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Abstract
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Our results extend and improve some known results in the literature. We give
examples to analyze and support our main results.
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1 Introduction and preliminaries

Consider the equation Tx = x. If the equation Tx = x does not possess a solution, then we
attempt to resolve the problem of finding an element x such that x is in proximity to Tx.
In fact, in the setting of a metric space (X, d), if T : A — X, then a best approximation the-
orem provides sufficient conditions that confirm the existence of an element x;, known
as the best approximant, such that d(xo, Txo) = d(Txq,A), where d(A, B) := inf{d(x,y) : x €
A and y € B} for any nonempty subsets A and B of X. Indeed, a classical best approxima-
tion theorem, due to Ky Fan [1], states that if K is a nonempty compact convex subset of a
Banach space X and 7' : K — X is a single-valued continuous mapping, then there exists
an element xq € K such that d(xg, Txo) = inf{d(y, Txo) : y € K}, where d is a metric on X.
This result has been generalized by many authors (see[2—-7]). In other words, if A and B are
two nonempty subsets of a metric space (X, d), then an element x € A is said to be a fixed
point of a given map 7 : A — B if Tx = x. Clearly, T(A) N A # ) is a necessary (but not suf-
ficient) condition for the existence of a fixed point of T If T(A) N A = ¥, then d(x, Tx) > 0
for all x € A, that is, the set of fixed points of T is empty. In such a situation, one often
attempts to find an element x which is in some sense closest to Tx. Best proximity point
analysis has been developed in this direction.

An element x* € A is called a best proximity point of T if

d(x*, Tx*) =d(A,B).

Indeed, in view of the fact that d(x, Tx) > d(A, B) for all x € A, the global minimum of
the mapping x — d(x, Tx) is attained at a best proximity point. Clearly, if the underlying
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mapping is self-mapping, then a best proximity point reduces to a fixed point. The goal
of best proximity point theory is to furnish sufficient conditions that assure the existence
of such points. For more details on this approach, we refer the reader to [8—19] and the
references therein.

Mustafa and Sims [20] introduced the notion of G-metric and obtained some well-
known fixed point results in the setting of G-metric spaces. Many authors have obtained
fixed point results in the context of G-metric spaces [21-28]. In 2007, Sedghi et al. [29, 30]
introduced a D*-metric space, which is a modification of D-metric spaces introduced by
Dhage [31], and established common fixed point theorems in D*-metric spaces. We note
that every G-metric is a D*-metric, but in general the converse is not true (see [32]). In
2012, Sedghi et al. [32] introduced the concept of an S-metric space, a modification of D*-
metric and G-metric spaces, and gave a generalization of fixed point theorems in S-metric
spaces, but the best proximity point results in S-metric spaces still remain open. Recently,
Ansari [33] introduced the concept of C-class functions which can be used to generalize
many fixed point theorems in the literature (see, for example, [34]). Later, Nantadilok [35]
obtained best proximity point results for a certain class of proximal contractive mappings
in complete S-metric spaces. Inspired and motivated by Ansari [33] and Nantadilok [35],
in this paper, we establish best proximity point results for proximal contractive type map-
pings with C-class functions in the setting of S-metric spaces. We also give examples to
support our results.

Now we collect some necessary definitions and results in this direction. The notion of
S-metric spaces is defined as follows.

Definition 1.1 (see [32]) Let X be a nonempty set. An S-metric on X is a function S :
X3 — [0, 00) that satisfies the following conditions, for each x,y,z,a € X.
(i) S(xryrz) > 0;
(i) S(x,7,2z)=0ifand only ifx =y =z;
(iii) S(x,9,2) <Sx,x,a) +Sy,y,a) + S(z,z,a).

The function S is called an S-metric on X, and the pair (X, S) is called an S-metric space.

Remark 1.2 This notion is a modification of a G-metric space [20] and a D*-metric
space [29].

Lemma 1.3 (see [32]) Let (X,S) be an S-metric space. Then S(x,x,y) = S(y,y,x) for all
x,y€X.

Lemma 1.4 (see [36]) Let (X,S) be an S-metric space. Then
S(x,%,2) <2S(x,x,9) + SW,y,2) and S(x,x,z) <2S5(x,%,9) + S(2,2,)

forall x,y,z€ X.

Definition 1.5 (see [32]) Let (X, S) be an S-metric space.
(i) A sequence {x,} C X is said to converge to x € X if S(x,,x,,%) — 0 as n — co. That
is, for each ¢ > 0, there exists ny € N such that for all # > ny we have S(x,, x,,x) < €.

We write x,, — x for brevity.
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(i) A sequence {x,} C X is called a Cauchy sequence if S(x,, x,,,%,,) = 0 as n,m — oo.
That is, for each ¢ > 0, there exists ng € N such that for all n,m > ny we have
S, Xy Xim) < €.

(ili) The S-metric space (X, S) is said to be complete if every Cauchy sequence is a

convergent sequence.
Some geometric examples for S-metric spaces can be seen in [32].

Definition 1.6 (see [37]) Let X be a nonempty set. A B-metric on X is a function d :
X2 — [0, 00) if there exists a real umber b > 1 such that the following conditions hold for

allx,y,z € X.
(B1) d(x, ) =0ifand onlyif x = y.
(B2) d =d(y,x).

(B3) d(x,y) <bldx,z) +d(y,z)]
The function d is called a B-metric on X, and the pair (X, d) is called a B-metric space.

Theorem 1.7 (see [38]) Let (X,S) be an S-metric space, and let
d(x,y) = S(x,x,)

forall x,y € X. Then we have
(i) d is a B-metric on X;
(i) %y, = xin (X,S) ifand only if x, — x in (X, d);
(ili) {x,} is a Cauchy sequence in (X, S) if and only if {x,} is a Cauchy sequence in (X, d).

Now we recall the notion of C-class functions introduced in [33] as follows.

Definition 1.8 (see [33]) A mapping f : [0,00)?> — R is called a C-class function if it is
continuous and satisfies the following properties:

M fs0) <s;

(2) f(s,t) = s implies that either s = 0, or £ = 0 for all 5, ¢ € [0, 00).

We will denote the family of C-class functions as C. Note that for some F € C, we have
F(0,0)=0

Example 1.9 (see [33]) The following functions F : [0,00)?> — R are elements of C, for all
s,t €[0,00):

(1) E(s,t)=s—t, F(s,t)=s=t=0;

(2) F(s,t)=ms,0<m <1, F(s,t) =s=s=0;

(3) F(s,t) = 1+t,,re (0,00), F(s,t) =s=s=0o0rt=0;

(4) F(s,t) =log(t+a’)/1+¢t),a>1,F(s,t)=s=s=0ort=0;

(5) F(s,t)=In(1 +a®)/2,a>e, F(s,1) =s=5=0;

()F(s,) (s+ )W) _ 1 151, r€(0,00), F(s,t) =s =t = 0;

(7) F(s,t) =slog,,,a,a>1,F(s,t)=s=s=0ort=0;

(8) F(s,t)—s—(é—:i)(w) F(s,t) =s=t=0;

(9) F(s,t)=sB(s), B:[0,00) — [0,1), and is continuous, F(s,t) =s = s=0;
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(10) F(s,t)=s— 1=, F(s,t) =s =t =0;

(11) F(s,t) =s—@(s), F(s,t) =s = s = 0, where ¢ : [0, 00) — [0, 00) is a continuous
function such that ¢(t) =0 < ¢ = 0;

(12) FE(s,t) = sh(s,t), F(s,t) = s = s = 0, where /1:[0,00) x [0,00) — [0,00) is a
continuous function such that 4(¢,s) < 1 for all £,s > 0;

(13) F(s,t) =s— (2L)t, F(s,t) =s =t = 0;

1+t

(14) F(s,t) =s—(12)(:L), F(s,t) =s = £t = 0;

2+s/ M1+t
(15) F(s,t) = &/In(1 + s"), F(s,£) =s = s =0;
(16) F(s,t)z( r € (0,00), F(s,t) =s = s =0;
)

e
(17) F(s,t) =v(s); ¥ : R* x R* — R is a generalized Mizoguchi-Takahashi type
function, F(s,t) =s = s =0.

Definition 1.10 (see [39]) A function v : [0,00) — [0, 00) is called an altering distance
function if the following properties are satisfied:

(i) ¢ is nondecreasing and continuous,

(i) ¥(¢)=01ifand onlyift=0.

We let W denote the class of altering distance functions.

Definition 1.11 (see [39]) An ultra altering distance function is a continuous, nondecreas-
ing mapping ¥ : [0,00) — [0, 00) such that ¥ (¢) > 0, £ > 0 and ¥(0) > 0.

We let @, denote the set of all ultra altering distance functions. We note that every
S-metric on X induces a metric ds on X defined by

dS(x’y) =S(x,x:y)+5(%y,x)7 (1)

forall x,y € X.
We show that a metric ds on X defined by (1) is a B-metric on X. Conditions (B1) and

(B2) are easy to check. It follows from the definition of S-metric and Lemma 1.3 that

ds(x,y) = S(x,%,9) + S(y, 5, %)
< Sx,x,2) + S(x,%,2) + S(,9,2)
+S8(»,9,2) + SO, 3, 2) + S(x, %, 2)
=dS(x,z) + ds(y,2) + S(x,%,2) + S(¥, ¥, 2)
<ds(x,z) +ds(y,2) + 25(x,%,2) + 25(3,,2)
= 2[ds(x,2) + ds(y,2)].

This shows that ds is a B-metric.

Definition 1.12 (see [35]) Let (X,S) be an S-metric space, and let A and B be two
nonempty subsets of X. Then B is said to be approximately compact with respect to A
if every sequence {y,} in B, satisfying the condition ds(x,y,) — ds(x, B) for some x in A,

has a convergent subsequence.
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Let @ denote the class of all functions ¢ : [0, 00) — [0, 00) which satisfy
1. ¢ continuous and nondecreasing,

2. p(t)=0ifand onlyif £ =0,

3. @(t+5) < () + ¢(s), Vt,s € [0,00).

Definition 1.13 (see [35]) Let A and B be two nonempty subsets of an S-metric space
(X,S).Let T : A — B be a nonself-mapping. We say that T is an S-¢-y -proximal contrac-
tive mapping, if for all x,y,u,v € A,

dg(u, Tx) = ds(A,B)
AT =dsAB) | oS, u,v)) < 9(S(x,%,9)) — ¥ (S, %,9)) ()

holds, where ¢ € ® and ¢ € V.

Definition 1.14 Let A and B be two nonempty subsets of an S-metric space (X,S). An
element x* € A is said to be a best proximity point of a nonself-mapping T if dg(x*, Tx*) =
ds(A, B).

The main result obtained in [35] is the following best proximity point theorem.

Theorem 1.15 (see [35]) Let A, B be two nonempty subsets of an S-metric space (X, S) such
that (A, S) is a complete S-metric space, Ay is nonempty, and B is approximately compact
with respect to A. Assume that T : A — B is an S-@-{-proximal contractive mapping such
that T(Aoy) C By. Then T has a unique best proximity point; that is, there exists a unique
element z € A such that ds(z, Tz) = ds(A, B).

2 Main results
Let (X, S) be an S-metric space. Suppose that A and B are nonempty subsets of an S-metric

space (X, S). We will use the following notations:

Ag = {a € A :ds(a,b) = ds(A, B) for some b € B} and
3)
By = {b € B:ds(a,b) = ds(A, B) for some a EA},

where ds(A, B) = inf{ds(x,y) : x € A,y € B}.

We introduce the following definitions.

Definition 2.1 Let A and B be two nonempty subsets of an S-metric space (X,S). Let
T : A — B be a nonself-mapping. We say that T is an S-(F, ¢, {)-proximal contractive
mapping, if for all x,y,u,v € A,

ds(u, Tx) = dg(A, B)
ds(v, Ty) = ds(A, B)

= ¢(S(u’ u, V)) = F(‘P(S(x, x’y))r W(S(x,xd))) (4)

holds, where FeC, ¢ € ® and ¢ € ®,,.
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Definition 2.2 Let A and B be two nonempty subsets of an S-metric space (X, S). Let
T : A — Bbeanonself-mapping. We say that T is an S-(F, ¢, ¥)-sum-proximal contractive
mapping, if for all x,y,u,v € A,

dg(u, Tx) = ds(A,B)
dg(u*, TM) = ds(A,B)
ds(v, Ty) = ds(A, B)

= 40(5(% u, V)) < F(‘p(m(u,u*,v,x,y))» I,[f(Wl(u,u*,v,x,;v))) (5)

holds, where F € C, ¢ € @, ¢ € ®, and

1
P vy) = T hicid [aS(u, u,x) + bS(x,x,y) + cS(y,y, u*) +dS(y,y, v)] (6)

with a,b,c,d>0anda+b+c+d>0.

We note that these kind of generalizations make sense, since they extend and cover
those corresponding classes of proximal contractive mappings defined in [35]. We state

and prove our main results.

Theorem 2.3 Let A, B be two nonempty subsets of an S-metric space (X, S) such that (A, S)
is a complete S-metric space, Ay is nonempty, and B is approximately compact with respect
to A. Assume that T : A — B is an S-(F, ¢, V)-proximal contractive mapping such that
T(Ao) C By. Then T has a unique best proximity point; that is, there exists a unique element
z € A such that ds(z, Tz) = ds(A, B).

Proof Since the subset Ay is not empty, we take x¢ in A¢. Taking Tx € T(Ao) < By into
account, we can find x; € Ay such that ds(x;, Txo) = ds(A, B). Further, since Tx; € T(Ag) C
By, it follows that there is an element x; in Ao such that ds(x,, Tx1) = ds(A, B). Recursively,
we obtain a sequence {x,} in A, satisfying

dS(erh Txn) = dS(A¢B)1 VneNU {0} (7)

This shows that

ds(u, Tx) = ds(A, B),
ds(V, Ty) = ds(A,B),

where u = x,,, x = x,,1, v = 2,51 and y = x,,. Therefore from (4) we have

(p(S(xn:xmxnﬂ)) = F(‘p(s(xn—l:xn—l’xn))’ w(s(xn—l:xn—hxn)))

= gp(s(xn—lrxn—bxn)): (8)
which implies

S(xnyxn:xnﬂ) = S(xn—ltxn—ljxn)
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So, the sequence {S(x,,x,,%,.1)} is a decreasing sequence in R* and thus it is convergent
to t € R*. We claim that ¢ = 0. Suppose, on the contrary, that ¢ > 0. Taking the limit as
n— oo in (8), we get

o(£) < F(p(0), v (1)), )
which implies ¢(£) = 0 or ¥ (£) = 0. That is, ¢ = 0, which is a contradiction. Hence, ¢ = 0.
That is,

lim S(xmxnrxnﬂ) =0. (10)

n—0oQ

We will show that {x,}5°, is an S-Cauchy sequence. Suppose, on the contrary, that there
exist ¢ > 0 and a subsequence {x,, } of {x,} such that

S(xmk;xmk»xnk) Z & (11)

with ng > my > k. Further, corresponding to m, we can choose #; in such a way that it is
the smallest integer with n; > m; and it satisfies (11). Hence,

S Ximy s Xy —1) < €. 12)
Set p, = 28(xy,, %4, %,-1). By Lemmas 1.3 and 1.4, we have

&= S(xmk¢xmk;xnk) = S(xnernk;xmk)
=< zs(xnk:xnernk—l) + S(xmk:xmernk—l)
= ZS(xnk!xnklxnk—l) +&

=Py + 6. (13)
Letting k — oo in (13), we derive that
lifolos(xmwxmwxnk) =¢. (14)
Again, by Lemmas 1.3 and 1.4, we obtain the following inequalities:

S(xmk;xmk:xnk) = 2S(xmk,xmk:xmk—l) + S(xnk,xnk:xmk—l)
= 2S(xmk’xmk:xmk—l) + Zs(xnk’xnk:xnk—l)
+ S(xmk—l) Xmy—1> xnk—l)

= (pmk + pnk) + S(xmk—lrxmk—l!xnk—l) (15)
and

S(xmkfhxmkfl’xnkfl) = 2S(xmk—lrxmk—hxmk) + S(xnk—lrxnk—l;xmk)

< 28Xy —15 Xmg—15 Xy ) + 28 (Xp 15 Xp—1, Xy )
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+ S(xmermk»xnk)

= (pmk + p”k) + S(xmk,xmk,x,,k). (16)
Letting k — oo in (16) and applying (15), we find that
lim S(xmk—l:xmk—bxnk—l) =é&. (17)
k— o0
From (4) with u = %, , ¥ = %, 1, V = %y, and y = x,,,_1, we have

(p(S(xmk,xmk;xnk)) S F(@(S(xmk—l:xmk—lrxnk—l))r

l/f (S(xmk—h Kimg—1» x"k—l)))‘

Taking the limit as k — oo in the above inequality, we obtain

o(e) < F(p(e), ¥ (e)), (18)
which implies ¢(¢) = 0 or ¥ (g) = 0. That is, ¢ = 0, which is contradiction. Thus,

lim  S(x,,, %, %) = 0. (19)

m,n— 00

Thatis, {x,}32, isa Cauchy sequence. Since (4, S) is a complete S-metric space, there exists

z € A such that x, — z as # — 00. On the other hand, for all # € N, we can write

dS(Z:B) =< dS(Z, Txn)
< ds(z,%p41) + ds(®ni1, Tx4)

= ds(z,%.41) + ds(A, B). (20)
Taking the limit as # — oo in the above inequality, we obtain

lim dS(Z, Tx,,) = ds(Z,B) = ds(A,B). (21)

n—00

Since B is approximately compact with respect to A, the sequence { T, } has a subsequence
{Tx,, } that converges to some y* € B. Hence,

ds(z,y") = lim ds(xn1, Ten) = ds(A, B), (22)
and so z € Ag. Now, since Tz € T(Ao) C By, there exists w € A such that ds(w, Tz) =
ds(A, B).

From (4) with u = x,,,1,x = x,,v=w and y = z, we have
(p(S(le+1’ Xn+ls W)) S F(‘P (S(xn’ Xn» Z))y I/I(S(xny Xn» Z))) (23)

Taking the limit as # — 0o, we get

¢(S(z,z,w)) < F(¢(0), ¥(0)) < ¢(0) = 0. (24)
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This implies S(z,z, w) = 0. That is, w = z. Thus ds(z, Tz) = ds(A, B). Therefore T has a best
proximity point. To prove uniqueness, suppose that p # g such that ds(p, Tp) = ds(A, B)
and ds(q, 19) = ds(A, B). Now, by (4) with u =x = p and v = y = ¢, we get

o(Sw.p, @) <F(e(S,p:9)), ¥ (S.p, D)), (25)
which implies ¢(S(p, p,q)) = 0 or ¥ (S(p, p,q)) = 0; that is, p = g. O

Example 2.4 Let X = [0,00). Define an S-metric on X by

1
S(x,y,2) = E(Ix—ZI +1y-zl).
From (1), we get dg(x,y) = %|x—y|. Let A = [1,4] and B = [7,10]. We define T : A — B by

7 ifx =4,
T(x) = (26)

x+6 otherwise.

Let F(s,t) =s — t for all 5,¢ € [0,00). Also define ¢,y : [0,00) — [0,00) by ¢(t) =t and
¥ (¢) = 1¢. Clearly, ds(A, B) = 1, Ao = {4}, Bo = {7} and T(Ao) € By. Let ds(u, Tx) = ds(A, B)
and ds(v, Ty) = ds(A,B), then u = v = 4, x = 1,4, and y = 1,4. Now since u = v = 4,
©(S(u,u,v)) = 0. Hence,

F(o(S(%,9)), ¥ (S(.%,9))) — 0(Sw, u,v)) = 0(S(x,,)) — ¥ (S(x,%,)) - 0
=S(x,x,9) - %(S(x,x,y))
B 1 1
= g|x—y| - ﬁ|x—3’|
1
= ﬁ|x—y| >0. (27)

Therefore, we have

@ (S, u,v)) < F(o(Sxx,9)), ¥ (S(x,x,%))). (28)
That is,

dg(u, Tx) = ds(A,B)
= (S, u,v)) <F(e(Skxx,9), ¥ (S %,))).

ds(v, Ty) = ds(A, B) ( )= Flol a4 )
Thus T is an S-(F, ¢, ¥)-proximal contractive mapping. All the conditions of Theorem 2.3
hold true, and 7 has a unique best proximity point. Here, z = 4 is the unique best proximity

point of T.

Remark 2.5 If we take F(s,t) = s — ¢ in Theorem 2.3, then our result reduces to Theo-
rem 2.3 in [35].
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Theorem 2.6 Let A, B be two nonempty subsets of an S-metric space (X, S) such that (A, S)
is a complete S-metric space, A is nonempty, and B is approximately compact with respect
to A. Assumethat T : A — Bisan S-(F, ¢, y)-sum-proximal contractive mapping such that
T(Ao) € By. Then T has a unique best proximity point; that is, there exists a unique element
z € A such that ds(z, Tz) = ds(A, B).

Proof Since the subset Ay is not empty, we take x( in Ag. Taking Tx € T(Ag) C By into
account, we can find x; € Ay such that ds(x, Txo) = ds(A, B). Further, since Tx; € T(A4y) C
By, it follows that there is an element x; in Ay such that dg(xy, Tx;) = ds(A, B). Recursively,
we obtain a sequence {x,} in A, satisfying

dS(erl: Txn) = dS(A: B): VneNU {O}
From (5) with x = x,,, u = %041, u* = %42, ¥ = %51 and v = x4, and Lemma 1.3, we have
% (S(x}’l+ll Xn+ls xn+2))
1
= F ((,0 (7 [as(xn+1; Xn+ls xn) + bS(xn: Xy xn+1)
a+b+c+d
+ €S(Xpa1 Xps1 X)) + AS(Kni1, X1, xn+2)]):
y(——[as )+ bS( )
@9 Xu+1, X1, X)) + K> Xns Xn+
a+b+c+d ! ! !
+ CS(erl: Xn+lr xn+2) + ds(xn+1: Xn+ls xn+2)] ) )
1
=\ ihicid [(@ + B)S (1, X1, %)
+ (¢ + d)S(Xns1, %41, xn+2)]), (29)
which implies
S(xnr Xns xrz+1) S S(xn—h Xn-15 xn)'
So, the sequence {S(x,, x,,%,.1)} is a decreasing sequence in R* and thus it is convergent

to ¢ € R*. We claim that £ = 0. Suppose, on the contrary, that ¢ > 0. Taking the limit as
n— o0 in (29), we get

p(t) < F(e(0), ¥ (1)), (30)
which implies ¢(¢) = 0 or ¥ (¢) = 0. That is, ¢ = 0, which is a contradiction. Hence, ¢ = 0.
That is,

lim S(%,, X %ps1) = O. (31)

We will show that {x,}7°, is an S-Cauchy sequence. Suppose, on the contrary, that there
exist ¢ > 0 and a subsequence {x,, } of {x,} such that

S Xmgr Xny) = € (32)
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with ng > my > k. Further, corresponding to m, we can choose n; in such a way that it is

the smallest integer with 7y > m; satisfying (32). Hence,
S(xmk;xmk:xnk—l) <é&. (33)
Set p, = 2S(xy,, %4, %4-1). By Lemmas 1.3 and 1.4, we have

&= S(xmk:xmk’xnk) = S(xnk:xnk’xmk)
= ZS(xnkvxnernk—l) + S(xmk¢xmk:xnk—1)
= 2S(xnk,xnk;xnk—1) +&
=Py + 6. (34)
Letting k — 0o, we derive
klgrolo (s Xmyr X ) = €. (35)

Again, by using Lemmas 1.3 and 1.4, we obtain the following inequalities:

S(xmk:xmk;xnk) =< 2S(xmk:xmk:xmk—l) + S(xnk;xnk:xmk—l)
= 2S(xmk’xmk:xmk—l) + Zs(xnk:xnk:xnk—l)
+ S(xmk—l» Xy -1 xnk—l)

= (pmk + pnk) + S(xmk—lrxmk—lrxnk—l) (36)

and

S(xmk—bxmk—l,xnk—l) =< Zs(xmk—lrxmk—l,xmk) + S(xnk—lrxnk—lxxmk)
< 281 X1, Xmy) + 28 (X1 Xy -1, %y )
+ S(xmk;xmk;xnk)

= (O + ) + S Xmgr Xiny.)- (37)
Letting k — oo in (36) and (37) and applying (35), we find that
klirgo Sy -1 Xy -1, %y 1) = €. (38)
From (5) with &% = X, 1, 4 = %y, U* = X1, ¥ = Xy 21, V = %, we have

(p (S(xmk¢xmk: xnk))

1
=< F(‘P (m [ds(xmermk!xmk—l) + bS(‘xmk—lr xmk—lrxnk—l)

+ CS(xnk—lrxnk—lyxmk—l) + dS(xnk—l; xnk—l,xnk)]):
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ﬂS(xmkr Ky xmk—l) + bs(xmk—l, Kmp-15 xnk—l)

(rreral
a+b+c+d
+ €S (15 X1, Xy 1) + dS(xnklyxnkbxnk)]> ) (39)
Taking the limit as k — oo in the above inequality, we obtain
o(e) < F(p(e), ¥(e)), (40)
which implies ¢(¢) = 0 or ¥ (g) = 0. That is, ¢ = 0, which is a contradiction. Thus,

lim  S(%, X, %) = 0. (41)

m,n— 00

This proves that {x,} is a Cauchy sequence in an S-metric space (X, S). Since (4,S) is a
complete metric space, there exists z € A such that {x,} converges to z. As in the proof of
Theorem 2.3, we have ds(w, Tz) = ds(A, B) for some w € Ay. From (5) with x = x,,_1, u = x,,,

u* =x,,1,y=zand v =w, we have

@ (S, x4, w))

1
< Fl o ————[aS(u, s %-1) + bS(Xyy1, %1, 2)
a+b+c+d

+¢S(z,2,%41) +dS(z, z, w)]),

v <m (@S %, %n-1) + bS (-1, %-1,2)

+¢S(z,2,%411) + dS(z, 2, w)])).
Taking the limit as # — oo in the above inequality, we get

9(S(z,z,w))

d d
F —dS g ) —S bt
= <(p<a+b+c+d (zzw)) (p(a+b+c+d (ZZW)>)

< w(* (2.2, W)) < ¢(S(z.zw),

S
a+b+c+d

which implies (p(mS(z, z,w)) =0 or w(mS(z, z,w)) = 0. This means S(z,z, w) = 0.
Hence, w = z; that is, ds(z, Tz) = ds(w, Tz) = ds(A, B). Thus T has a best proximity point. To
prove uniqueness, suppose that p # g, ds(p, Tp) = ds(A, B) and ds(g, Tq) = ds(A, B). Now by

(5) withx=u=u*=pand y =v =g, we have
o(S.p,9)
b+c b+c
=H(o(orpreraro) v (o aoro))

b
< w(iS(p»p, q)> <9(S,p9),

a+b+c+d
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which implies ¢(—2<—S(p,p,q)) = 0 or ¥ (=2“—S(p,p,q)) = 0, so S(p,p,q) = 0. Hence

a+b+ct+d a+b+ct+d

p = q, that is, T has the unique best proximity point. 0

Example 2.7 Similar to Example 2.4. Let X = [0, 00). We define an S-metric on X by

1
S(x,y,2) = 1("“Z' + |y - zl).

From (1), we get ds(x,y) = |x — y|. Let A = [2,6] and B = [7,11]. We define T : A — B by

7 ifx =6,
T(x) = (42)
x+5 otherwise.

Let F(s,t) = s— ;tk foralls, ¢ € [0,00). Thisis a C-class function. Also define ¢, ¥ : [0, 00) —
[0,00) by ¢(t) = t and ¥ (¢) = %t. Clearly, ds(A,B) =1, Ay = {6}, By = {7} and T(Ay) < By.
Let ds(u, Tx) = ds(A, B), ds(u*, Tu) = ds(A, B) and ds(v, Ty) = ds(A, B), then we get u = u* =

v=6,x=2,6,and y =2,6. Now since u = u* = v =6, ¢(S(u, u,v)) = 0. Hence,

F(‘p(m(u‘u*,v,x,y))r 1p(Wl(u,u*,v,x,;v))) - 90(5(% u, V))

I»[’(””(u,u*,v,x,y))

= oMyt vay) — ———————————— — S(u, u,v)

(s v%9) W(m(u,u*,v,x,y)) +k
> (p(m(u,u*,v,x,y)) - W(m(u,u*,v,x,y)) -0

1
= m(u,u*,v,x,y) - Em(u,u*,v,x,y) = 0,
where FeC,¢p € @,y € &, and
1 k
Mt vny) =~ [aS(u, u,x) + bS(x,x,y) + cS(y,y, u ) +dS(y,y, v)]

a+b+c+d

with a,b,c,d >0anda+b+c+d>0.

Therefore, we have

<p(S(u, u, V)) = F(‘p(m(u,u*,v,x,y)), w(m(u,u*,v,x,y)))«
That is,

dg(u, Tx) = dS(A,B)
dS(u*r TM) = dS(A: B) = <p(S(u, u, V)) = F(Qo(m(u,u*,v,x,y))’ w(m(u,u*,v,x,y)))~
ds(v, Ty) = ds(A, B)

Thus T is an S-(F, ¢, ¥)-sum-proximal contractive mapping. All the conditions of Theo-
rem 2.6 hold true and T has a unique best proximity point. Here, z = 6 is the unique best

proximity point of T

Remark 2.8 If we take F(s,£)=(a+b+c+d)s,0<a+b+c+d<1and ¢(t) =t in Theo-
rem 2.6, then our result reduces to Theorem 2.6 in [35].
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Theorem 2.9 Let A, B be two nonempty subsets of an S-metric space (X, S) such that (A, S)
is a complete S-metric space, Ay is nonempty, and B is approximately compact with respect
to A. Assume that T : A — B is a nonself-mapping such that T(Ao) C By and, for x,y,u,v €
A;

dg(u, Tx) = ds(A,B)
ds(v, Ty) = ds(A, B)

where F € C,p € ®, Y € &, and

1
a+b+c+d

M (u,v,x,y)

S(x, x,9)S(x, %, u)

S(x, x, b
x[a (2,0, 1) + 1+ Sum)

+¢S(x,x,y) + dS(x, x, u)] (44)

with a,b,c,d >0 anda+b+c+d>0. Then T has a unique best proximity point.

Proof Following the same lines as those in the proof of Theorem 2.3, we can construct a
sequence {x,} in A satisfying

ds(x,41, Tx,,) = ds(A,B), VYneNU{0}. (45)
From (43) with x = x,,_1, u = x,,, y = x,, and v = x,,,1, we have
(p(S(xm Xy Xn+l ))

1
<F —————— | aS(Xu-1,Xu-1,%n
- <(p<a+b+c+d|:a (61,21, %)

+b S(xn—lr xn—lyxn)s(xn—lr xn—lyxn)
1+ S(Xn, X Xps1)

+ CS(xn—lx xn—lvxn) + dS(xn—ly xn—lvxn)]>¢

(| as( )
a+brcid| 0y

+b S-15 %015 %) S (Xs—15 X—1, %r)
1+ S(xnr X xn+1)

+ ¢S (Xpo1, X1, %) + dS(x,,l,xnl,x,,)]))
< (St %01, %)) (46)
for all » € NU {0}. This implies
S s K1) < S(Hn-15Xn-1,%n)- (47)

So, the sequence {S(x,,x,,%,.1)} is a decreasing sequence in R* and thus it is convergent
to t € R*. We claim that £ = 0. Suppose, on the contrary, that ¢ > 0. Taking limit as # — oo
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in (46), we get

o) < F(e(), v (), (48)
which implies ¢(¢) = 0 or ¥ (¢) = 0. That is, £ = 0 which is a contradiction. Hence, ¢ = 0.
That is,

lim S(%, %, Xn41) = 0. (49)

n—00

Similarly, one can see that {x,,} is a Cauchy sequence in an S-metric space (X, S). Due to the
completeness of (4, S), there exists z € A such that {x,} converges to z. As in the proof of
Theorem 2.3, we have ds(w, Tz) = ds(A, B) for some w € Agy. Now, from (43) with x = x,,_1,
u=x, y=zand v =w, we deduce

@ (S, x4, w))

1
<F - 5 g4 S n-1»4n-1>"Yn
- ((p(a+b+c+d|}l (61,21, %)

b S(xn—ly Xn-1, Z)S(xn—lr Xn-1, xn)
1+ S(x,,x,,w)

+ CS(xn—I: Xn-1» Z) + dS(xn—l; Xn-1» xn):| ) )

|:aS(xn_1, X1, %n)

1
1p<a+b+c+d

S(xn—lr Xn-1, Z)S(xn—b Xn-1s xn)
+b
1+ S(x,,x,,w)

+ Cs(xn—lt xn—l;z) + ds(xn—b Xn-1, xn)i|))

By taking the limit as # — oo in the above inequality, we get S(z,z, w) = 0; that is, z = w.
Hence, ds(z, Tz) = ds(w, Tz) = dgs(A, B); that is, T has a best proximity point. To prove
uniqueness, assume that p # g, such that ds(p, Tp) = ds(A, B) and ds(g, 1g) = ds(A, B). Now,
by (43) with x = u = p and y = v = ¢, we have

VS, p,0)S(p,p,p)

S b ) )EaS ) ’ )+b
».pq (w,pp T+ 5w )

+cS(p,p,q) +dS(p,p, p), (50)

which implies S(p,p,q) = 0. Hence, p = ¢; that is, T has a unique best proximity point.
O

Remark 2.10 By taking F(s,t)=(@a+b+c+d)s,0<a+b+c+d<1and ¢(f) =t in Theo-
rem 2.9, our result reduces to Theorem 2.7 in [35].
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