance of three popular algorithms:
Douglas–Rachford, the method of alternating projections, and Dykstra.

We conclude this introductory section with a result which we believe to be part of the
folklore (although we were not able to pinpoint a crisp reference). It is formulated using
the Moore–Penrose inverse of an operator—for the definition of the Moore–Penrose in-
verse and its basic properties, see [6] (and also [3, pages 57–59] for a crash course). The
formula presented works even in the case when the problem is inconsistent and automat-
ically provides a least squares solution.

Proposition 1.1 Let A : X → Y be a continuous linear operator with closed range between
two real Hilbert spaces. Let b ∈ Y , set b̄ := Pran Ab, and set C := A–1b̄. Then

(∀x ∈ X) PCx = x – A†(Ax – b), (1)

where A† denotes the Moore–Penrose inverse of A.

Proof Clearly, b̄ ∈ ran A; hence, C �= ∅. Let x ∈ X. It is well known (see, e.g., [3, Exam-
ple 29.17(ii)]) that

PCx = x – A†(Ax – b̄). (2)

On the other hand,

A†b̄ = A†Pran Ab = A†AA†b = A†b (3)

using the fact that AA† = Pran A (see, e.g., [3, Proposition 3.30(ii)]) and A†AA† = A† (see,
e.g., [6, Section II.2]). Altogether, PCx = x – A†(Ax – b) as claimed. �

2 Hilbert–Schmidt operators
From now on, we assume that

X and Y are two real Hilbert spaces, (4)
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which in turn give rise to the real Hilbert space

H := {T : X → Y |T is Hilbert–Schmidt}. (5)

Hilbert–Schmidt operators encompass rectangular matrices—even with infinitely many
entries as long as these are square summable—as well as certain integral operators. (We
refer the reader to [7, Sect. 2.6] for basic results on Hilbert–Schmidt operators and also
recommend [10, Section VI.6].) Moreover, H (is generated by and) contains rank-one op-
erators of the form

(v ⊗ u) : X → Y : x �→ 〈u, x〉v, (6)

where (v, u) ∈ Y × X, and with adjoint

(v ⊗ u)∗ : Y → X : y �→ 〈v, y〉u (7)

and

(v ⊗ u)∗ = u ⊗ v. (8)

Moreover,

u ⊗ u = ‖u‖2PRu and v ⊗ v = ‖v‖2PRv. (9)

For the rest of the paper, we fix

e ∈ X and f ∈ Y , (10)

and set

A : H → Y × X : T �→ (
Te, T∗f

)
. (11)

Proposition 2.1 A is a continuous linear operator and ‖A‖ =
√‖e‖2 + ‖f ‖2.

Proof Clearly, A is a linear operator. Moreover, (∀T ∈ H) ‖A(T)‖2 = ‖Te‖2 + ‖T∗f ‖2 ≤
‖T‖2

op‖e‖2 + ‖T∗‖2
op‖f ‖2 ≤ ‖T‖2(‖e‖2 + ‖f ‖2) because the Hilbert–Schmidt norm domi-

nates the operator norm. It follows that A is continuous and ‖A‖ ≤ √‖e‖2 + ‖f ‖2. On the
other hand, if T = f ⊗ e, then ‖T‖ = ‖e‖‖f ‖, A(T) = (‖e‖2f ,‖f ‖2e) and hence ‖A(T)‖ =
‖T‖√‖e‖2 + ‖f ‖2. Thus ‖A‖ ≥ √‖e‖2 + ‖f ‖2. Combining these observations, we obtain
altogether that ‖A‖ =

√‖e‖2 + ‖f ‖2. �

We now prove that ranA is always closed.

Proposition 2.2 (Range of A is closed) The following hold:
(i) If e = 0 and f = 0, then ranA = {0} × {0}.

(ii) If e = 0 and f �= 0, then ranA = {0} × X .
(iii) If e �= 0 and f = 0, then ranA = Y × {0}.
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(iv) If e �= 0 and f �= 0, then ranA = {(f , –e)}⊥.
Consequently, ranA is always a closed linear subspace of Y × X.

Proof (i): Clear.
(ii): Obviously, ranA⊆ {0} × X. Conversely, let x ∈ X and set

T :=
1

‖f ‖2 f ⊗ x. (12)

Then Te = T0 = 0 and

T∗f =
1

‖f ‖2 (f ⊗ x)∗f =
1

‖f ‖2 〈f , f 〉x = x, (13)

and thus (0, x) = (Te, T∗f ) = A(T) ∈ ranA.
(iii): Obviously, ranA⊆ Y × {0}. Conversely, let y ∈ Y and set

T :=
1

‖e‖2 y ⊗ e. (14)

Then T∗f = T∗0 = 0 and

Te =
1

‖e‖2 (y ⊗ e)e =
1

‖e‖2 〈e, e〉y = y, (15)

and thus (y, 0) = (Te, T∗f ) = A(T) ∈ ranA.
(iv): If (y, x) ∈ ranA, say (y, x) = A(T) = (Te, T∗f ) for some T ∈H, then

〈f , y〉 = 〈f , Te〉 =
〈
T∗f , e

〉
= 〈x, e〉, (16)

i.e., (y, x) ⊥ (f , –e). It follows that ranA⊆ {(f , –e)}⊥.
Conversely, let (y, x) ∈ {(f , –e)}⊥, i.e., 〈e, x〉 = 〈f , y〉.
Case 1: 〈e, x〉 = 〈f , y〉 �= 0.
Set

ζ :=
1

〈x, e〉 =
1

〈y, f 〉 and T := ζ (y ⊗ x) ∈H. (17)

Note that

Te = ζ (y ⊗ x)e = ζ 〈x, e〉y = y (18)

and

T∗f = ζ (y ⊗ x)∗f = ζ 〈y, f 〉x = x; (19)

therefore, (y, x) = (Te, T∗f ) = A(T) ∈ ranA.
Case 2: 〈e, x〉 = 〈f , y〉 = 0.
Pick ξ and η in R such that

ξ‖f ‖2 = 1 and η‖e‖2 = 1, (20)
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and set

T := ξ (f ⊗ x) + η(y ⊗ e) ∈H. (21)

Then

Te = ξ (f ⊗ x)e + η(y ⊗ e)e = ξ 〈x, e〉f + η〈e, e〉y = 0f + η‖e‖2y = y (22)

and

T∗f = ξ (f ⊗ x)∗f + η(y ⊗ e)∗f = ξ 〈f , f 〉x + η〈y, f 〉e = ξ‖f ‖2x + 0e = x. (23)

Thus (y, x) = (Te, T∗f ) = A(T) ∈ ranA. �

We now turn to the adjoint of A.

Proposition 2.3 (Adjoint of A) We have

A∗ : Y × X →H : (y, x) �→ y ⊗ e + f ⊗ x. (24)

Proof Let T ∈H and (y, x) ∈ Y × X. Let B be any orthonormal basis of X. Then

〈
A(T), (y, x)

〉
=

〈(
Te, T∗f

)
, (y, x)

〉
(25a)

= 〈Te, y〉 +
〈
T∗f , x

〉
(25b)

=
〈
e, T∗y

〉
+

〈
T∗f , x

〉
(25c)

=
∑

b∈B

(〈e, b〉〈b, T∗y
〉
+

〈
T∗f , b

〉〈b, x〉) (25d)

=
∑

b∈B

〈
Tb, 〈e, b〉y〉 +

∑

b∈B

〈
Tb, 〈x, b〉f 〉 (25e)

=
∑

b∈B

〈
Tb, (y ⊗ e)b

〉
+

∑

b∈B

〈
Tb, (f ⊗ x)b

〉
(25f)

= 〈T , y ⊗ e〉 + 〈T , f ⊗ x〉 (25g)

= 〈T , y ⊗ e + f ⊗ x〉, (25h)

which proves the result. �

We have all the results together to start tackling the Moore–Penrose inverse of A.

Theorem 2.4 (Moore–Penrose inverse of A part 1) Suppose that e �= 0 and f �= 0. Let
(y, x) ∈ Y × X. Then

A†(y, x) =
1

‖e‖2

(
y ⊗ e –

〈f , y〉
‖e‖2 + ‖f ‖2 f ⊗ e

)
+

1
‖f ‖2

(
f ⊗ x –

〈e, x〉
‖e‖2 + ‖f ‖2 f ⊗ e

)
. (26)
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Proof Set

(v, u) :=
(

1
‖e‖2

(
y –

〈y, f 〉
‖e‖2 + ‖f ‖2 f

)
,

1
‖f ‖2

(
x –

〈x, e〉
‖e‖2 + ‖f ‖2 e

))
. (27)

Then

〈f , v〉 =
1

‖e‖2

(
〈f , y〉 –

〈y, f 〉
‖e‖2 + ‖f ‖2 〈f , f 〉

)
(28a)

=
〈f , y〉
‖e‖2

(
1 –

‖f ‖2

‖e‖2 + ‖f ‖2

)
(28b)

=
〈f , y〉
‖e‖2 · ‖e‖2 + ‖f ‖2 – ‖f ‖2

‖e‖2 + ‖f ‖2 (28c)

=
〈f , y〉

‖e‖2 + ‖f ‖2 , (28d)

and similarly

〈e, u〉 =
〈e, x〉

‖e‖2 + ‖f ‖2 . (29)

Substituting (28a)–(28d) and (29) in (27) yields

(v, u) =
(

1
‖e‖2

(
y – 〈f , v〉f ),

1
‖f ‖2

(
x – 〈e, u〉e)

)
. (30)

Thus

y = ‖e‖2v + 〈f , v〉f and x = ‖f ‖2u + 〈e, u〉e. (31)

Therefore, using (24), (30), (7), and (24) again, we obtain

A∗AA∗(v, u) = A∗A(v ⊗ e + f ⊗ u) (32a)

= A∗((v ⊗ e)e + (f ⊗ u)e, (v ⊗ e)∗f + (f ⊗ u)∗f
)

(32b)

= A∗(‖e‖2v + 〈e, u〉f , 〈f , v〉e + ‖f ‖2u
)

(32c)

=
(‖e‖2v + 〈e, u〉f ) ⊗ e + f ⊗ (〈f , v〉e + ‖f ‖2u

)
(32d)

= ‖e‖2v ⊗ e + 〈e, u〉f ⊗ e + 〈f , v〉f ⊗ e + ‖f ‖2f ⊗ u (32e)

=
(‖e‖2v + 〈f , v〉f ) ⊗ e + f ⊗ (‖f ‖2u + 〈e, u〉e) (32f)

= y ⊗ e + f ⊗ x (32g)

= A∗(y, x). (32h)

To sum up, we found A∗(v, u) ∈ ranA∗ = (kerA)⊥ such that A∗AA∗(v, u) = A∗(y, x). By [3,
Proposition 3.30(i)], (30), and (24), we deduce that

A†(y, x) = A∗(v, u) (33a)
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= A∗
(

1
‖e‖2

(
y – 〈f , v〉f ),

1
‖f ‖2

(
x – 〈e, u〉e)

)
(33b)

=
1

‖e‖2

(
y ⊗ e – 〈f , v〉f ⊗ e

)
+

1
‖f ‖2

(
f ⊗ x – 〈e, u〉f ⊗ e

)
, (33c)

which now results in (26) by using (28a)–(28d) and (29). �

Theorem 2.5 (Moore–Penrose inverse of A part 2) Let (y, x) ∈ Y × X. Then the following
hold:

(i) If e = 0 and f �= 0, then A†(y, x) = 1
‖f ‖2 f ⊗ x.

(ii) If e �= 0 and f = 0, then A†(y, x) = 1
‖e‖2 y ⊗ e.

(iii) If e = 0 and f = 0, then A†(y, x) = 0 ∈H.

Proof Let T ∈H.
(i): In this case, A(T) = (0, T∗f ) and A∗(y, x) = f ⊗x. Let us verify the Penrose conditions

[6, p.48]. First, using (7),

AA†(y, x) = A
(‖f ‖–2f ⊗ x

)
= ‖f ‖–2((f ⊗ x)e, (f ⊗ x)∗f

)
(34a)

= ‖f ‖–2(0, 〈f , f 〉x)
= (0, x) (34b)

and

〈
AA†(y, x), (v, u)

〉
=

〈
(0, x), (v, u)

〉
= 〈x, u〉 =

〈
AA†(v, u), (y, x)

〉
, (35)

which shows that AA† is indeed self-adjoint.
Secondly,

A†A(T) = A†
(
Te, T∗f

)
= A†

(
0, T∗f

)
= ‖f ‖–2f ⊗ (

T∗f
)
, (36)

and if S ∈H and B is any orthonormal basis of X, then

〈
A†A(T), S

〉
= ‖f ‖–2〈f ⊗ (

T∗f
)
, S

〉
(37a)

= ‖f ‖–2
∑

b∈B

〈(
f ⊗ (

T∗f
))

b, Sb
〉

(37b)

= ‖f ‖–2
∑

b∈B

〈〈
T∗f , b

〉
f , Sb

〉
(37c)

= ‖f ‖–2
∑

b∈B

〈〈f , Tb〉f , Sb
〉

(37d)

= ‖f ‖–2
∑

b∈B

〈f , Tb〉〈f , Sb〉 (37e)

=
〈
A†A(S), T

〉
, (37f)

which yields the symmetry of A†A.
Thirdly, using (36) and the assumption that e = 0, we have

AA†A(T) = A
(‖f ‖–2f ⊗ (

T∗f
))

= ‖f ‖–2(0,
(
f ⊗ (

T∗f
))∗f

)
(38a)
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= ‖f ‖–2(0, 〈f , f 〉T∗f
)

=
(
0, T∗f

)
(38b)

= A(T). (38c)

And finally, using (34a)–(34b), we have

A†AA†(y, x) = A†(0, x) = ‖f ‖–2f ⊗ x = A†(y, x). (39)

(ii): This can be proved similar to (i).
(iii): In this case, A is the zero operator and hence the Desoer–Whalen conditions (see

[6, page 51]) make it obvious that A† is the zero operator as well. �

Let us define the auxiliary function

δ(ξ ) :=

⎧
⎨

⎩
ξ if ξ �= 0;

1 if ξ = 0,
(40)

which allows us to combine the previous two results into one.

Corollary 2.6 Let (y, x) ∈ Y × X. Then

A†(y, x) =
1

δ(‖e‖2)

(
y ⊗ e –

〈f , y〉
δ(‖e‖2 + ‖f ‖2)

f ⊗ e
)

(41)

+
1

δ(‖f ‖2)

(
f ⊗ x –

〈e, x〉
δ(‖e‖2 + ‖f ‖2)

f ⊗ e
)

. (42)

We now turn to formulas for PranA and PranA∗ .

Corollary 2.7 (Projections onto ranA and ranA∗) Let (y, x) ∈ Y ×X and let T ∈H. If e �= 0
and f �= 0, then

PranA(y, x) = AA†(y, x) =
(

y –
〈f , y〉 – 〈e, x〉
‖e‖2 + ‖f ‖2 f , x –

〈e, x〉 – 〈f , y〉
‖e‖2 + ‖f ‖2 e

)
(43)

and

PranA∗ (T) = A†A(T) =
1

‖e‖2 (Te) ⊗ e +
1

‖f ‖2 f ⊗ (
T∗f

)
–

〈f , Te〉
‖e‖2‖f ‖2 f ⊗ e. (44)

Furthermore,

PranA(y, x) = AA†(y, x) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, x) if e = 0 and f �= 0;

(y, 0) if e �= 0 and f = 0;

(0, 0) if e = 0 and f = 0;

(45)

and

PranA∗ (T) = A†A(T) =

⎧
⎪⎪⎨

⎪⎪⎩

1
‖f ‖2 f ⊗ (T∗f ) if e = 0 and f �= 0;

1
‖e‖2 (Te) ⊗ e if e �= 0 and f = 0;

0 if e = 0 and f = 0.

(46)
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Proof Using [3, Proposition 3.30(ii)] and (26), we obtain for e �= 0 and f �= 0

PranA(y, x) (47a)

= AA†(y, x) (47b)

= A
(

1
‖e‖2

(
y ⊗ e –

〈f , y〉
‖e‖2 + ‖f ‖2 f ⊗ e

)
+

1
‖f ‖2

(
f ⊗ x –

〈e, x〉
‖e‖2 + ‖f ‖2 f ⊗ e

))
(47c)

=
(

1
‖e‖2

(
y ⊗ e –

〈f , y〉
‖e‖2 + ‖f ‖2 f ⊗ e

)
e +

1
‖f ‖2

(
f ⊗ x –

〈e, x〉
‖e‖2 + ‖f ‖2 f ⊗ e

)
e, (47d)

1
‖e‖2

(
y ⊗ e –

〈f , y〉
‖e‖2 + ‖f ‖2 f ⊗ e

)∗
f

+
1

‖f ‖2

(
f ⊗ x –

〈e, x〉
‖e‖2 + ‖f ‖2 f ⊗ e

)∗
f
)

(47e)

=
(

1
‖e‖2

(
〈e, e〉y –

〈f , y〉
‖e‖2 + ‖f ‖2 〈e, e〉f

)
+

1
‖f ‖2

(
〈x, e〉f –

〈e, x〉
‖e‖2 + ‖f ‖2 〈e, e〉f

)
, (47f)

1
‖e‖2

(
〈y, f 〉e –

〈f , y〉
‖e‖2 + ‖f ‖2 〈f , f 〉e

)
+

1
‖f ‖2

(
〈f , f 〉x –

〈e, x〉
‖e‖2 + ‖f ‖2 〈f , f 〉e

))
(47g)

=
(

y –
〈f , y〉

‖e‖2 + ‖f ‖2 f +
〈e, x〉
‖f ‖2 f –

〈e, x〉‖e‖2

‖f ‖2(‖e‖2 + ‖f ‖2)
f , (47h)

x –
〈e, x〉

‖e‖2 + ‖f ‖2 e +
〈f , y〉
‖e‖2 e –

〈f , y〉‖f ‖2

‖e‖2(‖e‖2 + ‖f ‖2)
e
)

(47i)

=
(

y +
–〈f , y〉‖f ‖2 + 〈e, x〉(‖e‖2 + ‖f ‖2) – 〈e, x〉‖e‖2

‖f ‖2(‖e‖2 + ‖f ‖2)
f , (47j)

x +
–〈e, x〉‖e‖2 + 〈f , y〉(‖e‖2 + ‖f ‖2) – 〈f , y〉‖f ‖2

‖e‖2(‖e‖2 + ‖f ‖2)
e
)

(47k)

=
(

y –
〈f , y〉 – 〈e, x〉
‖e‖2 + ‖f ‖2 f , x –

〈e, x〉 – 〈f , y〉
‖e‖2 + ‖f ‖2 e

)
, (47l)

which verifies (43).
Next, using [3, Proposition 3.30(v) and (vi)] and (26), we have

PranA∗ (T) = PranA† (T) = A†A(T) = A†
(
Te, T∗f

)
(48a)

=
1

‖e‖2

(
(Te) ⊗ e –

〈f , Te〉
‖e‖2 + ‖f ‖2 f ⊗ e

)

+
1

‖f ‖2

(
f ⊗ (

T∗f
)

–
〈e, T∗f 〉

‖e‖2 + ‖f ‖2 f ⊗ e
)

(48b)

=
1

‖e‖2 (Te) ⊗ e +
1

‖f ‖2 f ⊗ (
T∗f

)
–

〈f , Te〉
‖e‖2 + ‖f ‖2

(
1

‖e‖2 +
1

‖f ‖2

)
f ⊗ e (48c)

=
1

‖e‖2 (Te) ⊗ e +
1

‖f ‖2 f ⊗ (
T∗f

)
–

〈f , Te〉
‖e‖2‖f ‖2 f ⊗ e, (48d)

which establishes (44).
If e = 0 and f �= 0, then

AA†(y, x) = A
(‖f ‖–2f ⊗ x

)
= ‖f ‖–2(0, (f ⊗ x)∗f

)
= ‖f ‖–2(0, 〈f , f 〉x)

= (0, x) (49)
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and

A†A(T) = A†
(
0, T∗f

)
=

1
‖f ‖2 f ⊗ (

T∗f
)
. (50)

The case when e �= 0 and f = 0 is treated similarly.
Finally, if e = 0 and f = 0, then A† = 0 and the result follows. �

Theorem 2.8 (Main projection theorem) Let (s, r) ∈ Y ×X and set (s̄, r̄) = PranA(s, r). Then

C := A–1(s̄, r̄) =
{

T ∈H|Te = s̄ and T∗f = r̄
} �= ∅. (51)

Let T ∈H. If e �= 0 and f �= 0, then

PC(T) = T –
1

‖e‖2

(
(Te – s) ⊗ e –

〈f , Te – s〉
‖e‖2 + ‖f ‖2 f ⊗ e

)
(52a)

–
1

‖f ‖2

(
f ⊗ (

T∗f – r
)

–
〈e, T∗f – r〉
‖e‖2 + ‖f ‖2 f ⊗ e

)
. (52b)

Moreover,

PC(T) =

⎧
⎪⎪⎨

⎪⎪⎩

T – 1
‖f ‖2 f ⊗ (T∗f – r) if e = 0 and f �= 0;

T – 1
‖e‖2 (Te – s) ⊗ e if e �= 0 and f = 0;

T if e = 0 and f = 0.

(53)

Proof Clearly, C �= ∅. Now Proposition 1.1 and (11) yield

PC(T) = T – A†
(
AT – (s, r)

)
= T – A†

(
Te – s, T∗f – r

)
. (54)

Now we consider all possible cases. If e �= 0 and f �= 0, then, using (26),

PC(T) = T –
1

‖e‖2

(
(Te – s) ⊗ e –

〈f , Te – s〉
‖e‖2 + ‖f ‖2 f ⊗ e

)

–
1

‖f ‖2

(
f ⊗ (

T∗f – r
)

–
〈e, T∗f – r〉
‖e‖2 + ‖f ‖2 f ⊗ e

)

as claimed.
Next, if e = 0 and f �= 0, then using Theorem 2.5(i) yields

PC(T) = T –
1

‖f ‖2 f ⊗ (
T∗f – r

)
.

Similarly, if e �= 0 and f = 0, then using Theorem 2.5(ii) yields

PC(T) = T –
1

‖e‖2 (Te – s) ⊗ e.

And finally, if e = 0 and f = 0, then A† = 0 and hence PC(T) = T . �
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Remark 2.9 Consider Theorem 2.8 and its notation. If (s, r) ∈ ranA, then (s̄, r̄) = (s, r) and
hence C = A–1(s, r) which covers also the consistent case. Note that the auxiliary function
defined in (40) allows us to combine all four cases into

PC(T) = T –
1

δ(‖e‖2)

(
(Te – s) ⊗ e –

〈f , Te – s〉
δ(‖e‖2 + ‖f ‖2)

f ⊗ e
)

(55a)

–
1

δ(‖f ‖2)

(
f ⊗ (

T∗f – r
)

–
〈e, T∗f – r〉

δ(‖e‖2 + ‖f ‖2)
f ⊗ e

)
. (55b)

The last two results in this section are inspired by [5, Theorem 2.1] and [8, Theorem on
page 566], respectively. See also Corollary 3.6 and Example 3.8.

Corollary 2.10 Suppose that Y = X, let e ∈ X � {0}, let f ∈ X � {0}, set

E :=
1

‖e‖2 e ⊗ e = PRe and F :=
1

‖f ‖2 f ⊗ f = PRf , (56)

and let γ ∈R. Then

C :=
{

T ∈H|Te = γ e and T∗f = γ f
} �= ∅ (57)

and

(∀T ∈H) PC(T) = γ Id +(Id –F)(T – γ Id)(Id –E). (58)

Proof The projection identities in (56) follow from (9). Note that γ Id ∈ C, and hence C �=
∅. We may and do assume without loss of generality that ‖e‖ = 1 = ‖f ‖.

Now let T ∈H. Applying (52a)–(52b) with r := γ f and s := γ e, we deduce that

PC(T) = T –
(

(Te – γ e) ⊗ e –
〈f , Te – γ e〉

2
f ⊗ e

)
(59a)

–
(

f ⊗ (
T∗f – γ f

)
–

〈e, T∗f – γ f 〉
2

f ⊗ e
)

(59b)

= T – (Te) ⊗ e + γ e ⊗ e +
〈f , Te〉 – γ 〈f , e〉

2
f ⊗ e (59c)

– f ⊗ (
T∗f

)
+ γ f ⊗ f +

〈Te, f 〉 – γ 〈e, f 〉
2

f ⊗ e (59d)

= T – (Te) ⊗ e – f ⊗ (
T∗f

)
+ γ (E + F) +

(〈f , Te〉 – γ 〈e, f 〉)f ⊗ e (59e)

= T – TE – FT + γ (E + F) +
(〈f , Te〉 – γ 〈e, f 〉)f ⊗ e (59f)

= T – TE – FT + γ (E + F) + FTE – γ FE (59g)

= γ Id +T – TE – FT + FTE – γ Id +γ E + γ F – γ FE (59h)

= γ Id +(Id –F)T(Id –E) – γ (Id –F)(Id –E) (59i)

= γ Id +(Id –F)(T – γ Id)(Id –E) (59j)

as claimed. �
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We conclude this section with a beautiful projection formula that arises when the last
result is specialized even further.

Corollary 2.11 Suppose that Y = X, let e ∈ X � {0}, and set

E :=
1

‖e‖2 e ⊗ e = PRe. (60)

Then

C :=
{

T ∈H|Te = e = T∗e
} �= ∅ (61)

and

(∀T ∈H) PC(T) = E + (Id –E)T(Id –E). (62)

Proof Let T ∈H. Applying Corollary 2.10 with f = e and γ = 1, we obtain

PC(T) = Id +(Id –E)(T – Id)(Id –E) (63a)

= Id +(Id –E)T(Id –E) – (Id –E)2 (63b)

= Id +(Id –E)T(Id –E) – (Id –E) (63c)

= (Id –E)T(Id –E) + E (63d)

because Id –E = P{e}⊥ is idempotent. �

3 Rectangular matrices
In this section, we specialize the results of Sect. 2 to

X = R
n and Y = R

m, (64)

which gives rise to

H = R
m×n, (65)

the space of real m × n matrices. Given u and x in R
n, and v and y in R

m, we have v ⊗ u =
vuᵀ, (v ⊗ u)x = vuᵀx = (uᵀx)v, and (v ⊗ u)∗y = (vᵀy)u. Corresponding to (11), we have

A : Rm×n →R
m+n : T �→

[
Te

Tᵀf

]

. (66)

The counterpart of (24) reads

A∗ : Rm+n → R
m×n :

[
y
x

]

�→ yeᵀ + fxᵀ. (67)

Translated to the matrix setting, Theorem 2.4 and Theorem 2.5 turn into the following.
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Theorem 3.1 Let x ∈ R
n and y ∈R

m. If e �= 0 and f �= 0, then

A†

[
y
x

]

=
1

‖e‖2

(
yeᵀ –

f ᵀy
‖e‖2 + ‖f ‖2 feᵀ

)
+

1
‖f ‖2

(
fxᵀ –

eᵀx
‖e‖2 + ‖f ‖2 feᵀ

)
. (68)

Furthermore,

A†

[
y
x

]

=

⎧
⎪⎪⎨

⎪⎪⎩

1
‖f ‖2 fxᵀ if e = 0 and f �= 0;

1
‖e‖2 yeᵀ if e �= 0 and f = 0;

0 if e = 0 and f = 0.

(69)

In turn, Corollary 2.7 now states the following.

Corollary 3.2 Let x ∈R
n, let y ∈R

m, and let T ∈R
m×n. If e �= 0 and f �= 0, then

PranA

[
y
x

]

=

[
y
x

]

–
f ᵀy – eᵀx

‖e‖2 + ‖f ‖2

[
f

–e

]

(70)

and

PranA∗ (T) =
1

‖e‖2 Teeᵀ +
1

‖f ‖2 ff ᵀT –
f ᵀTe

‖e‖2‖f ‖2 feᵀ. (71)

Furthermore,

PranA

[
y
x

]

=

⎧
⎪⎪⎨

⎪⎪⎩

[ 0
x

]
if e = 0 and f �= 0;

[ y
0
]

if e �= 0 and f = 0;
[ 0

0

]
if e = 0 and f = 0;

(72)

and

PranA∗ (T) =

⎧
⎪⎪⎨

⎪⎪⎩

1
‖f ‖2 ff ᵀT if e = 0 and f �= 0;

1
‖e‖2 Teeᵀ if e �= 0 and f = 0;

0 if e = 0 and f = 0.

(73)

Next, Theorem 2.8 turns into the following result.

Theorem 3.3 Let r ∈R
n, let s ∈R

m, and set [s̄, r̄]ᵀ = PranA[s, r]ᵀ. Then

C :=
{

T ∈R
m×n|Te = s̄ and Tᵀf = r̄

} �= ∅. (74)

Now let T ∈R
m×n. If e �= 0 and f �= 0, then

PC(T) = T –
1

‖e‖2

(
(Te – s)eᵀ –

f ᵀ(Te – s)
‖e‖2 + ‖f ‖2 feᵀ

)
(75a)

–
1

‖f ‖2

(
f
(
f ᵀT – rᵀ)

–
eᵀ(Tᵀf – r)
‖e‖2 + ‖f ‖2 feᵀ

)
. (75b)



Bauschke et al. Fixed Point Theory Algorithms Sci Eng         (2021) 2021:23 Page 14 of 20

Moreover,

PC(T) =

⎧
⎪⎪⎨

⎪⎪⎩

T – 1
‖f ‖2 f (f ᵀT – rᵀ) if e = 0 and f �= 0;

T – 1
‖e‖2 (Te – s)eᵀ if e �= 0 and f = 0;

T if e = 0 and f = 0.

(76)

Let us specialize Theorem 3.3 further to the following interesting case.

Corollary 3.4 (Projection onto matrices with prescribed row/column sums) Suppose that
e = [1, 1, . . . , 1]ᵀ ∈R

n and that f = [1, 1, . . . , 1]ᵀ ∈ R
m. Let r ∈R

n, let s ∈R
m, and set [s̄, r̄]ᵀ =

PranA[s, r]ᵀ. Then

C :=
{

T ∈R
m×n|Te = s̄ and Tᵀf = r̄

} �= ∅, (77)

and for every T ∈R
m×n,

PC(T) = T –
1
n

(
(Te – s)eᵀ –

f ᵀ(Te – s)
n + m

feᵀ
)

(78a)

–
1
m

(
f
(
f ᵀT – rᵀ)

–
eᵀ(Tᵀf – r)

n + m
feᵀ

)
. (78b)

Remark 3.5 (Romero; 1990) Consider Corollary 3.4 and its notation. Assume that [s, r]ᵀ ∈
ranA, which is equivalent to requiring that 〈e, r〉 = 〈f , s〉 (which is sometimes jokingly
called the “Fundamental Theorem of Accounting”). Then one verifies that the entries of
the matrix in (78a)–(78b) are given also expressed by

(
PC(T)

)
i,j = Ti,j +

si – (Te)i

n
+

rj – (Tᵀf )j

m
+

f ᵀTe – eᵀr
mn

(79)

for every i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. Formula (79) was proved by Romero (see [11,
Corollary 2.1]) who proved this result using Lagrange multipliers and who has even a K-
dimensional extension (where (79) corresponds to K = 2). We also refer the reader to [4]
for using (79) to compute the projection onto the transportation polytope.

Next, Corollary 2.10 turns into the following result.

Corollary 3.6 (Glunt–Hayden–Reams; 1998 [5, Theorem 2.1]) Suppose that e and f lie
in R

n
� {0}, set

E :=
1

‖e‖2 eeᵀ and F :=
1

‖f ‖2 ff ᵀ, (80)

and let γ ∈R. Then

C :=
{

T ∈R
n×n|Te = γ e and Tᵀf = γ f

} �= ∅ (81)

and

(∀T ∈H) PC(T) = γ Id +(Id –F)(T – γ Id)(Id –E). (82)
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We conclude this section with a particularization of Corollary 2.11 which immediately
follows when X = Y = R

n and thus H = R
n×n:

Corollary 3.7 Suppose that e ∈R
n
� {0}, and set

E :=
1

‖e‖2 eeᵀ. (83)

Then

C :=
{

T ∈R
n×n|Te = e = Tᵀe

} �= ∅ (84)

and

(∀T ∈R
n×n) PC(T) = E + (Id –E)T(Id –E). (85)

Example 3.8 (Projection formula for generalized bistochastic matrices; 1998 (See [8, The-
orem on page 566] and [5, Corollary 2.1].)) Set

u := [1, 1, . . . , 1]ᵀ ∈R
n, C :=

{
T ∈ R

n×n|Tu = u = Tᵀu
}

and J := (1/n)uuᵀ.
(86)

Then

(∀T ∈R
n×n) PC(T) = J + (Id –J)T(Id –J). (87)

Proof Apply Corollary 3.7 with e = u for which ‖e‖2 = n. �

Remark 3.9 For some applications of Example 3.8, we refer the reader to [12] and also to
the recent preprint [2].

Remark 3.10 A reviewer pointed out that projection algorithms can also be employed
to solve linear programming problems provided a strict complementary condition holds
(see Nurminski’s work [9]). This does suggest a possibly interesting future project: explore
whether the projections in this paper are useful in solving some linear programming prob-
lems on rectangular matrices with prescribed row and column sums.

4 Numerical experiments
We consider the problem of finding a rectangular matrix with prescribed row and column
sums as well as some additional constraints on the entries of the matrix. To be specific
and inspired by [1], we seek a real matrix of size m × n = 4 × 5 such that its row and
column sums are equal to s̄ :=

[
32, 43, 33, 23

]ᵀ
and r̄ :=

[
24, 18, 37, 27, 25

]ᵀ
, respectively.

One solution featuring actually nonnegative integers to this problem is given by

9 4 8 4 7 32
7 9 15 7 5 43
3 2 9 10 9 33
5 3 5 6 4 23

24 18 37 27 25 131



Bauschke et al. Fixed Point Theory Algorithms Sci Eng         (2021) 2021:23 Page 16 of 20

Adopting the notation of Corollary 3.4, we see that the set

B :=
{

T ∈R
4×5|Te = s̄ and Tᵀf = r̄

} �= ∅ (88)

is an affine subspace of R4×5 and that an explicit formula for PB is available through Corol-
lary 3.4. Next, we define the closed convex “hyper box”

A := ×
i∈{1,2,3,4}

j∈{1,2,3,4,5}

[
0, min{s̄i, r̄j}

]
. (89)

For instance, the (1, 3)-entry of any nonnegative integer solution must lie between 0 and
32 = min{32, 37}; thus A1,3 = [0, 32]. The projection of a real number ξ onto the interval
[0, min(s̄i, r̄j)] is given by max{0, min{s̄i, r̄j, ξ}}. Because A is the Cartesian product of such
intervals, the projection operator PA is nothing but the corresponding product of interval
projection operators.

Our problem is thus to

find a matrix T in A ∩ B. (90)

We shall tackle (90) with three well-known algorithms: Douglas–Rachford (DR),
method of alternating projections (MAP), and Dykstra (Dyk). Here is a quick review of
how these methods operate for a given starting matrix T0 ∈ R

4×5 and a current matrix
Tk ∈R

4×5.
DR updates via

Tk+1 := Tk – PA(Tk) + PB
(
2PA(Tk) – Tk

)
, (DR)

MAP updates via

Tk+1 := PB
(
PA(Tk)

)
, (MAP)

and finally Dyk initializes also R0 = 0 ∈R
4×5 and updates via

Ak+1 := PA(Tk + Rk), Rk+1 := Tk + Rk – Ak+1, Tk+1 := PB(Ak+1). (Dyk)

For all three algorithms, it is known that

PA(Tk) → some matrix in A ∩ B; (91)

in fact, Dyk satisfies even PA(Tk) → PA∩B(T0) (see, e.g., [3, Corollary 28.3, Corollary 5.26,
and Theorem 30.7]). Consequently, for each of the three algorithms, we will focus on the
sequence

(
PA(Tk)

)
k∈N, (92)



Bauschke et al. Fixed Point Theory Algorithms Sci Eng         (2021) 2021:23 Page 17 of 20

Figure 1 Convergence of iterates with the nonnegative matrix constraint

which obviously lies in A and which thus prompts the simple feasibility criterion given
by

δk :=
∥
∥PA(Tk) – PB

(
PA(Tk)

)∥∥. (93)

4.1 The convex case
Each algorithm is run for 250 iterations and for 100, 000 instances of T0 that are produced
with entries generated uniformly in [–100, 100]. The plot of the median value for δk of the
iterates is shown in Fig. 1. The shaded region for each line represents the range of val-
ues attained at that iteration. We assume an algorithm to have achieved feasibility when
δk = 0. While MAP and DR always achieve feasibility, as can be seen from the range of their
values in Fig. 1, DR achieves it the fastest in most cases. To support this, we order these
algorithms in Table 1 according to their performance. The first column reports what per-
cent of the instances achieved feasibility in the given order and if any of the algorithms did
not converge. So the row labeled “DR<MAP” represents cases where DR achieved feasi-
bility the fastest, MAP was second, and Dyk did not converge. The second column reports
what percent of the first feasible matrices obtained were closest to the starting point T0 in
the given order. This is done by measuring ‖T0 – T‖, where ‖·‖ is the operator norm, and
Tk is the first feasible matrices obtained using a given algorithm (Dyk, DR, or MAP). We
consider the algorithms tied, if the distance between the starting point and the estimate
for both differs by a value less than or equal to 10–15. As is evident, a majority of the cases
have DR in the lead for feasibility. However, the distance of these matrices is not as close
as the ones given by MAP and Dyk when feasible. This is consistent with the fact that
DR explores regions further away from the starting point to look for matrices, and Dyk is
built to achieve the least distance. It is also worth noting that at least one of these algo-
rithms converges in every instance. (Convergence for all three algorithms is guaranteed in
theory.)
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Table 1 Results for nonnegative matrices

Outcome Using iterations for feasibility Using distance from T0

DR=MAP 3 –
DR=MAP<Dyk 21 –
DR<MAP 21,205 –
MAP<DR 2 21,210
DR<MAP=Dyk 3 –
DR<MAP<Dyk 78,708 –
DR<Dyk<MAP 11 –
MAP<DR<Dyk 47 –
Dyk<DR<MAP – 11
Dyk<MAP<DR – 78,779

Total 100,000 100,000

Figure 2 Convergence of iterates with the integer matrix constraint

Last but not least, because our problem deals with unscaled row and column sums,
we point out that the sought-after projection may also be computed by using the al-
gorithm proposed by Calvillo and Romero [4] which even converges in finitely many
steps!

4.2 The nonconvex case
We exactly repeat the experiment of Sect. 4.1 with the only difference being that
the (new) set A in this section is the intersection of the (old) set A from the pre-
vious section (see (89)) and Z

4×5. This enforces nonnegative integer solutions. The
projection operator PA is obtained by simply rounding after application of PA from
Sect. 4.1.

In this nonconvex case, MAP fails to converge in most cases, whereas DR and Dyk con-
verge to solutions as shown in Fig. 2. This is corroborated by Table 2 where the rows where
MAP converges correspond to only a quarter of the total cases. Again, DR achieves fea-
sibility the fastest in more than half the cases, but Dykstra’s algorithm gives the solution
closest to T0 among these, as shown in the second column of Table 2. In this nonconvex
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Table 2 Results for nonnegative integer matrices

Outcome Using iterations for feasibility Using distance from T0

None 11,694 11,694
DR 19,468 19,468
MAP 25,380 25,380
Dyk 45 45
DR=Dyk 164 –
DR<Dyk 41,822 –
MAP<DR 73 73
MAP<Dyk 69 –
Dyk<DR 1156 43,142
Dyk<MAP – 69
MAP<Dyk<DR 1 –
MAP<DR<Dyk 128 –
Dyk<MAP<DR – 129

Total 100,000 100,000

Table 3 Integer matrix solutions found by the three algorithms

Algorithm Solutions found Unique cases

DR 62,812 62,812
MAP 316 314
Dyk 68,725 50,496

Total 131,853 113,622

case convergence of any of the algorithms is not guaranteed; in fact, there are several in-
stances when no solution is found. However, in the 105 runs considered, we did end up
discovering several distinct solutions (see Table 3). It turned out that all solutions found
were distinct even across all three algorithms resulting in 113,622 different nonnegative
integer solutions in total.
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