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1 Introduction

Newton’s method and its variants are a fundamental tool for solving nonlinear equations.
Namely, given a C!-function f : R” — R”, Newton’s method is designed to converge iter-
atively to a solution of the problem

f(x)=0, xeR" (1)

Problem (1) arises in practically every pure and applied discipline, including mathematical
programming, engineering, physics, health sciences and economics. As a result, studies
of Newton’s method form an extremely active area of research, with new variants being
constantly developed and tested. Basic results on Newton’s method and comprehensive
lists of references can be found, e.g., in the books by Dennis and Schnabel [4], Ostrowski
[13], Ortega and Rheinboldt [12], Deuflhard [5] and Corless and Fillion [3]. The interested
reader will find an excellent survey of Newton’s method in [14].

When started at an initial guess close to a solution, Newton’s method is well defined
and converges quadratically to a solution of (1), unless the Jacobian of f is singular or the
second partial derivatives of f are not bounded. Hence, if the user has an idea of where a
solution might be lying, Newton’s method is well known to be the fastest and most effective
method for solving (1).
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To ensure global convergence (i.e., to ensure convergence to a solution from any initial
point), suitable modifications of the Newton method are needed. An example of a globally
convergent variant is the so-called Levenberg—Marquardt method [8, 9]. This involves a
modification of Newton’s search direction at each step of the method. Without this mod-
ification, however, quadratic convergence can only be ensured when the initial guess be-
longs to a quadratic convergence region, namely a region from which every starting point
generates a quadratically convergent Newton sequence.

For a given solution x* of (1), a convergence region is, in general, not known a priori.
Kantorovich [7] and Smale [16] establish convergence to a solution of (1) under suitable as-
sumptions on the initial guess, and they do so without modifying Newton’s original search
direction. Our aim, on the other hand, is to devise a suitable modification of the Newton
iteration, so that the quadratic convergence region is (ideally) larger than the one result-
ing from the classical Newton iterations. Our approach can, in some sense, be seen as a
preconditioning of the iterations, so that a larger convergence region is obtained. This pre-
conditioning might be helpful when very little is known about the location of the solutions
of (1).

In [2], the authors presented a generalized version of the classical univariate Newton

iteration in which the original Problem (1) is replaced by a “modified” system (for n = 1)

fo sHx) =0, (2)

where s: R — R is a Cl-invertible function in a neighbourhood of the solution. The clas-
sical Newton method then corresponds to the choice s(x) = x. By judiciously choosing s in
a way that relates to the nature of Problem (1), the reference [2] illustrates via numerical
experiments, that the region of quadratic convergence can be enlarged, and hence a wider
choice of initial guesses are likely to result in quadratic convergence.

In the present paper, we propose a multivariate version of the generalized Newton
method proposed in [2]. We establish the quadratic convergence under suitable assump-
tions, and test this new method in our numerical experiments. For suitable choices of
s, we illustrate via extensive numerical experiments that the region of convergence corre-
sponding to the new method may be larger than the one observed for the classical Newton
iteration.

Recall that, if a sequence (x) converges to x* (with x¥ # x*,Vk), it is said to converge

quadratically to x* whenever we have

k+1 *
. X —-X
A= lim I I

——— <00
e A

where A denotes the so-called asymptotic error constant (see Definition 2.5). Moreover,
the smaller X is, the faster the convergence will be.

With different choices of s, the value of A will also be different, in general. Our gener-
alized Newton methods provide a tool for enlarging the region where A = A(s) is finite.
Moreover, a suitable choice of s might produce a smaller value A(s), thus resulting in an
improvement of the convergence speed. We illustrate this phenomenon in Sect. 4.

The choice of a suitable function s is, however, not clear in general, and more studies are

needed to develop a systematic way of designing such choices. An appropriate choice of
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s may result in a more robust behaviour of the generalized Newton method over a larger
search domain, as can be observed in the numerical experiments we carry out in Sect. 5.

The present paper is organized as follows. In Sect. 2, we state the basic definitions, use-
ful remarks, and properties. In Sect. 3, we establish the quadratic convergence results for
the generalized Newton’s method. In Sect. 4, we establish bounds on the asymptotic er-
ror constant. In Sect. 5, we test and compare the classical and a number of generalized
methods for example problems with two and six variables, one of the problems being a
challenging signal processing example. In the last section, the conclusion and a discussion

are presented.

2 Preliminaries

We present first the main definitions and assumptions.

Definition 2.1 Let x € R” and let g : R” — R” be twice continuously differentiable. We

write

&) f%(x)

glx) = eR” and,foreachi=1,...,n,wehave Vg(x):= eR”,

() 7 (x)

where the vector Vg;(x) is called the gradient of g; at x for every i = 1,...,n. The Jacobian
of g at x, denoted by J,(x), is the n x n matrix which has for row i the (transpose of the)
gradient of each g;, for i = 1,...,n. More precisely, /,(x) is defined as

9 9 0,

B Bw o BE
Jew):=| : D |erm

0, 0, 9

@) gm(x) o g2()

For eachi=1,...,n, the Hessian of g; at x is denoted by V2g;(x) and defined as

Bzg' 82g‘ Bzg'
ax}l @) s @ e ®)
Vigi(x) := : : : e R™",
0%g; g 0%g
el OB P rl OB Wg:(x)
fori=1,...,n.
In what follows, we denote by || - || the Euclidean norm, i.e., the £3-norm in R”. Denote

by B(x,r) := {z € R" : |[z—x]|| < r} the open ball centered at x with radius r. Similarly, denote
by Blx,r] := {z € R": ||z—x|| <} the closed ball centered at x with radius r. Given a matrix
A € R recall that a norm of A, denoted as ||A||, can be given by ||A|| := max{||Ax|| : [|x] <
1}, often referred to as the £,-norm of A.

The following simple lemma will be used in the proof of Proposition 4.1.
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Lemma 2.1 Let Ay,..., A, € R and fix u € R". Consider the vectors

ulAu lALI
V= eR", and w:= : eR”,

ul Ayu [
where ||A;| is the Ly-norm of the matrix A; fori=1,...,n. Then ||v|| < |lu|?||w]|.

Proof By Cauchy—Schwartz and the definition of the norm, u”A;u < ||u||?||A;|. Hence,

n n

I = 3w Au)® < 3 (lull?1Ad)

i=1 i=1

n
4 2 4 2
= Naell* YA = el * 1w,

i=1

which yields the statement. O

We recall next some standard definitions and notation we will use in our analysis.

Definition 2.2 Let A CR”" and BC R”. Let h: A — Band fix D C A.

(a) We say that & € C°(D) if 4 is continuous at every x € D.

(b) We write & € C1(D) if & is continuously differentiable at every x € D. Equivalently,
Ju(-) : D — R™" is a continuous function of «, for every x € D.

(c) Assume that m =nand k: A — B is bijective. So there exists ™! : B— A with
B=h(A).1f h € C°(A) and h~! € C°(B), we say that & is a homeomorphism from A to
B. Moreover, if h € C}(A) and h~! € C1(B), we say that / is a C'-homeomorphism
from A to B.

(d) Fix B> 0. We say that & € Lipg(D) if we have

’

|16 = ()| < Bllx -

for every x,x" € D.

Remark 2.1 Let D C R” be an open set and let s : R” — R” be a C!-homeomorphism from

D to s(D). Then, for every x € D, we see that J;(x) € R"*” is invertible and
Je@)] ™ = Jr (s)).

Indeed, given x € D, there is a unique y € s(D) such that y = s(x). Differentiate both sides
of the equality s o s71(y) = y to derive

1=J(s7 0 0) = Js@) 1 (s(x)), ®3)

where we used the chain rule. Now (3) directly yields the claim.

Page 4 of 31
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Remark 2.2 Let D C R” be an open set and consider two functions s,f : R” — R” such
that s is a C'-homeomorphism from D to s(D), and that f € C}(D). Define F := f o s7! :
s(D) — f(D). By the chain rule and Remark 2.1, we have, for every x € D,

Je(s() = @)1 (s@)) = Jr @[] (4)
In particular, if J(¥) is invertible, we obtain

Ue(s)] ™ = 1@ @]
for every x € D.

Let g: R" — R”, s0 g(x) := (g1(x),...,g.(x))T. For each i = 1,...,n, the gradient and Hes-
sian of g; collect the first- and second-order information, respectively, of g;. The Jacobian,
on the other hand, collects in a single operator all the first-order information for all coor-
dinates of g. Similarly, we will need an operator that encapsulates all second-order infor-
mation for all coordinates of g. We formally introduce these operators next.

Definition 2.3 Let g: R” — R” be twice continuously differentiable. With the notation
of Definition 2.1, define the function T} : (R”)" — R#x0mxn) gg

V2gi(2h)
Tg(zl,...,z") = ,
V3g,(z")
where Z € R” for j = 1,...,n. Given n vectors z',..., 2" € R”, define the map T(z',...,2"):
(R")" — R" as
) V2 (")
. eR”,

o
—_
N

—
N
=
~
T
—
<
=
Il

,,,,,

") V2g,(z")u"

where v/ € R” for j = 1,...,n. Finally, define the following norm-like concept for the map
To(2...,2"):

|Ty(eh )] o=

il! Vi),

where the norms in the right-hand side are the £,-norms of the Hessians of the g;. When
7' =7 = zfor every i,j € {1,...,n}, we use the short-hand notation

Ty(z,...,2) = Tg(2).

Definition 2.4 Given a symmetric matrix A € R"*”, denote its set of eigenvalues by X (A).
Recall that, when the matrix norm is induced by the £;-norm we have that ||A|| = max{|A]| :
A € Z(A)} =: SR(A), the spectral radius of A. Denote by Amin(A) the minimum eigenvalue
of A, and by Ayax(A) the maximum eigenvalue of A.
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Remark 2.3 Definition 2.4 and the fact that SR(V2g;(z)) = ||V?g,(2))| for i = 1,...,n di-
rectly yields

n

[7e( 2] = | Do(SR(VEai())"

i=1
For future use, we now give an elementary fact.

Fact2.1 Assumethata < band q € [a, b]. Denote by c := max{|al, |b|}. The following hold.
(i) Ifa>0thena® <q* <b>.
(ii) Ifb <0 then b* < ¢* < a’.
(iii) Ifa<0<bthen0 <g* <c?.

The concepts of rate of convergence and the asymptotic error constant will have an

important role in our analysis, so we recall their definitions next.

Definition 2.5 Consider a method that generates a sequence (x*) € R” such that the se-

quence converges to x*, where x* # x*,Vk. If & > 0 and A > 0 with

||xk+1 v ”

koo [l — ]|

’

then (xX) is said to converge to x* with order a and asymptotic error constant 1. When
a = 2, we say that the method converges quadratically.

2.1 Main assumptions
The following are our main assumptions for establishing quadratic convergence. We fol-
low the analysis from [4].
(Ho) Problem (1) has a solution, denoted by x*. There exists r > 0 such that
f € CY(B(x*,r)). Denote D; := B(x*,r) throughout.
(H1) Jr(%) is nonsingular for all x € D; and there exists y; > 0 such that

/7@ <, forallxeD. )

(H,) The function s is a C!-homeomorphism from D, to s(D;) and there exists y, > 0
such that

[/s@)| <v2 forallxeD;. 6)
(H3) Denote Dy := s(D). There exist 81,82 > 0 such that Jr € Lipﬂl (D1) and J1 €

Lipﬂz (Ds).
Given a set A C R”, we denote by cl(A) the closure of the set A.

Remark 2.4 Assumption (H3) implies the existence of M, M5 > 0 such that

7/ @)| <M, and |1 (s@) | = | []S(x)]_1 | <M, forallxeD;.

Page 6 of 31
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Indeed, this follows from the fact that the mappings are continuous over the compact sets
cl(D;) and cl(D,), respectively.

Remark 2.5 Assumption (Hs) allows us to apply Lemma 4.1.16 in [4] to deduce that there
exist € > 0, Ly, L1 > 0 such that

Liz-7Z| <[s7@ -s7(2) | < Lo[z -7
for all z,z' € B(s(x*),€) Ns(Dy). Setting z = s(x), z’ = s(x) this implies
Lifls@) = s(x) || < =] < Lo||s(x) - s(x') .

The authors of [2] proposed a generalized Newton method for solving (1) for # = 1. This
method can be described by the following iterative formula:

alet) =t =57 () -5 12 ), %

where s: R — R is a C!-invertible function in a neighbourhood of the solution. As men-
tioned in the Introduction, this modification can be seen as a preconditioning of Problem
(1), in which the choice of a suitable function s can improve/enlarge the region of con-
vergence of the method. Next we extend the above approach in a natural way to higher
dimensions. Namely, for a C!-function f : R” — R", consider the problem of solving

fx)=0, xeR" (8)

In order to solve Problem (8), we replace the derivatives in (7) by the corresponding Jaco-
bians. More precisely, consider the function g : R” — R” defined by

g0 =57 () = s @] @), )

where s: R” — R” has an inverse s~

, and Js(x), Jr(x) are the (assumed nonsingular) Jaco-
bians of s and f at , respectively. It can be directly checked that a fixed point x* of g is
a solution of (8), as long as both Jacobians are invertible at x#*. The generalized Newton

iteration is obtained by the rule g(x*) = x**1, where g is the function defined in (9).

Definition 2.6 Assume that (Ho)—(H>) hold. Given x* € Dy, define

=5 (5() L) ()] (). (10)

In the next section we extend the standard quadratic convergence results to the sequence
defined by (10).

3 Convergence of the multivariate generalized Newton method

The following is Lemma 4.1 from [2] rewritten for the multivariate case. This lemma states
that the iteration (10) coincides with the classical Newton iteration for the composite func-
tion F:=fos™L.
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Lemma 3.1 With the notation and hypothesis of Definition 2.6, let y* = s(x) and F :=
f os7L. Iteration (10) can be written as

P =y~ O] EG). (11)

Proof Using the definitions of y* and y*!, and Remark 2.2, we can write the iteration in
(11) as

s() = s(@) =L () ()] ()
Now applying s~ to this equality yields Iteration (10). d
We will use [4, Theorem 5.2.1] which we quote next.

Theorem 3.1 Let F: R" — R” be such that F € Cl(D),for an open convex set D C R”".
Assume that there exists X € R" such that F(x) = 0, and 8, B,y > 0 such that the following
hold.

(i) B(%,8) C D, with Jr(%) invertible and ||[Je(®)]7!|| < B.

(ii) Jr € Lip, (B®9)) (ic.. for all x,y € B&3), I¢(x) - Jr)I| < ¥ e —I).
Then there exists € > 0 such that, for all %y € B(%, €), the sequence (X*) generated by the rule

= FF e ()] E®), (12)

for all k > 0, has the following properties:
() (&) is well defined (i.e. [Jp(XX)] ™! exists for all k > 0).
(b) The convergence to x is quadratic, namely,

2

)

& - &] < By [# -2

forall k> 0.

Next we show that we can apply this theorem to our setting for a suitable choices of F,
x and D.

Lemma 3.2 Assumptions (Hy)—(H3) imply that Conditions (i)-(ii) in Theorem 3.1 hold
for F:=f os7}, x:= s(x*) and D := D,. Consequently, there exists & > 0 such that, for y° €
B(s(x*), ¢), the sequence

=y =6 EG),

for all k > 0, has the following properties:
(@) (9X) is well defined (i.e. [Jr(y*)] ™! exists for all k > 0).
(b) The convergence to s(x*) is quadratic, namely,

2

|7 = s@) | = nlly* =s() | k=0,

with 1 := yiyaLo(*H22 + Mo ).
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Proof Note that the statements (a) and (b) involving the sequence (y*) will follow directly
from Theorem 3.1 once we establish Conditions (i)—(ii) for suitable constants. Therefore,
we proceed to prove (i) and (ii). By (Hp) and the definitions of F and ¥, we can write

F(X)=fos'(s(x*)) =f(x*) =0.
By (H3) and (H3) we have D, = s(D;) is an open neighbourhood of x = s(x*). Hence we can

take § > 0 such that B(x,8) C D, = s(B(x*,r)). Using Remark 2.2 we can write

1

Je@® = Jpes (s(x7)) = Jr (<) s ()] (13)

By (H1)—(H>) and Remark 2.1, we deduce that the matrix on the right-hand side of (13) is
nonsingular and hence /¢(¥) is nonsingular. Using Remark 2.1 again gives

[DE@) 1 = DG )] < ) D )] < v (14)

where we used (H;)—(H) in the last inequality. The expressions (13)—(14) imply that con-
dition (i) in Theorem 3.1 holds for x € B(x, ) with 8 := y1 5.

Next, we check Condition (ii) in Theorem 3.1 for Jr = Jpos—1- Namely, we show now that
there exists y > O such that /1 € Lip,, (B(%, 8)). By (), given z,2" € D, = s(D) there exist
unique x,x" € Dy = B(x*,r) such that z = s(x), 2’ = s(x"). Adding and subtracting a suitable
term and using Remark 2.2 we obtain

o1 @) = Jyos1 ()|

Jros 1@ = Jr @)+ @ )] ~posr (2) ]

= @] = )]+ 0@ =5 )]

= [ e (s@) = Jr (@) |+ 1D @) =T ()] (15)

By (H3) we know that /i1 € Lipg, (D,) and hence for every x,x" € D; we have

s (50 =1 6| = Ballst) -] = 2 =], 16)

where we have used Remark 2.5 in the last inequality. By (H3) we also have J; € Lipg, (D),
S0

) =T () | < B[l =] (17)
for every x,x" € D;. Using (16)—(17) in (15), together with Remark 2.4 gives

@ =t ()] = (412 b ) s =t - (2)|

’

<MLo|z-7

soJr € Lipjy,(D2), where M = MLl—lﬁz + M, 1. Hence Condition (ii) holds for y := MLo. This
completes the proof of conditions (i) and (ii). Using now Theorem 3.1 and the definitions
of 8 and y, we obtain (a) and (b) for the sequence (y*) with the stated value of . O
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Theorem 3.2 With the notation of Definition 2.6, assume that (Hy)—(Hs) hold. The se-
quence (x*) given by the rule (10) is well defined and converges quadratically to x*.

Proof By Lemma 3.2, the sequence (y*) with y* := s(x*) is well defined and converges
quadratically to s(x*). By Lemma 3.1, the iteration on (y*) can be equivalently written as

s() = () =) D ()] ()

We will show now that (x*) converges quadratically to x*. Indeed, by part (b) of Lemma 3.2,

we have

?, (18)

[ =) | <l = s(+7)

for n as in Lemma 3.2(b). We can write

[ =2 = fls7 (s = 1 () D (o
= 15766 =L @D ] () =7 () -

Applying Remark 2.5 to bound the right-most expression, we obtain

N—
|
&
—_
x
Pl
N—
N—
|
X
*

o401 = Lols(o) ) D] ) - )|
- Lo —s(a)

’

k+1

where we have used the definition of ¥*** in the equality. We can now use (18) in the above

expression to derive
[+ =] < Lon[ly* =) | = Lons(x*) s (") |
Applying again Remark 2.5 to bound the right-most expression, we obtain

o] < 2 ok

|

So (x*) converges quadratically to x*, as desired. O

4 Bounds on the asymptotic error constant A

While the results of the previous section hold for the specific iteration (10), the following
results are true for any fixed-point iteration of the form g(x¥) = x**!. In this section we will
always assume that g is twice continuously differentiable.

Proposition 4.1 Assume that g(x*) = x* and that J,(x*) = 0. Consider the sequence ()
defined by the fixed point iteration x* = g(x*). Then there exist sequences (£¥), ..., (39
converging to x* such that the asymptotic error constant A given by Definition 2.5 verifies

,,,,,

A=

’

1
2 k—o0 ||xk—x*||2

where T, is as in Definition 2.3.
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Proof Since J,(x*) = 0, it is well known that (#%) converges quadratically to x*. We begin

by writing g(x) into a Taylor polynomial around x*, coordinate by coordinate,

. (x—x*) " V2g1(61)(x — x¥)
) = 50") ) o) + L z ,
(x— x*)TVZ n(én)(x - x*)

where§;,j = 1,...,n,arebetween x and x*. Using now Definition 2.3 as well as the equalities

g(x*) = x* and J;(x*) = 0, we obtain

By taking x := x* and using the definition of the fixed-point iteration, we obtain

1
g(xk) WS ETg(gf,...,‘%‘f)(xkix* gy

,,,,,

where E/‘ ,j=1,...,n,are between K and x*. Re-arranging, taking norms, and then dividing
by [|lxk —x*||? yield

,,,,,

[k — a2 2|k — x*]12

We know that the sequences (x¥) and (“;‘/() converge to x* as k — oo forj=1,...,n. Using

these facts and taking limits yield

k+1

x| 1 T 5, E) h e ks

je gim P L T S, st 1)
koo ok =2 2 koo I — 12

where we have also invoked Definition 2.5. This proves the proposition. 0

Our aim in this section is to use Proposition 4.1 to establish upper and lower bounds
for the asymptotic error constant. For this we will need the following definition. For j €

{1,...,n}, we denote by [v]; the jth coordinate of the vector v € R".

Definition 4.1 Given # vectors x!,...,x", and the matrices V2g; (x!),..., V2g,(x"), define

1
the vector u(x',...,x") e R? as

0, if Amin(V2g/(#)) < 0 < Amax(V2gi(#)),
[l a”)] = ] Amin(V2g (), if Amin(V2gi(&)) = 0, (20)
|Amax(V2g ()], if Amax(V2gi(#)) <0,

forj=1,...,n. Define also the vector olxl,...,.x" e R” as

’

[o(x),....2")]; = SR(V’g(¥)) = | Vg (¥)
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forj=1,...,n. For simplicity in appearance, we will write w(x) and p(x) when & = x for all
j=1,...,n. Namely,

wx) = u(x,...,x) and px):=px,...,x).

Remark 4.1 With the notation of Definition 2.4, it is well known that the spectral radius
SR(A) is a continuous function of the matrix A. Hence, if g is twice continuously differ-
entiable in a neighbourhood around x, the function p will be a continuous function of x.
Therefore, whenever (S{( )seirs (S,]f_l) and (“;‘,’l< ) are sequences converging to the same point z,
we will have p(é{‘ yeeer ’;’,’f ) converging to p(z,...,z) = p(z). A similar fact can be established

for the function p.

Remark 4.2 Clearly, the function [u(-)]; can be equivalently defined as

0, if Amin(vzgj(xj)) <0< )‘max(VZgj(x/)L
= Amin(V2gi(#)) >0 or

min{l}‘min(v2gj(xj))|’ p‘max(vzgj(xj))l}r if .
Amax(V2gi(#)) < 0,

for j =1,...,n. So the definition of [(-)]; is given over two complementary sets, one of
them open and the other closed. Since in each of these sets [1(-)]; is given by a continu-
ous function, and the values of these two functions coincide at the boundary of the two
complementary sets, we deduce that p is a continuous function.

The next technical result will be used in Theorem 4.1. Recall from Remark 2.3 and Def-
inition 2.3 that

7o )] = L) e

Proposition 4.2 With the notation of Definition 4.1, we have
uTV2g,(¥)u)?
()] = I < (o)),
forj=1,...,nand all nonzero u € R".

Proof Recall that by Rayleigh quotient properties,

ul V2gi()u

llue]?

e (Vg () < < (Vg (),

forallj=1,...,n. So for each fixed j we can apply Fact 2.1 with

w= (V). bom (V)
_u' Vg )u

R ’ €= maX{|)Lmin(V2gj(xj))

hmax (V285 (%)) |}

’
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Assume that @ = Amin(V2g;(#/)) > 0. In this situation, by definition we have [w(x',...,%")]; =
a = hmin(V2g(#)) and [p(x},...,2")]; = b = Amax(V2gi(#/)). Now part (i) of Fact 2.1 directly
yields

([u(xl,-wx”)],»)z = @ = (Ain (Vg ()" < 4
_ (u"V2g(W)u)
- 2]

<0 = (hnax (Vg ().

If b = Amax(V2g(¥)) < 0 then [p(x%,...,x")]; = [Amin(V2g(¥/))| and by part (ii) of Fact 2.1
we have

([ x)])” = 52 = ([Amax (V2 (@) )
= W =7 = (|hmin (Vg (¥)) )’

=a’=([p(x",....#")])"

Finally, if Amin(V2g(®)) < 0 < Amax(V2g(#')) then by definition [u(x',...,x")]; = 0 and
[p(x!,...,2™)]; = max{|Amin(V2g(#))], [Amax(V2gi(#))|} = c. Using part (iii) of Fact 2.1 yields

T2 o () 11)2
0= ([n(",....x")])" < % =q"<¢

(max{ [ 2min (Vg (), [hmax (V2 (o)) 1)’

(ol )]

’

This completes the proof. O

Theorem 4.1 Suppose g(x*) = x* and J,(x*) = 0, with g twice continuously differentiable in
a neighbourhood of x*. Consider the asymptotic error constant ). > 0 for the multivariate

iterative method x**' = g(x*). Then

1 1
) <2< 1T,
where u(x*) is as in Definition 4.1, and Ty as in Definition 2.3.

Proof Recall that, by (21), || To(x*) | = |o(x*)|l. Hence, it is enough to establish the upper
bound with || p(x*)|| instead of || Ty (x*)|. By Proposition 4.1 we have

A=Ilim —————
k=00 2|k — x|

’

where (£f),..., (£¥) are n sequences converging to x*. Using now Proposition 4.2 for ¥/ = él.k

and u = #* — x* # 0 we deduce that

(k=) T V2gi(EF) (- x7))?
((n(eh....89])" < ey < ([p(el- - €0])" (22)
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By definition of T, and Lemma 2.1 we have

[T (6680 ey | < I =2 P T8 8

.....

Combine this fact with (22) and Definition 2.3 to derive

T,(&f,... X . .
1 lim H/‘@{(wwﬁf) H < lim 1T (&1 [0 T |

2 k—o00 k—00 2||xk—x”‘||2
1 .
<L 736t 0] 2

By Remarks 4.1, 4.2 and the fact that g is twice continuously differentiable, the functions

T, and  are continuous, so

’

lim (e €)= () and tim | Ty(eh )] = [T - o)

where we also used (21) in the right-most equality. These facts, (23) and the definitions of
A, p and p yield

’

1 1 1
) =2 < Lol - 17,6
as required. O

5 Numerical experiments

In this section we compare the classical and generalized Newton methods on five example
systems of equations of the form f(x) = 0 as in (1), with two variables (where visualization
is possible) as well as six variables. The equations in these test problems involve cubic,
quartic and exponential functions. Using various choices of the generalizing function s,
we look at both local and global behaviour of the classical and generalized methods, and
we do this in the following sense.

« Local behaviour: For each test problem we check that, with either method,
convergence to a solution is quadratic, verifying Theorem 3.2. We do this by obtaining
numerical estimates of the asymptotic error constant A. Comparisons of the estimates
of A for each method give us an idea as to which method is faster locally. Recall that
for any method that we consider the convergence rate is quadratic. So by comparing
the A, we compare the local “speeds” of quadratically convergent methods. In other
words, the ratio of the A of two methods will tell us how many times a method is
“faster” or “slower” than the other, locally. We also provide theoretical bounds on 2,
i.e., intervals in which A lies, for each example by using Theorem 4.1.

« Global behaviour: It is well known that the main drawback of the classical Newton
method is its dependence on the quality of the initial guess (or the starting point) used
in the Newton iterations. For the systems with two equations in two unknowns, we
visualize graphically the colour-coded number of iterations that either method is
required to converge, if at all, over domains of various sizes, with the set tolerance of
1078. These graphs serve to demonstrate the value of the generalized method: The

domain in which the generalized method converges in a reasonable number of
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iterations can be made larger, by choosing the generalizing function s carefully. We
also present statistical information about the global convergence properties by means
of a large number of randomly generated starting points for each method, in order to
verify the information conveyed by the graphs. This information ultimately leads to a
decision as to which of the methods considered is best to use, on the average, in a
given search domain.

For computations, we use MATLAB Release 2019b, update 5. In getting the estimates of
A, variable precision arithmetic (vpa of MATLAB) making use of a large number of digits
is utilized to be able to obtain these estimates with relatively reliable number of significant
figures.

The CPU times are reported by running MATLAB on a 13-inch 2018 model MacBook
Pro, with the operating system macOS Mojave (version 10.14.6), the processor 2.7 GHz
Intel Core i7 and the memory 16 GB 2133 MHz LPDDR3.

The MATLAB code we have written to generate the colour-coded portraits of number
of iterations is based on Cleve Moler’s code for viewing fractals generated by univariate
Newton iterations [10] in complex plane.

The methodology used in obtaining the statistical information, such as the average num-
ber of iterations, the rate of success of a method, and the CPU times for each iteration and
each successful run, on the average, are explained in detail only once, in the first example
in Sect. 5.1. For brevity, we avoid repetitions of this information in the subsequent four
examples.

5.1 Quartic equations
To compare the classical and generalized methods we will first consider the following ex-
ample system involving simple quartic functions:

fx) = [xzxz - 1} -0, (24)
x1x5 —1

where f : R? — R? and 0 € R% Clearly, System (24) has two real solutions; namely
x* =(1,1) and x* = (-1,-1). The expression for the fixed-point map g associated with
this system can be derived by using (9) with a chosen s. In Table 1, we do this first with
s(x) = (x1,x7) for the system in (24) and get g for the classical Newton method. The ap-
pearance of x5 and x3 in the first and second equations, respectively, prompts us to choose
s(x) = (x3,43) for the generalized Newton method. Then we use this s to get the g for the
generalized method as displayed in Table 1. We refer to the method obtained in this way
the cube-generalized Newton method.

By Theorem 3.2, the fixed-point methods (classical and generalized Newton) using the
choices of g listed in Table 1 are quadratically convergent and this can numerically be

Table 1 System (24): Fixed-point map g with different choices of s

f(x) s(x)

)(2)(1
X1X2

=

X
X

2)(13 % 3x2 + X )/(8)(%)(3)
xz— 2><13 3 -3x? +x2)/(8x13x§)

[xf] 2x 3x2 +x )/(8)(2)
x5 30633 - 3% +x2)/(8x)

1S
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Table 2 System (24): Asymptotic error constants of the classical (s;(x) = x;, i = 1,2) and generalized
(six) =x3,i=1,2) Newton methods

Soln  six)  [lp&HIN/2 1p6HNI/21 A AN/AGN
1&2 X [0,1.7] 1.06
x3 [0,0.8] 035 30

|

verified. What can one say about the asymptotic error constant? Table 2 encapsulates the
ensuing answer. The values listed for A are the numerical estimates of the asymptotic er-

K+l _ x|/ 14X = x*||? from Definition 2.5. These estimates are the

ror constant limg_, o ||x
same for both of the solutions x* = (1,1) and x* = (-1,-1) (referred to as Solutions 1 &
2) because of the symmetry of the equations in System (24). We note that the estimates
of A consistently fall into the intervals defined by the theoretical bounds established for
A in Theorem 4.1, which are also shown in the table. The (estimated) ratio Ay/Agn of the
asymptotic error constants of the classical and generalized Newton methods, respectively,
implies that the generalized method is about three times faster near a solution, for this ex-
ample.

We pointed out in the Introduction that, for a given solution, a quadratic convergence
region is in general not known a priori. Next we graphically illustrate in Fig. 1 that the
(quadratic) convergence regions about the solutions for the generalized Newton method
we have devised for this example are larger than those resulting from the classical Newton
method. We also look at the regions of convergence over larger domains than just the
neighbourhoods of the solutions.

In the graphs in Fig. 1, the number of iterations needed to converge with tolerance 1078
to a solution from a given point (i.e., an initial guess) is colour-coded as indicated by the
colour bar next to each graph: while 2—4 iteration runs are represented by dark blue, 14
or more iteration runs, which are regarded as “unsuccessful,’ are represented by yellow.
The initial guesses are generated over a 1000 x 1000 grid in the search domains [-3,3]?,
[-10, 10]? and [-100, 100]2. The following immediate observations point to some desirable
properties of the cube-generalized method for this example:

« Overall, the graphs associated with the cube-generalized method have far smaller

yellow regions.

+ We note by looking at the [-3,3]2-domain that the regions in which convergence is

achieved in 2—6 iterations are much larger than that for the classical method.

« In particular, if the search domain is chosen to be much larger, for example

[-100, 100]2, then the classical method is unlikely to converge, while the
cube-generalized method has a much better chance to converge.

Next we carry out further numerical experiments to support some of our visual obser-
vations in Fig. 1. In each of the domains [-3,3]?, [-10, 10]? and [-100, 100]?, we randomly
generate one million starting points and record the number of iterations needed to con-
verge from each point. We re-iterate that, if the number of iterations is 14 or greater, then
we deem that particular run unsuccessful. In Table 3, we list, for several typical choices
of 5, the average number of iterations over each of the search domains for the successful
runs. We also list the percentage of the runs that were successful, namely the success rate.

The CPU time taken by a single iteration of the successful runs on the average cannot be
found reliably by simply measuring and recording each successful run time and then aver-
aging them, since the very short CPU time of a single run (to the order of 107°) cannot be
measured reliably. Therefore, with 100 random starting points, we repeat each successful
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(a) s(z) = (z1,22) (b) s(x) = (2, 23)
Figure 1 System (24): Portraits of colour-coded number of iterations required for convergence
. J

Table 3 System (24): Performance of the classical and generalized Newton methods with one million
randomly generated starting points in domains of various sizes

5i(x) [-3,3)? [-10,10)° [-100, 100] CPU time/
Ave Success Ave Success Ave Success successful
iter rate [%)] iter rate [%] iter rate [%] iter [sec]
X; 80 56.4 105 56.9 1.8 2.0 27 %1070
X 7.1 77.0 89 786 123 36.2 47 x10°
sinh(x;) 7.9 67.7 9.0 257 9.0 03 29 %1070
e 9.0 76.0 107 276 106 03 51x10°

tanx; 59 10.9 6.5 148 7.1 03 30x%107°
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Table 4 System (24): CPU time needed on average by the classical and generalized Newton
methods to obtain a solution in less than 14 iterations, based on the data in Table 3

5i(X) Time needed to get a single soln [sec]
[-3,31° [-10,101 [-100, 100}

X; 38 % 107 50 % 107 16x 1073
X3 43 %107 53x 107 16x 107
sinh(x)) 34 %107 1.0 x 1074 87 %1073

i 6.0 x 107 20x 107 18 x 1072
tanx; 16 x 107 13x10™ 7.1 %1073

run 10° times and take the average. This provides an accurate averaged measure of the
CPU time per iteration, which is listed for each method in the last column of Table 3.

Table 3 tells us that over the search domain [-3, 3]% the cube-generalized method is suc-
cessful 77% of the time it is run, while the success rate of the classical method is 56%. When
we generate initial points randomly over a much larger domain, i.e., over [~100, 100]? (this
might as well be the situation when we have no knowledge of the location of a solution), the
difference in the success rates of the two methods is striking: while the cube-generalized
method is successful 36% of the time, the classical method is successful a mere 2% of the
time it is run. Although the latter case tells clearly what method to use in the domain
[~100,100]2, in the other cases, the success rates alone are not sufficient to tell which
method will be (globally) “better” to use.

To be able to have a clear idea about which method is more desirable than the others,
we need to find the time a method needs before it obtains a solution. Suppose that, for a
given method, the CPU time for a successful run is 3.1 x 107 sec and the success rate is
50%. Then, statistically speaking, on average one will need to run that method twice to get
a single solution and the time required for this effort will be 6.2 x 10~° sec. So we can find
the time required to obtain a solution by a given method as: the CPU time per successful
iteration, times the average number of iterations, divided by the success rate written as a
decimal. The CPU times obtained in this way for each method are tabulated in Table 4.

From the global convergence point of view, the method with the smallest CPU time over
a domain in Table 4 should be selected, which are framed for each of the three domains
of concern. For the domain [-3, 3]%, the time required by the classical Newton method is
about 12% worse than the generalized method with s;(x) = sinh(x;), i = 1,2, which we refer
to as the sinh-generalized Newton method. For the domain [-10, 10]?, the classical method
seems to be the best to use, although its closest contender, the cube-generalized method,
takes only 6% longer time to find a solution. Over the domain [-100,100]?, the cube-
generalized method is clearly the best method to use, as the classical method needs about
10 times more time in obtaining a solution. To rephrase the latter statement: the cube-
generalized method is expected to obtain 10 solutions by the time the classical method
finds one.

5.2 Equations involving exponentials
The following system is a special instance of the Jennrich and Sampson test problem pre-
sented in [6, 11]:

=0. (25)

f(x):[exuexz—g}

e*l + e -6
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Table 5 System (25): Asymptotic error constants of the classical and generalized Newton methods

Soln sk w2 p6I/2) - A AN/AGN

1&2 X [0.05,2.81] 09
eti [0.19,2.64] 035 26
3 14
12
10
8
6
4
3
10 14
12
5
: 10
v, >/
8
a
5 ‘ 6
4
-10
-10 -5 0 5 10
x
(a) s(z) = (z1,22) (b) s(z) = (e, e™2)
Figure 2 System (25): Portraits of colour-coded number of iterations required for convergence

System (25) has two solutions, namely x* = (4, b) and x* = (b, a), referred to here as Solu-
tions 1 and 2, respectively, where a = In((3 + +/3)/2) ~ 0.861211502516490 and b = In((3 —
V/3)/2) ~ —0.455746394408326, with the approximations correct to 15 dp. The appear-
ance of the exponential functions in the equations prompts us to choose s(x) = (¢!, *?)
for the generalized Newton method’s fixed-point map in (9). We refer to this method as
exp-generalized Newton method. As before, s(x) = (x1,x,) is used for the classical Newton
method.

Table 5 lists the numerical estimates and the theoretical intervals for the asymptotic
error constant A, giving some idea about the local behaviour around a solution. However,
we note that the ratio Ay /Agn is not so accurate in this case as the values obtained in the
latter iterations for Ay seem to fluctuate between 0.4 and 1.4, which we have averaged as
0.9. The approximate value listed for Ax/Agn implies that, close enough to a solution, the
exp-generalized method is more than twice faster.

As in the example in Sect. 5.1, we depict, in Fig. 2 the colour-coded number of iterations
needed to converge to any one of the two solutions. The success of the exp-generalized
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Table 6 System (25): Performance of the classical and generalized Newton methods with one million
randomly generated starting points in domains of various sizes

5i(x) [-3,3]2 [-10,10)2 CPU time/
Ave  Success Ave  Success ~ successful
iter rate [%] iter rate [%] iter [sec]
X; 6.6 250 6.7 24 2.7 x107°
X 73 123 7.3 1.1 46 %107
sinh(x) 62 174 6.2 16 29 % 107
e 78 983 96 533 6.7 x107°
tanx; 6.1 94 6.4 10.0 29 % 107

Table 7 System (25): CPU time needed on the average by the classical and generalized Newton
methods to obtain a solution in less than 14 iterations, based on the data in Table 6

si(x) Time needed to get a single soln [sec]
[-3,31 [-10,10]2
X 71 %107 75 %107
X3 27 x 107 3.1x 107
sinh(x;) 10x 107 1.1 %107
e 52 % 107 1.1 %107
tanx; 19%x 107 19 %107

method is even more striking in this case: (i) the graphs for the exp-generalized method
have far smaller yellow regions, (ii) local convergence regions (that are achieved in 4—
6 iterations, shown in darker shades of blue) for the exp-generalized method are much
larger and (iii) over the larger domain [-10,10]%, the exp-generalized method has a far
better chance of converging in less than 14 iterations.

Table 6 provides some statistical data as in the case of Table 3 for System (24) in the
previous subsection. It should be noted that the percentage success rates in the table are
in agreement with the percentage of the regions which are not yellow in Fig. 2, for the
cases of s(x) = (x1,x2) and s(x) = (¢*,e*2). Table 6 also includes other choices of s for a
wider comparison.

When successful the CPU time one iteration of the classical Newton method spends on
the average (over the domain [-3,3]?) is 2.7 x 107 sec. The same CPU time for the exp-
generalized Newton method is 6.7 x 107° sec, which is about 2.5 times longer. On the other
hand, over the domain [-3,3]?, the chance of finding a solution for the exp-generalized
method in less than 14 iterations is nearly 4 times higher than using the classical method.
Moreover, over the domain [-10, 10]?, the exp-generalized method is 23 times more likely
to find a solution in the same manner. These likelihoods of success which are greatly in
favour of the exp-generalized method seems to offset the higher computational times per
iteration.

To make sure of the conclusion we have just drawn above as to which method is pre-
ferred, we can again prepare a table listing the average CPU time needed for a successful
run by each method, as it was previously done in Table 4 for System (24). Table 7 lists these
times, which immediately reconfirms that the exp-generalized method should indeed be
the preferred method over [-3, 3], as it would take the classical method 37% more time to
find a solution. Over the larger domain [-10,10]?, by the time the classical method finds a
solution the exp-generalized method will have already found about seven solutions—see
the framed CPU times.



Burachik et al. Fixed Point Theory Algorithms Sci Eng (2021) 2021:15 Page 21 of 31

This is yet another example which clearly illustrates how the structure of the problem

can be exploited to solve a system of equations by means of a generalized Newton method.

5.3 Cubic equations in two variables
The example we deal with in this section emanates from an unconstrained global opti-
mization problem solved in [1], which asks one to minimize the function ¢ : R? — R given

as
o) = (¢ —1)" + (82 = 2)" = 0.721%, + 0.2, +0.3x,. (26)

Although the numerical optimization method proposed in [1] can find the global mini-

mizer of ¢, common numerical optimization approaches often only find a stationary point

of the function ¢, by finding a zero of the gradient of ¢, namely, effectively, they find a so-

lution to the system of equations
43 — dxy — 0.7x + 0.2
x):=Vo@) =| "} =0. 27

Fx) = Veola) [4x§ 8%y~ 0.7x; + 0.3] &4

In [1], five extremal solutions of the function in (26) are listed as in Table 8. Solutions 1-4
are all local minima while Solution 5 is a local maximum.

The appearance of x3 and x5 in (27) prompts us to consider s(x) = (x},x3) as the

first generalized method in Table 9. Via experiments we observe that the choice s(x) =

(sinhxy, sinhx,) yields another worthwhile generalization of the Newton method. Table 9

Table 8 Extremal solutions of ¢(x) in (26)

Soln X X2
-1.128494496205920  —1.477960288994776

1

2 1.088972069871674 1.442265902284124
3 0.79262879889394 -1.398008585571904
4
5

-0.888779137505495 1.352613115553849
0.044197271093630 0.033651793151170

Table 9 System (27): Asymptotic error constants of the classical and generalized Newton methods

Soln  si(0) (N2 Np0N/2] A An/AGN

1 Xi [0.08,1.5] 12
X [0.08,0.44] 03 40
sinh(x)  [0.08,0.96] 08 15

2 X [0.09,1.6] 1.0
X [0.09,0.5] 03 33
sinh()  [0.09,1.1] 06 17

3 X [0,2.9] 27
X [0,1.5] 14 19
sinh(x)  [0,2.5] 24 1

4 Xi [0,2.3] 12
X [0,094] 04 30
sinh(x)  [0,1.8] 07 17

5 Xi [0,0.14] 005
X [0,37] 298 0002
sinh(x)  [0,0.17] 016 03
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Figure 3 System (27): Portraits of colour-coded number of iterations required for convergence

Table 10 System (27): Performance of the classical and generalized Newton methods with one
million randomly generated starting points in domains of various sizes

5i(x) [-3,3]2 [-10,10]2 [-100, 100]? CPU time/
Ave Success Ave Success Ave Success successful
iter rate [%)] iter rate [%)] iter rate [%)] iter [sec]
Xi 7.0 986 9.7 99.3 122 98 37x10°
X 6.1 986 6.3 99.7 6.8 100.0 6.1%x 1070
sinh(x;) 59 9938 7.9 348 78 03 41x10°
ki 7.1 98.7 104 424 104 04 47 x 10
tanx; 6.7 70.7 73 575 78 33 40x10°

reveals that the estimates of A for both of the generalized methods are (by two to four
times) smaller at Solutions 1-4, and larger only at Solution 5.

To illustrate the overall behaviour, Fig. 3 provides a visualization of the success of three
methods in terms of the number of iterations. In addition to the classical method, we
consider the cube- and sinh-generalized methods.

Glancing at the 3 x 3 matrix of graphs of Fig. 3, while the graphs in the entries (2,2)
and (3,2) have more of the shades of blue than those in the same rows, the graph in (1, 3)
appears to have more of the shades of blue and almost no yellow. The success rates by
judging from the non-yellow regions in these graphs are corroborated by the success rates

presented in Table 10. What seem to be the best-performing methods by looking at these
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Table 11 System (27): CPU time needed on the average by the classical and generalized Newton
methods to obtain a solution in less than 14 iterations, based on the data in Table 10

5i(X) Time needed to get a single soln [sec]
[-3,31° [-10,101 [-100, 100}

X; 26 % 107 36 % 107 46 x 107
3 38x 107 39x 107 4.1 % 107
sinh(x)) 24 %107 93x 107 1.0 x 1072

i 34 %107 12 x 107 12 % 1072
tanx; 38 % 107 51 %107 95x 107

graphs are also in agreement with the ones corresponding to the framed entries in Ta-
ble 11.

By looking at Table 11, we deduce easily that the sinh-generalized method is the best,
although the classical method is only slightly worse, in terms of the time they take for
a successful run in the domain [-3,3]?. The classical Newton is the best for [-10,10]?,
with this time the cubic-generalized method being slightly worse, taking 8% longer time
in finding a solution. In the largest domain [-100,100]?%, the cube-generalized method is
by far the best, as its nearest contender, the classical Newton method, takes more than 11
times longer to obtain a single solution.

Going back to Fig. 3, we deduce from the first row of graphs that the regions of conver-
gence in 4-6 iterations of the classical method are considerably enlarged by both of the
generalized methods. This is in agreement with the estimated values of Ay /Ay in Table 9.

5.4 Cubic equations in six variables

We consider another system of cubic equations, but this time the number of equations
and unknowns is six. The system originates from the problem of (globally) minimizing
the function ¢ : R® — R, which was studied in [1, 15], given by

6

o(x) = Z uix? +xTBx +d"x, (28)

i=1
where

[97] (4 4 9 3 4 17 [27]
2 4 3 7 9 9 2 6
6 9 7 4 7 6 6 5

a= ] B= 5 d:
4 3 9 7 4 2 6 0
8 4 9 6 2 8 3 0
7] 1 2 6 6 3 5] 2]

We consider the problem of finding the zeroes of the gradient V(x) of ¢(x), in other
words, the zeroes of

61196?
3
arxy
fx):=Vex)=4| . +2Bx+d=0. (29)

asxz
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Table 12 Some of the stationary points of ¢ in (28)

Soln 1 Soln 2 Soln 3
X1 0.545218813388361  -0.599208065573669 0.590580847289543
X2 -1.464410189791729  -1.571013884485518 1.338889774602320
x3  -0.720606654276266 0.678323332400517  -0.853265510869097
X4 1.178144265591973 1.076080413893220  -0.955745102979906
X5 0.794065108243717 0.745744375791400  -0.646924271685709
X6 -0.465794119447879  -0.762615830412707 0.708688334528434
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Table 13 System (29): Asymptotic error constants of the classical and generalized Newton methods

Soln  si(0) UpeOIN2 1p0NN/20 - & An/Aen
1 X; [0,34] 07
X [0,1.2] 02 35
sinh x; [0,2.7] 13 05
2 Xi [O, 3“] 0.8
X [0,1.0] 04 2
sinh x; [0,2.4] 0.5 16
3 X; [0,3.1] 09
X [0,09] 04 23
sinh x; [0,2.3] 0.8 1.1

Table 14 System (29): Performance of the classical and generalized Newton methods with one
million randomly generated starting points in domains of various sizes

5i(x) [-3,3) [-10,10]2 [-100, 100]? CPU time/
Ave Success Ave Success Ave Success successful
iter rate [%] iter rate [%) iter rate [%) iter [sec]
X; 105 5838 1.9 412 - 00 63x 1070
X 8.0 76.7 85 489 88 17.7 95x% 107°
sinh(x;) 89 749 1. 174 - 00 69 x 1070
efi 108 624 123 2.2 - 0.0 10x 107
tanx; 92 32 98 06 - 00 73 %107

Solutions of (29) are stationary points of ¢, in other words, they are candidates for (locally)
optimal solutions of ¢, three of which are listed in Table 12. The first solution listed in
Table 12 is a global minimizer of ¢, as reported in [1]. Our aim here is to look at the
behaviour of the classical and generalized methods in finding a zero of f, which is only a
stationary point of ¢.

First we look at the (local) behaviour near the solutions listed in Table 12. Table 13 tab-
ulates the theoretical intervals where X lies, found using Theorem 4.1, as well as the X es-
timated numerically, for each method. We observe that the numerical estimates fall into
the theoretical intervals. We also observe that the cube-generalized method has X consis-
tently 2 to 3.5 times smaller than that of the classical method, and therefore locally faster
by the same factors. The sinh-generalized method, on the other hand, is observed to be
not so fast. The reason we have included the sinh-generalized method here is that as we
will see in Tables 14-and 15 it can have a desirable performance on a larger scale, in search
domains of moderate size.

Since System (29) has six variables, we cannot have the kind of visualization of perfor-
mance as we had in the previous (two-variable) examples. However, we can still carry out
runs with randomized (one million) initial points and make some statistical observations
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Table 15 System (29): CPU time needed on the average by the classical and generalized Newton
methods to obtain a solution in less than 14 iterations, based on the data in Table 14

5i(X) Time needed to get a single soln [sec]

[-3,3] [-10,10)2 [-100, 100}
X; 1.1 %107 18 % 107 -
X 99 x 107 |1.7 x 10*4| |4,7 x 10*4|
sinh(x;) 82 % 107 44 %107 -
el 17 %107 56 x 1073 -
tanx; 21 %1073 12x107? -

as we did for the previous example systems. Table 14, and subsequently Table 15, provide
advice as to which method can be chosen for efficiency.

The framed average CPU times required to get a single solution in Table 15 indicate
that the sinh-generalized method should be chosen in the domain [—3, 3], while the cube-
generalized method should be preferred in the larger domains. In [-3,3]?, compared to
the sinh-generalized method, the cube-generalized method takes about 21% more time to
find a solution, while the classical method requires 34% more time. In the search domain
[-100,100]?, the cube-generalized method is unrivalled as none of the other methods is
viable to use. We note that in the largest search domain since the other methods has a
success rate less than 0.04%, their success rates have been entered as 0.0% into Table 14,
with no average number of iterations reported.

5.5 Asignal processing problem

In optimum broad-band antenna processing the minimization of the mean output power
subject to linear constraints is a common problem [17, 18]. In [18], a 70-tuple example
from [17] about this signal processing problem has been transformed into the global min-
imization of the quartic polynomial function ¢ : R — R given in equation (30) below.
The details of this transformation can be found in [18, Appendix C].

2 4 3 2 2.2
@(x) = a1 — axxy + asx] — dax1Xy + AsX]Xy — AeXy + A7XTXS

+agx1Xs + Aoy, (30)
where

a; =0.337280011659804177, ay =0.122071359035091510,
a3 = 0.077257128600040819, ay = 0.217646697603541049,
as = 0.233083387816363887, ag = 0.129244611969892874,
a7 = 0.286227131697582205, ag =0.1755719525003619673,

ag = 0.0567691913792773433.

Here we are interested in the problem of finding a stationary point of ¢, namely a solution
of the system

f(x):=Vox) = [ (31)

—2ay%1 + 4a3x§ — AyXy + 3(1596%%2 + 2a7x1x% + agxg 0
agx + a5x§ —2agxy + 2a7x%x2 + Bagxlx% + 4a9x?2’
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Table 16 Extremal points for the function (30)

Soln X3 X5 7109}

1 —-1.037925846421872 1.188144940421522  0.314501964946967
2 1.037925846421872  —-1.188144940421522  0.314501964946967
3 —0.150370553810688  -0.948134491036906  0.262292001977528
4 0.150370553810688 0.948134491036906  0.262292001977528
5 0 0 0.337280011659804

Table 17 System (31): Asymptotic error constants of the classical and generalized Newton methods

Soln  si(0) U2 0p0N1/21 A An/AaN
1 Xi [0.29,2.6] 16
X [0.14,2.2] 1709
sinhx; [0.24,24] 06 27
e [023,2.3] 04 4
2 X; [029,2.6] 1.0
X [0.14,2.2] 15 07
sinhx;,  [0.24,2.4] 06 1.7
e [034,3.0] 15 07
3 X; [0,3.0] 13
X [0,4.9] 45 03
sinhx;  [0,2.8] o2
et [0,3.7) 20 07
4 Xi [0,3.0] 13
X [0,4.9] 04 33
sinh x; [0,2.8] 1.1 12
e [0,2.5] 10 13
5 Xi - 0.0
X - - -
sinhx; - 00 -
e [0,0.71] 05 00

The extremal points of ¢, which are zeroes f, and the corresponding functional values
are given in Table 16 (also see [18]). Solutions 3 and 4 are the global minimizers of ¢.

Table 17 reconfirms that, for Solutions 1-4, convergence is quadratic and the numeri-
cally estimated values of X lie in the theoretical intervals found by using Theorem 4.1. We
observe that the sinh-generalized method has A consistently 1.2 to 2.7 times smaller than
that of the classical method, and therefore locally faster by the same factors.

The missing entries for Solution 5 in Table 17 warrants an explanation. Numerical exper-
iments imply that the classical and sinh-generalized Newton methods’ rate of convergence
atx = (0,0) is higher than quadratic, since the asymptotic error constants A of each method
for quadratic convergence is estimated to be zero. In fact, interestingly, the rate of conver-
gence for either method (numerically) turns out to be cubic, with the associated asymp-
totic error constants estimated as 1.0 and 1.6, respectively. The exp-generalized method is
the only method in the list which is verified to be quadratically convergent at Solution 5.
On the other hand, the cube-generalized method has a singularity at x = (0, 0), and it fails
to converge to the solution, no matter how close to the solution the initial guess is chosen.

A visualization of the global performances of the methods listed in Table 17 is provided
in Fig. 4. By looking at the graphs, the sinh-generalized method appears to be the best to
use in the search domain [-3,3]? since it has smaller yellow regions and the domain is
dominated more by shades of blue, a sign of quicker convergence. In the slightly bigger
search domain of [-10, 10]%, however, while the cube-generalized method seems to have
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Table 18 System (31): Performance of the classical and generalized Newton methods with one
million randomly generated starting points in domains of various sizes

5i(x) [-3,3)2 [-10,10]2 [-100, 100]2 CPU time/
Ave Success Ave Success Ave Success successful
iter rate [%] iter rate [%) iter rate [%] iter [sec]
Xi 78 80.1 10.5 81.1 122 42 3.7 %107
X 7.8 68.6 8.1 69.7 8.7 673 62 %1070
sinh(x)) 6.9 785 84 25.0 83 0.2 39x10°
ki 86 814 10.9 276 10.9 03 51%10°
tanx; 6.7 349 73 244 7.9 04 39 %107

Table 19 System (31): CPU time needed on the average by the classical and generalized Newton
methods to obtain a solution in less than 14 iterations, based on the data in Table 18

si(x) Time needed to get a single soln [sec]
[-3,31? [-10,101 [-100, 100)?

Xi 36 x 107 48 x 107 1.1 %1073
X3 70 x 107 72x 107 8.0 x 107
sinh(x;) 34 % 107 13x10™ 16 x 1072

e 54 % 107 20% 107 19 %1072
tanx; 75% 107 12 x 1074 7.7 %1073

the largest regions of shades of blue, the classical method looks to have the smallest regions
of yellow. In view of the difficulty of judging from Fig. 4 as to which method is preferable,
we will resort to the statistical data presented in Tables 18 and 19 for a more conclusive
decision.

As in the previous examples, we have run the classical and various generalized meth-
ods, with randomized initial points, to obtain the statistics in Tables 18. The only clear
case for the choice of a method is when the search domain is [-100, 100]?, for which the
cube-generalized method should certainly be the method of preference, given the rela-
tively very high success rate, smaller number of iterations and not so much longer CPU
time per iteration, all on the average. To determine, ultimately, which of the methods will
be preferable in the other search regions, we need to refer to Table 19, as in the previous
examples.

The boxed CPU times in Table 19 dictate that while the sinh-generalized method should
be the method of choice in [-3, 3], the classical Newton method should better be used in
[-10,10]%. We observe that the cube-generalized method is more than 700 times more
efficient than its nearest contender, the classical method, in the large search domain
[-100, 100]. This equivalently means that by the time the classical method finds a sin-
gle solution, the cube-generalized method will have obtained more than 13 solutions, on
the average.

6 Conclusion and discussion

We have proposed a family of generalized Newton methods facilitated by an auxiliary,
or generalizing, function s, for solving systems of nonlinear equations. The method re-
duces to the classical Newton method if the generalizing function is the identity map,
i.e., s(x) = x. Under mild assumptions, we have proved that the new family of methods are
quadratically convergent just like the classical one. We derived expressions for the bounds
on the asymptotic error constants of the family. These bounds, which can be computed for
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practical problems easily as illustrated in the numerical experiments, can provide an idea
about the relative local speeds of the classical and generalized methods, although they are
not tight.

For numerical experimentation, we have considered three types of problems, namely
systems of equations involving quartic (in two variables), cubic (in two and six variables),
and exponential (in two variables), functions. We carried out extensive numerical exper-
iments using s(x) = x (the classical method), and s(x) = 43, sinhx, €*, and tanx (the cube-,
sinh-, exp- and tan-generalized methods, respectively), for each of the example problems.

For the problems in two variables, we constructed graphs depicting, for search domains
of various sizes, a portrait of the colour-coded number of iterations a method would need
to converge to a solution. These graphs, or portraits, were observed to provide a broad idea
as to which method is likely to be more preferable. Using one million randomly generated
initial points in each chosen search domain, we presented tables reporting the success
rate and average number of iterations of a method as well as the average CPU time one
iteration of that method takes. By using this data, we were able to identify the method with
the smallest CPU time required for finding a single solution, as the preferred method in a
particular search domain.

For the cubic and quartic problems we have considered, the sinh-generalized method
seems to be particularly successful in relatively smaller search domains. In slightly larger
domains where the sinh-generalized method is not so successful anymore, the classical
Newton method looks like the method of preference for the two-variable problems. For
very large domains, the cube-generalized method certainly looks to be the method of
choice, if not the only successful method for some problems. We found that, for the ex-
ponential problem we studied, the exp-generalized method seems to be the only method
one should use in domains of any size.

The kind of numerical exploration we performed could be particularly useful in the case
when a system of equations involves parameters and these parameters change only slightly
so that the portraits and the statistical data are not altered much. In other words, given a

system of equations

flxp) =0, (32)

with a vector of # unknowns, x € R”, and a fixed vector of m parameters, p € R”, the task
would be to find a solution of (32) as efficiently as possible. Suppose that we have identified
the preferred generalized method through the numerical exploration we have devised in
this paper. When p has changed slightly, the preferred method might then be employed
to find a new solution of (32).

We have demonstrated that a suitable choice of s is possible for some specific forms
of systems of equations. Making informed choices of s for more general problems still
stands as a challenging research problem. Figuratively speaking, Eq. (2) implies that the
best choice of s would be f, i.e. s = f, in which case Eq. (1) is readily solved. On the other
hand, with the choice of s = f, s} cannot in general be written in terms of elementary
functions. Therefore the generalized Newton iterate we are proposing, which involves s~
on the right-hand side, cannot be written explicitly and thus cannot be employed as a
numerical procedure. Bearing this metaphor in mind, we propose to choose an s for which

57! can be written explicitly and is as close (in some sense) to f as possible. One way of
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achieving the latter is to choose s as one of the elementary functions appearing in f which
seems to be “dominating” over the other elementary functions appearing in f. This is one
of the insights that we use in choosing s in the numerical experiments, and numerically
show that certain choices of s for certain given equations do provide an edge over the
classical Newton method.

To re-iterate, in the current paper, we have numerically investigated (over domains of
various sizes) as to what function s needs to be chosen, by considering the candidates
s(x) = x (the classical Newton), x%, sinh(x), €* and tanx, for f involving cubic, quartic and
exponential functions. Perhaps this list of functions for s can be expanded, for example
by including the choices of the s functions, logx, 1/x, x°, 1/x3 as in [2], as well as other
possible choices of elementary functions, depending on a given f. This is something we
leave as an interesting future direction of work.

Like most available modifications on the Newton method, our generalized version may
switch to the classical one (i.e., with s(x) = x) or to another generalized method when the
current choice of s is either inconvenient or provides no detectable advantage. One may
refer to this version as a hybrid generalized Newton method. For example, when solving
the cubic problems, based on the results in the tables with CPU times to get a single solu-
tion, it might be interesting to devise a hybrid method which switches from the classical
or the cube-generalized method to the sinh-generalized method as iterations fall into the
search domain [-3, 3]2.

In the future, it would be valuable to study convergence regions as it was done in [7, 16]
by Kantorovich and Smale, for the new generalized methods. Initial leads for such a study
can for example be found in the classical text book by Dennis and Schnabel [4, Sect. 5.3].
The latter result, stated for the system F(y) = 0, where F = f o s7! asserts that: if Jr(y,)
invertible, Jr is Lipschitz continuous in a region containing ¥y, and the first step of the
Newton method is “sufficiently small relative to the nonlinearity of F,” then there must
be a root in this region, and furthermore this root must be unique. Subsequently, in [4,
Theorem 5.3.1], convergence of the Newton method from y, is ensured. Although the
rate of this convergence is only guaranteed to be r-quadratic, it would still be interesting
to explore particular choices of s (for a given f), which can make this Kantorovich-type
region larger. Such an analysis might indeed provide a more practical rule, or guide, for
the choice of s.

It would also be interesting to consider extending the work presented in this paper to
situations where global convergence to a solution is guaranteed, such as the Levenberg—
Marquardt approach [8, 9].
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