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1 Introduction

In the literature there are several methods for comparing two convergent iterative pro-
cesses for the same problem. In this note we have in view mostly the one introduced by
Berinde in [15, Definition 2.7] because it seems to be very successful. This was pointed
out by Berinde himself in [18]: “This concept turned out to be a very useful and versatile
tool in studying the fixed point iterative schemes and hence various authors have used it
However, it was pointed out by Popescu, using [75, Example 3.4], that Berinde’s method
is not consistent. The inconsistency of Berinde’s method is indirectly mentioned also by
Qing and Rhoades in [77, p. 2] by providing a very simple counterexample in R to [13,
Theorem 2.1].* Moreover, referring to Berinde’s method, Phuengrattana and Suantai say
in [73, p. 218]: “It seems not to be clear if we use above definition for comparing the rate
of convergence” In fact, if IP1 and IP2 are two (arbitrary) iterative processes converging
to the same element, then IP1 is faster than IP2 (and vice-versa) in the sense of Berinde
[15, Definition 2.7].

The aim of this note is to prove this almost obvious assertion and to discuss briefly sev-
eral papers that cite [15] and refer to Berinde’s method for comparing iterative processes.
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2 Definitions and the main assertion
First, we quote from [15, pp. 99, 100] the text containing the definitions which we have in
view; these are reproduced in many papers from our bibliography.

Definition 2.5. Let {a,}.°,, {bn}io, be two sequences of real numbers that converge
to a and b, respectively, and assume that there exists [ = lim,_, » |Z:—:b l.
(a) IfI=0, then it can be said that {a,}’°, converges faster to a than {b,}3c, to b.
(b) If0 << oo, then it can be said that {a,}52, and {b,}>c, have the same rate of
convergence.

Suppose that for two fixed point iteration procedures {u,}>°, and {v,}:°,, both con-
verging to the same fixed point p, the error estimates

luw, —pll <a,, n=0,1,2,... (2.7)

”VVI _p” Sbm n=0r1121--~ (2.8)

are available, where {a,},°, and {5, }:°, are two sequences of positive numbers (con-
verging to zero).
Then, in view of Definition 2.5, we will adopt the following concept.

Definition 2.7. Let {u,};°, and {v,};°, be two fixed point iteration procedures that
converge to the same fixed point p and satisfy (2.7) and (2.8), respectively. If {a,}32,
converges faster than {b,}3,, then it can be said that {u,}}°, converges faster than

{vulio to p.

Practically, the text above is reproduced in [18, pp. 30, 31], getting in this way Defi-
nitions 1.1 and 1.2. The only differences are: “(2.7)” and “(2.8) are available, where” are
replaced by “(1.7)” and “(1.8) are available (and these estimates are the best ones available),
where’, respectively.

Immediately after [18, Definition 1.2] it is said:

This concept turned out to be a very useful and versatile tool in studying the fixed
point iterative schemes and hence various authors have used it, see [1]-[5], [18], [22],
(23], [28], [32]-[34], [37]-[41], [40], [43]-[46], [55]-[57], [66], [68]-[72], [74], [78]-
[81], to cite just an incomplete list.”

Note that Definition 9.1 from [16] is equivalent to Definition 2.5 from [15]; replacing
Un, Vi P> |y — pl|, and ||v,, — p|| with x,,, y,, x*, d(x,,x*), and d(y,,x*) in (2.7), (2.8), and
Definition 2.7 from [15], one obtains relations (5), (6) from [16, p. 201] and an equivalent
formulation of [16, Definition 9.2], respectively. Note that these definitions from Berinde’s
book [16] are presented in the lecture [17].

Because of the parentheses in “(converging to zero)” in the preamble of [15, Defini-
tion 2.7] (and [16, Definition 9.2], [18, Definition 1.2]), the convergence to 0 of (a,) and
(b,) seems to be optional. This is probably the reason for the absence of this condition in
[29, p. 3]; note that (a,,) is a constant sequence in [90].

In the next result we use the version for metric spaces of [15, Definition 2.7] (see [16,
Definition 9.2]).

Proposition 1 Let (X,d) be a metric space and (x,)u>1, (Yn)n=1 be two sequences from X
converging to x* € X. Then (x,) converges faster than (y,) to x*.
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Proof For each n > 1, let us consider

1 Ja ifa, <1,
0 < ay:=d(x,x*) + d(ynx) + =, 0<b,:= " "=
n d(y,,x*) otherwise.

It follows that a,, — 0, b, — 0,
d(xn,x*) < ay, d(ymx*) <b,, Yn=1,

and a,/b, = \/a, for sufficiently large n; it follows that lim,,_, o @,,/b;, = lim,_, o 1/a, = 0.
Therefore, (x,) converges faster to x* than (y,) does. (]

From our point of view, the preceding “result” shows that Berinde’s notion of rapidity
for fixed point iterative schemes, recalled above, is not useful, even if Berinde in [18, p. 35]
claims that “Of all concepts of rapidity of convergence presented above for numerical se-
quences, the one introduced by us in Definition 1.2 [14] appears to be the most suitable in
the study of fixed point iterative methods” Berinde (see [18, p. 36]) mentions that he “tac-
itly admitted in Definition 1.2 that the estimates (1.7) and (1.8) taken into consideration
are the best possible’. Clearly, “the estimates are the best ones available” and “the estimates
... are the best possible” are very different in meaning.©

Of course, the best possible estimates in relations (1.7) and (1.8) from [18] (that is, in
relations (2.7) and (2.8) from [15] recalled above) are

an:=un=pll,  bui=lva-pl (n>0). ey

Assuming that d(x,,x*) — 0, getting (better) upper estimates for d(x,,x*) depends on
the proof, including the author’s ability to majorize certain expressions. Surely, the best
available estimates are exactly those obtained by the authors in their proofs.

The use of Berinde’s method for comparing the speeds of convergence is very subjective.
It is analogue to deciding that a/b < c¢/d knowing only that 0 <a <cand 0<b < d!

Taking a, and b, defined by (1) in [15, Definition 2.7], one obtains Definition 3.5 of
Popescu from [75].¢ Popescu’s definition is used explicitly by Rhoades and Xue (see [81,
p. 3]), but they wrongly attribute it to [15]; this attribution is wrong because [75, Defi-
nition 3.5] reduces to [15, Definition 2.5] only in the case in which the involved normed
vector space is R. Note that Rhoades knew about Popescu’s definition because [75] is cited
in [77, p. 2.

Notice that Popescu’s definition is extended to metric spaces by Berinde, Khan, and
Pacurar in [20, p. 32], as well as by Fukhar-ud-din and Berinde in [31, p. 228]; also ob-
serve that Popescu’s paper [75] is not cited in [20] and [31].

Even if in [15] it is not defined when two iteration schemes have the same rate of con-
vergence, Dogan and Karakaya obtained that “the iteration schemes {k,};°, and {/,}32,
have the same rate of convergence to p of ” in [27, Theorem 2.4]; the proof of [27, Theo-
rem 2.4] is based on the fact that they found the same upper estimates for | k,,; — p| and
1241 = pll when lo = ko.

Accepting such an argument and taking a,, := b, := d(x,,,x*) + d(y,,,x*) + % in the proof of
Proposition 1, one should obtain that any pair of sequences (x,,),>1, Ju)n>1 C (X, d) with
the same limit x* € X have the same rate of convergence.
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Recall that Rhoades in [80, pp. 742, 743] says that having “{x, }, {z,} two iteration schemes
which converge to the same fixed point p, we shall say that {x,} is better than {z,} if |x, —
p| < |z, —pl| for all n”; having in view the previous definition and [15, Example 2.8], Berinde
claims that “The previous example shows that Definition 2.7 introduces a sharper concept
of rate of convergence than the one considered by Rhoades [11]” In this context we propose
the following definition.

Definition 2 Let (X, d) be a metric space, and let (x,,),>1, Vu)u=1 C (X,d), and x,y € X be
such that x, — x, y, — y. One says that (x,) converges better to x than (y,) to y if there
exists some « > 0 such that d(x,,x) < ad(y,,y) for sufficiently large »; one says that (x,)
and (y,) have the same rate of convergence if (x,) converges better to x than (y,) to y, and
(yn) converges better to y than (x;,) to .

% =1 and § := oo for @ >0, [(x,) converges better to x than

(yn) to y] if and only if limsup, _, Zgz;‘g < 00; consequently, [(x,) and (y,) have the same

d(xp,x) <
= dyny) —

Using the conventions

rate of convergence] (in the sense of Definition 2) if and only if 0 < liminf,
d(xn,%)
d(yn,y)

limsup,,_, o <00.f

Example 3 Consider the sequences (x,,),>1, Wu)n>1 C R defined by

n! if n is odd, 2n)™t  ifnisodd,
Xy 1= Yy i=
(2n)™t  if mis even, nt if n is even.

Clearly lim,,_, o %, = lim,_, o ¥, = 0, and it is very natural to consider that they have the
same rate of convergence; this is confirmed using Definition 2. It is obvious that nei-
ther (x,) is better (faster) than (y,), nor (y,) is better (faster) than (x,) in the senses of
Rhoades [80, pp. 742, 743], or Berinde [15, Definition 2.5], or Popescu [75, Definition 3.5],
or Berinde, Khan, and Péacurar [20, p. 32], or Fukhar-ud-din and Berinde [31, p. 228].

3 Remarks on the use of Berinde and Popescu’s notions in papers citing [15]
Practically, all the papers mentioned in the sequel were found on the internet when search-
ing, with Google Scholar, for the works citing Berinde’s article [15].

First we give the list of articles, mentioning their authors and results, in which Berinde’s
Definition 2.7 from [15] is used (even if not said explicitly):

Berinde and Berinde—[19, Theorem 3.3]; Babu and Prasad—[13, Theorem 2.1] and [14,
Theorems 3.1, 3.3]; Olaleru—[69, Theorem 1] and [70, Theorems 1, 2];f Sahu—[82, Theo-
rem 3.6]; Akbulut and Ozdemir—[5, Theorem 2.3]; Hussain et al.—[43, Theorems 18, 19];
Karahan and Ozdemir—[49, Theorem 1]; Abbas and Nazir—[2, Theorem 3]; Giirsoy and
Karakaya—[39, Theorem 3]; Kadioglu and Yildirim—[47, Theorem 5]; Karakaya et al.—
[52, Theorem 3]# and [53, Theorem 2.2]; Kumar—[59, Theorem 3.1]; Oztiirk Celiker—[71,
Theorem 8]; Thakur et al. —[88, Theorem 2.3]" and [87, Theorem 3.1]; Chugh et al. —[23,
Theorem 3.1] and [24, Theorem 13]; Fathollahi et al.—[29, Propositions 3.1, 3.2, Theo-
rems 3.1, 4.1-4.4, Lemmas 3.1-3.4]; Gursoy—[35, Theorem 3]; Jami and Abed—[46, The-
orems 3.1-3.4]; Yadav—[93, Example 2]; Abed and Abbas, [3, Theorem (3.8)]; Asaduz-
zaman et al.—[11, Theorem 3.3]; Mogbademu—[66, Theorem 2.1]; Rani and Jyoti—
[79, Theorem 13]; Sahu et al.—[83, Theorem 4.1]; Sintunavarat and Pitea—[86, The-
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orem 2.1]; Verma et al.—[90];' Alecsa—[8, Theorems 3.1, 3.3-3.12]; Karakaya et al.—
[50, Theorem 2.4]; Okeke and Abbas—[68, Proposition 2.1]; Sharma and Imdad—[84,
Proposition 4.9]; Yildirim and Abbas—[95, Theorem 2]; Abass et al.—[1, Remark 2];
Akhtar and Khan—[6, Theorem 3.1-3.3]; Alagoz et al.—[7, Theorem 2.1]; Dogan—[25,
Theorem 3.3.1]; Fathollahi and Rezapour—[30, Propositions 2.1-2.3, 3.1, Theorem 3.2];
Garodia and Uddin—[32, Theorem 3.1]; Hussain et al.—[45, Theorem 3.4]; Kumar and
Chauhan—[60, Theorems 1, 2]; Piri et al. [74, Lemmas 3.1, 3.2, Theorem 3.3]; Yildirim—
[94, Theorem 2], Asaduzzaman and Ali—[10, Theorem 3.3], Ertiirk and Giirsoy—[28,
Theorem 2.3]; Giirsoy et al.—[37, Theorem 6]; Kumar and Chugh—[61, Theorem 2.2];
Malik and Choudhary—[64, Theorem 6]; Mebawondu and Mewomo—[65, Theorem 3.2];
Okeke—[67, Theorem 3.3]; Aibinu and Kim—[4, Theorem 3.2]; Garodia and Uddin—[33,
Theorem 3.1] and [34, Theorem 3.1]; Giirsoy et al.—[40, Theorem 2.3].

As mentioned in Sect. 2, Dogan and Karakaya obtained that “the iteration schemes
{ku)o2o and {/,}°, have the same rate of convergence to p of o” in [27, Theorem 2.4]
because they found the same upper estimates for ||k,,1 — p|| and ||/,,1 — p|l when Iy = ko
(see [27, p. 156]).

It is worth repeating that Popescu (in [75]) recalls [15, Definition 2.7], mentions its in-
consistency, introduces his direct comparison of iterative processes in [75, Definition 3.5],
and uses this definition in [75, Theorem 3.7].

Other papers in which [75, Definition 3.5] is used, without citing it (but possibly re-
calling [15, Definition 2.5 or/and Definition 2.7]), are: Xue—[92, Theorems 2.1, 2.2];
Rhoades and Xue—[81, Theorems 2.1, 2.2, 3.1, 3.2]; Thong—[89, Theorems 2.1, 2.3, 2.5];
Alotaibi et al.—[9, Theorem 3.1]; Hussain et al.—[43, Theorems 14—17]; Phuengrattana
and Suantai—[73, Theorems 2.4, 2.6]; Khan et al.—[55, Theorem 3.1]; Fukhar-ud-din and
Berinde—[31, Theorems 2.5, 2.7]; Giirsoy—[36, Theorem 2.4]; Khan et al.—[54, The-
orem 3]; Gursoy et al.—[41, Theorem 2.3]; Kosol—[57, Theorem 2.2]; Pansuwan and
Sintunavarat—(72, Theorem 3.7]; Atalan and Karakaya—[12, Theorem 3.3]; Ertiirk and
Giirsoy—[28, Theorem 2.3]; Kumam et al.—[58, Theorems 3.4, 3.5]; Giirsoy et al.—[38,
Theorem 4].

It is also worth noticing that by taking simple examples in R, Rafiq et al.—[78, Exam-
ple 11]; Hussain et al.—[44, Example 9]; Chugh et al. —[22, Example 4.1]; Hussain et al.—
[42, Example 3.1, 3.2]; Kang et al.—[48, Example 11]; Karakaya et al.—[51, Example 4]; Ku-
mar et al.—[63, Example 9]; Dogan and Karakaya—[26, Example 10]; Prasad and Goyal—
[76, Example 2.1]; Chauhan et al.—[21, Example 3.1]; Sintunavarat—[85, Example 13]; Wa-
hab and Rauf—[91, Example 11, Remarks 12—17] “prove” that certain iteration processes
are faster than others.

Final remark 1 wish to point out that this paper is not about the correctness of the re-
sults in the cited papers; I did not check the proofs of the results. My aim is to emphasize
again, as Popescu [75] and Phuengrattana and Suantai [73] did, that Berinde’s method is
inconsistent, and so what is obtained using it is useless from my point of view. The other
remarks mainly concern wrong attributions of notions as well as the fact that one cannot
claim the validity of general assertions using some examples.
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Endnotes
a

b

—-

J

Note that Berinde's paper [15] is not cited in [77]; see also [18, Remark 3.2].

Throughout this paper the references mentioned in the quoted texts are those in the works from where the texts
are taken.

Among the 35 papers from our bibliography published in the period 2017-2020, our reference [18] is mentioned
only in [28, 37, 38], and [40]. However, [15, Definition 2.7] is used in [28, 371, and [40] without any mention that the
obtained estimates are the best possible.

Of course, when (X, || - |1} is (R, | - |), Definition 3.5 of Popescu [75] reduces to Definition 2.5(a) of Berinde [15] when
a=b.

This manner of comparing the rate of convergence for sequences of real numbers is attributed to Knopp [56] in [41,
Definition 1.2]; a more precise presentation of this topic is done in [18, p. 34].

Kumar (see [62, p. 1320]) shows that [70, Theorem 2] “is not consistent” by using [75, Definition 3.5] and a simple
example in R.

Note that [52, Definition 1] is [15, Definition 2.5 (a)] for “{a,}22, and {b,}7%, two sequences of real numbers with
limits @ and b respectively’, but in the proof of [52, Theorem 3] one uses [15, Definition 2.7]. Similar remarks are valid
for [53, Definition 1.1, Theorem 2.2], [50, Definition 1.4, Theorem 2.4], [84, Definition 1.11, Proposition 4.9.].

In [88, p. 3] one appreciates that “In recent years, Definition 2.2 has been used as a standard tool to compare the
fastness of two fixed point iterations’, Definition 2.2 being [15, Definition 2.7].

See estimates (23) and (24), as well as the very strange arguments to get the conclusion on page SMC_ 2016 001606.

INpi1-P

Note the strange quantity || T

I, the numerator and denominator being in (X, || - ||) “an arbitrary Banach space”.
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