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1 Introduction
Contractions are among the most important objects studied in fixed point theory. The
study concerning convergence and fixed points of several types contractions in metric
spaces and also in various more general distance spaces has undergone remarkable devel-
opments in the last years. The effect has been a still-ongoing series of results that are far
stronger and more general and optimal than those known before.

The following theorem is one of the first, important, central, simpler, and very inspired
result of this theory.

Theorem 1.1 (Banach [1], Caccioppoli [2]) Let (X,d) be a complete metric space. If T :
X — X satisfies

Jo<raVayex {d(T(), T(y)) < rd(x,y)}, 1.1)
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then: (i) T has a unique fixed point w in X; and (i) for each w° € X, lim,,,_, oo d(T" (w°),
w)=0.

The maps satisfying condition (1.1) are called in the literature Banach contractions.

In metric spaces, not necessarily complete, by changing condition (1.1), there are many
different interesting generalizations of Theorem 1.1 in the literature. Significant papers
here are Burton [3], Rakotch [4], Geraghty [5, 6], Matkowski [7-9], Walter [10], Dugundji
[11], Taskovi¢ [12], Dugundji and Granas [13], Browder [14], Krasnosel’skii et al. [15], Boyd
and Wong [16], Mukherjea [17], Meir and Keeler [18], Leader [19], Jachymski [20, 21],
Jachymski and J6zwik [22], and many others.

Among the papers mentioned, the following is especially remarkable.

Theorem 1.2 (Leader [19], Theorem 3) Let (X,d) be a metric space, and let T : X — X
be a map with a complete graph (i.e., closed in Y?, where Y is the completion of X). The
following hold.:

(A) T has a contractive fixed point in X if and only if

Vx,yeXVDOElne(O,oo]EIreNVi,jeN{d(Tm (x), TU] ()/)) <E+T

= d(T"(x), TV*(y)) < &}. 12)
(B) T has a fixed point in X if and only if

TeexVes0Tne(0,00 FrenVijen{d(TH (%), TV (%)) < & + 1

= d(T" (), TV (x)) < &) (1.3)

Moreover, if x,&,1, and r are as in (1.3) and if e x {lim,,_, oo d(T"(x), w) = 0},
then Vien{d(T (x), T (x)) < n = d(T1*" (x), w) < &}.

By a contractive fixed point of T : X — X we mean a fixed point w of T in X such that,
for each w° € X, lim,,,_, oo d(T"(w°), w) = 0. The maps satisfying conditions (1.2) and (1.3)
are called in the literature Leader contractions and weak Leader contractions, respectively.

Remark 1.1 Let (X, d) be a metric space.

(a) We refer to Jachymski [20, 21] and Jachymski and Jézwik [22] for a few theorems in
(X, d) showing how natural Leader contractions are and how results of Leader [19]
generalize the papers of Banach [1], Caccioppoli [2], Burton [3], Rakotch [4],
Geraghty [5, 6], Matkowski [7-9], Walter [10], Dugundji [11], Taskovi¢ [12],
Dugundji and Granas [13], Browder [14], Krasnosel’skii et al. [15], Boyd and Wong
[16], Mukherjea [17], Meir and Keeler [18], and many others.

(b) It is worth noticing that Leader’s method does not require the complete assumption
of (X, d) and that the statements become more elegant and the most general.

Remark 1.2 Notice that:
(a) Leader’s proof was based on the observation that (X, d) are topological and
Hausdorff, d vanishes on the diagonal, is symmetric, and satisfies triangle inequality,
and the map d is continuous.
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(b) If we remove some of these conditions, then the situation is much more
complicated.

Definition 1.1 Let X be a nonempty set.

(A) A quasi-pseudometric on X is a map p : X*> — [0, 00) such that: V,cx{p(u, u) = 0};
and Yy, wex {p(u, w) < p(u,v) + p(v,w)}. For given quasi-pseudometric p on X, a pair
(X, p) is called quasi-pseudometric space, and (X, p) is called Hausdor{f if
Vuvex{u #v=pu,v) >0V p(v,u) > 0}.

(B) Each family P = {p, : a € A} of quasi-pseudometrics p, : X*> — [0,00), @ € A, is
called a quasi-gauge on X.

(C) Let the family P = {p, : @ € A} be a quasi-gauge on X. The topology 7 (P) having
as a subbase the family B(P) = {B(u, &,) :u € X, 84 > 0, € A} of all balls
B(u,eq) ={veX:py(u,v) <&y}, u€ X, 64 >0, € A, is called the topology induced
by P on X.

(D) (Dugundji [23], Reilly [24]) A topological space (X, 7T) such that there is a
quasi-gauge P on X with 7 = T (P) is called a quasi-gauge space and is denoted by
X, P).

(E) A quasi-gauge space (X, P) is called Hausdor{f if the quasi-gauge P has the
property Yy vex{u #v = pca{pa(t,v) >0V po (v, u) > 0}}.

Remark 1.3 Each quasi-uniform space and each topological space is a quasi-gauge space
(Reilly [24], Theorems 4.2 and 2.6). The quasi-gauge spaces are spaces with asymmetric
structures.

Let X be a (nonempty) set. A distance on X is a map p: X*> — [0;00). A set X, together
with a distance on X, is called a distance space (see [25, 26]).
Before proceeding further, let us recall the following:

Definition 1.2 ([27]) Let X be a (nonempty) set, let A be an index set, and let C =
{Calaca €[L; OO)A~
(A) We say that a family Pc, 4 = {pa, € A} of distances p, : X? — [0,00), @ € A, is a
quasi-triangular family on X if

YaeAYupwex {Pa(t,w) < Co[pa(u,v) + pa (v, w)]}.
A quasi-triangular space (X, Pc; 4) is a set X together with a quasi-triangular family
Pc, 4 on X.
(B) Let (X, Pc; 4) be a quasi-triangular space. We say that Pc. 4 is separating if

Vuwex {7 w = Juea{pa(t, w) > 0 v po(w,u) > 0} }. (1.4)

(C) We say that a family L¢,4 = {l, @ € A} of distances [, : X?> — [0,00), @ € A, is an
ultra-quasi-triangular family on X if

VaeAVu,v,weX{la (M: W) =< Ca max{la (M: V), la (V: W)} }

An ultra-quasi-triangular space (X, Lc, ) is a set X together with the
ultra-quasi-triangular family L£¢; 4 on X.
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(D) We say that a family Sc, 4 = {sq, & € A} of distances s, : X* — [0,00), @ € A, is a
partial quasi-triangular family on X if

VaeAvu,v,wEX{Sot(u: W) < Cot [Sot (Lt, V) + Sa (V: W)] — S (V: V) }

A partial quasi-triangular space (X, Sc, 1) is a set X together with a partial
quasi-triangular family Sc; 4 on X.

(E) We say that a family P4 = {p,,a € A} of distances p, : X> — [0,00), @ € 4, is a
triangular family on X if

VaeAVuywex {Pa(u: w) < po(u,v) + po(v, W)}
A triangular space (X, P 4) is a set X together with a triangular family P4 on X.

Remark 1.4 There are several reasons for studying the quasi-triangular spaces.

(a) First, in the spaces (X, Pc.4), in general, the distances p, : X*> — [0,00), a € A, do
not vanish on the diagonal, are asymmetric, and do not satisfy the triangle inequality
(i.e., the properties Ve aVuex{pa (4, 1) = 0}, or VoeaAVy wex{Po(tt, W) = po (w, u)}, or
Ve AV iy wex{Pa(t, w) < po(u,v) + po (v, w)} do not necessarily hold).

(b) Second, these spaces are not necessarily topological, or Hausdorff, or sequentially
complete.

(c) Finally, these spaces generalize ultra-quasi-triangular and partial quasi-triangular
spaces (in particular, generalize metric, ultrametric (Roovij [28]), quasi-metric
(Wilson [29]), ultra-quasi-metric, b-metric (Bakhtin [30], Czerwik [31]), partial
metric (Matthews [32]), partial b-metric (Shukla [33]), pseudometric,
quasi-pseudometric, ultra-quasi-pseudometric (Kiinzi and Otafudu [34]), partial
quasi-pseudometric, topological, uniform, quasi-uniform, gauge (Dugundji [11]),
ultra-gauge, partial gauge, quasi-gauge (Reilly [24]), ultra-quasi-gauge, and partial

quasi-gauge spaces).

Remarks 1.1-1.4 are a well-motivated argument to study several fundamental problems
concerning the fixed point theory in these very general spaces (X, Pc, 4). Some results in
this direction are given in Wtodarczyk [27, 35]. Based on some ideas presented in [27,
35-38], we can ask the following question.

Question 1.1 Is there a theorem of Leader type in (X, Pc; 4)?

The main results of this paper (see Theorems 3.1 and 3.2) provide conditions under
which the answer to this question is ‘Yes!

More precisely, the subject of this paper is the constructions of contractions and weak
contractions of Leader type and the study of convergence, existence, approximation, pe-
riodic point, fixed point, and uniqueness properties of these contractions and weak con-
tractions in quasi-triangular spaces (X, Pc,4). In these very general spaces, by elementary
tools and by a natural argument, using radically new and original technique, we derive un-
expectedly richer conclusions from very weak hypotheses (see Theorems 3.1 and 3.2). This
paper shows that the answer indeed is affirmative and inspires also new ways of looking
at old problems in quasi-triangular spaces.
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2 Left (right) families J¢, 4 generated by Pc. 4, left (right) J. 4-convergences,
and left (right) J¢. 4-sequential completeness in quasi-triangular spaces
X, PC;A)
Let Pc, 4 be a quasi-triangular family on X. It is natural to define the notions of left (right)
families Jc, 4 generated by Pc; 4, which provide new structures on X.

Definition 2.1 Let (X, P, 4) be a quasi-triangular space.
(A) The family Je.a = Uy : @ € A} of distances J, : X2 — [0,00), & € A, is said to be a
left (right) family generated by Pc, 4 if:

(Jl) vaEAVu,v,WGX{]a (u! W) =< CO( Ua (u’ V) + ]Ot (V’ W)] }; and furthermore

(J2) for any sequences (uy, : m € N) and (v,, : m € N) in X satisfying

Vaea] lim sup oo n) =0} (Vacaf lim supJi(u, ) = 0})

Mm=>00 y>m X usm

and
Vaea{ lim Ju(mtt) =0} (Vaca] lim Ju@tn,vi) =0}),
we have
Vaea] 1im po(mttn) =0} (Veca] tim puta,v,) =0}).
(B) JfX,PC; W (J&PC;A)) is the set of all left (right) families J¢, 4 on X generated by Pc;, 4.

Remark 2.1 Let (X, Pc; 4) be a quasi-triangular space. Then we have:
L R
(a) ,PC,_A S J(XrPC;A> m J(XYPC;_A)‘
(b) The structures on X determined by left (right) families Jc; 4 generated by Pc; 4 are
more general than the structure on X determined by Pc; 4.
(c) f Jeu € J](LX,PC;A) u “H&PC;A)’ then (X, Jc.4) is a quasi-triangular space.

Definition 2.2 Let (X,Pc,4) be a quasi-triangular space, and let Jc; 4 be a left (right)
family generated by Pc; 4.
(A) We say that a sequence (u,, : m € N) C X is left (right) Jc, a-Cauchy sequence if

Veeal lim sup]a(um,u,,):O} (VaeA{ lim supJy (4, tyy,) = })

M—>00 s Mm=00 y>m

(B) Letu € X and (u,, : m € N) C X. We say that a sequence (u,, : m € N) is left (right)
Jc;.A-convergent to u if

weLIM{"%A 7@ (ueLIMy CA, #92),

(up:meN) (up:meN)

where

LM, 7oA [xeX VaeA{ Him o (%, thm) = 0”

(up:meN) —

(LIMR JeiA ixeX VaeA{ lim ]a(um,x)-o}})

(up:meN)
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(C) We say that a sequence (u,, : m € N) C X is left (right) Jc,a-convergent in X if

LIM.TSA 2o (LM, 54 7 o).

(um:meN) (um:meN)

(D) If every left (right) Jc, 4-Cauchy sequence (u,, : m € N) C X is left (right)
Jec.a-convergent in X (i.e., LIMLM JZ;‘N LIMIi JZSN # @), then (X, Pc. 4) is
called left (right) Jc;a-sequential complete.

(E) We say that (X, Pc,4) is left (right) Hausdor{f if for each left (right)

Pc; 4-convergent in X sequence (u,, : m € N), the set

LIM,SA (LIM, A

(up:meN) (uy:meN)
is a singleton.

Remark 2.2 Let (X, Pc, 4) be a quasi-triangular space. It is clear that if (u,, : m € N) is left
(right) Pc; a-convergent in X, then

L-Pc; A

L-Pc, A
LIMM :meN)

R-Pc, A
CL]MV meN)

(LIM(u_m:m;eN) C LIMR hea )

(vin:meN)
for each subsequence (v, : m € N) of (u,, : m € N).
The following relations between J¢, 4 and Pc, 4 are interesting.

Theorem 2.1 ([27]) Let (X, Pc,4) be a quasi-triangular space. Let E C X be a set contain-
ing at least two different points, and let {{ty }oe € (0;00)A where Voye a{ite = 84(E)/(2C,)}
and ¥ ye 4{84(E) = sup{py(u, w) : u,w € E}}. If Ton = o : @ € A} where, for each a € A, the
distance J, : X*> — [0, 00) is defined by

Do, w) if EN {u, w} = {u, w},

Jo(u,w) = e ifEN {u, w} # {u, w},

then Jc; 4 is the left and right family generated by Pc; 4.

Remark 2.3 This result shows that Definition 2.1 is correct and that J(LX,PC,A)\{PC; AV D
andep cA) \{PC;A} 7.

Theorem 2.2 ([27]) Let (X,Pc.4) be a quasi-triangular space, and let Jc, 4 be the left
(right) family generated by Pc. 4. If Pc; 4 is separating on X (i.e., (1.4) holds), then Jc, 4 is
separating on X, that is,

Vu,wEX{u #Wi EIaE.A{]a(MrW) >0 V]a(W, M) > 0}}

3 Statement of results

Recall that a single-valued dynamic system is defined as a pair (X, T'), where X is a certain
space, and T is a single-valued map T : X — X, that is, V,ex{T(x) € X}. By Fix(T) and
Per(T) we denote the sets of all fixed points and periodic points of T, respectively, that is,
Fix(T) = {we X :w=T(w)} and Per(T) = {w € X : w = T4 (w) for some g € N}. For each
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w® € X, asequence (w” = T" (w°) : m € {0} UN) is called a Picard iteration starting at w°
of the system (X, T').

In this section, in the quasi-triangular spaces (X, Pc; ), using left (right) families Jc, 4
generated by Pc; 4, we construct the Jc, 4-contractions (X, T) and weak Jc, a-contractions
(X, T) of Leader type, and we formulate the left (right) Pc, 4-convergence, existence, ap-
proximation, uniqueness, periodic point, and fixed point theorems for such contractions.

The following terminology will be much used in the sequel.

Definition 3.1 Let (X,Pc,4) be a quasi-triangular space. Suppose that Jc, 4 is the left
(right) family generated by Pc; 4.
(A) A single-valued dynamic system (X, T) is said to be left (right) Jc, a-admissible on a
set WL=Jca (WR-JcA) if the following two conditions hold:
(A1) For each w° € X satisfying

VaeA{ lim sup/, (w’”, w”) = 0} (3.1)
m— 00 n>m
(VaeA{ lim sup/, (", w") = 0}), (3.2)
m— 00 n>m
we have
. . -Jc,
SuexVaca] lim Jo(w,w”) =0} (ie. LIMGSE ) 72) (3.3)

(BexVuca] lim Ju(w,w) =0 (ie. LIMGA 0 72)),  (34)

where w” = T (w0), m € {0} UN; and
(A2) There exists Wi=JcA g 2X (WR-Jca g 2X) satisfying

wi-Jca = {WO € X : w° satisfies (3.1) and (3.3)}
(WR‘jC;A = {w0 € X : w° satisfies (3.2) and (3.4)}).
(B) If (X, T) is left (right) Jc, 4-admissible on W -Jca ¢ 2% (WR-Jca e 2X) and

w? e Wh-Jca (w0 e WR-JcA), then we say that (X, T) is left (right)

Jc.a-admissible in a point wP.
Here 2% denotes the family of all nonempty subsets of a space X.

Remark 3.1 Let (X, Pc, 4) be a quasi-triangular space, and let J¢, 4 be the left (right) fam-
ily generated by Pc; 4. Let (X, T) be a single-valued dynamic system. If (X, Pc; 1) is left
(right) Jc, 4-sequentially complete, then (X, T) is left (right) Jc, 4-admissible on some set
Wi-Joa g 2X (WR-Jca ¢ 2%),

Next, we introduce the following concept of left (right) Pc, a-closed single-valued dy-
namic systems in (X, Pc; 4).

Definition 3.2 Let (X, Pc; 4) be a quasi-triangular space. Let (X, T) be a single-valued
dynamic system, T : X — X, and let g € N. The single-valued dynamic system (X, T1¢))
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is said to be left (right) Pc,a-closed on U € 2% (V € 2%) if for each w® € U (w® € V)
such that the sequence (w” = T"(w°) : m € {0} UN) is left (right) Pc,4-converging in X
(thus, LIM(LMjZ,D: ,C,;“E“{O}UN) %) (LIM{;ZD: 2?{0}UN) # &)) and having subsequences (v,, : m € N)
and (u,, : m € N) satisfying ¥,,en (Vi = T'9(1,,)}, the following property holds: there exists

L-Pc,a R-Pc;A
% € LIMynéiopory (' € LIM o) such that x = T4 (x) (y = TH(y)).

For the definition and properties of closed maps in topological spaces, see [39, 40].

The main results of this paper are the following theorems.

Theorem 3.1 Let (X, Pc; 1) be a quasi-triangular space, and let (X, T) be a single-valued
dynamic system with T : X — X. Assume that the following three conditions hold:

(H1) Jc.a is the left (right) family generated by Pc; .

(H2) (X, T) is a Jc,a-contraction on X, that is,

vx,yEXvaEAVDOElﬂ>03rEst,l€N{]a(T[S] (x), T[l] ()/)) <éE+T7

= Colu (T (), TH (9)) < &) (3.5)

(H3) There exists a set WE=IcA € 2X (WR-JcA € 2X) such that (X, T) is left (right)
Jc.a-admissible on WL-Jca (WR-JcA),

Then the following statements hold:

(A) Foreach w® € WL-JcA (w0 € WR-IGA), there exists a point w € X such that the
sequence (W" = TV (wP) : m € {0} UN) is left (right) Pc. 4-convergent to w.

(B) If the single-valued dynamic system (X, T'9) is left (right) Pc, a-closed on W=Jc:A
(WR-JcA) for some q € N, then:

(Bl) Fix(T) # &;

(B2) Foreach w® € Wt-JcA (W® € WR-JcA), there exists a point w € Fix(T'1) such
that the sequence (W™ = TV (w°) : m € {0} UN) is left (right) Pc, -convergent
to w; and

(B3) vaGAvveFl’x(T[q]){]a (v, T(v)) = Jo(T(v),v) = 0}.

(C) Ifthe family Pc,a = {po,a € A} is separating on X and if the single-valued dynamic
system (X, T'D) is left (right) Pc,a-closed on WEJcA (WR-JCA) for some q € N,
then:

(C1) There exists a point w € X such that Fix(T9) = Fix(T) = {w};

(C2) Foreach w® € Wi-JcA (w0 € WR-IcA), the sequence
(w" = T (wP) : m € {0} UN) is left (right) Pc, 4-convergent to w; and

(C3) Yaecallu(w,w)=0}.

Theorem 3.2 Let (X, Pc, a) be a quasi-triangular space, and let (X, T) be a single-valued
dynamic system with T : X — X. Assume that the following three conditions hold:

(H1) Jc,a is the left (right) family generated by Pc, 4.

(H2) (X, T) is a weak Jc, a-contraction on X, that is, there exists w° € X such that

VaeaVesoTps0TrenVsien o (TH (W°), TV (w0)) < £ + 1

= Colu (T8 (u), T (1)) < ). (.6
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(H3) There exists a set W =JIcA € 2X (WR-TcA € 2X) such that (X, T) is left (right)
Jc.a-admissible on W=IcA (WR-IGA) and w® € Wi-Jca (w0 e WR-Tca),
Then the following statements hold:
(A) There exists a point w € X such that the sequence (W" = T"(w°) : m € {0} UN) is
left (right) Pc; a-convergent to w.
(B) If the single-valued dynamic system (X, T'9) is left (right) Pc.a-closed on W=Jc.A
(WR-JcA) for some q € N, then:
(Bl) Fix(T'7) + &;
(B2) There exists a point w € Fix(T'?) such that the sequence
(w" = T (W) : m € {0} UN) is left (right) Pc.a-convergent to w; and
(B3) Ifw® € Fix(T'D), then Voe alJu W, TW°)) = Jo(T(wP), w°) = 0}.
(C) If the family Pc, o = {pa, o € A} is separating on X and if the single-valued dynamic

Page 9 of 28

system (X, T'D) is left (right) Pc, a-closed on WrJIcAa (WR-JCA) for some q € N,

then:

(C1) There exists a point w € X such that Fix(T'9) = Fix(T) = {w};

(C2) The sequence (W™ = T"(w°) : m € {0} UN) is left (right) Pc,a-convergent

to w; and
(CB) lfWO =W, then VaeA{]a(WO» WO) = 0}

4 Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1 The proof is divided into eleven steps and is only in the case of ‘left’;

we omit the proof in the case of ‘right’ since it is based on an analogous technique.

Forall u°,v° € X, « € A, and k € N, we define

87, ik (V) =
0 0) —

inf{A 7c_yax (u°,0°,n) :n e N},
J/~-7C;.A;0"k(u 4 N

inf{T 7.y (u®,v%,m) :m € N},

0

A]c;_A;Ot,k(u rnax{]a Vl) n=<s, S n+ k}, neN,

V) =
FJC;A;O[,]((MO,VO n) =m {]0,(1/S ul) <s,l<m +k}, neN,

where u” = T (41°) and v = TV (V°), m € {0} UN.
Step 1. We have the following property:

Vuo,voeXVaE.AVa>03r]>0
{FnenVoien o (V) < & + 1= CoJo (u, V7)< €}

A ElrzeNVs,leN{]a (Vs: Ml) <e+n= CoJa (Vs+r2’ul+r2) < 8}}

(4.5)

Indeed, let #°,1° € X be arbitrary and fixed. If we assume that « € A and ¢ > 0 are arbitrary

and fixed, then, using (3.5) for x = 4° and y = v°, we obtain 3,03, enVsen {Ja (1, Wy<e+

m = Cu o, V") < g}, and, using (3.5) for x = v* and y =

u®, we obtain

350 I enVsienUa (P, u) < & + 3 = CoJ, (V*72,u'*™2) < €}. Hence, putting 1 = min{n, n2},

we have

ElrleNVs,leN {]a (MS, Vl) <e+n=Cyuly (us+r1,vl+r1) < 8}
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and
3y enVijen{Ju (v, ) <e+n=Culy (2, ul*) <e}.

This gives (4.5).
Step 2. We show that

V0,0 ex Ve AVken {8 7¢, gsark (u°50°) = 0} (4.6)
and
V0 0exVaeaViken | Ve aak (u°50°) = 0} (4.7)
Indeed, if (4.6) is false, then
3,0 0 exTageaATrgenTegs0 {87¢, a0 ko (4% 1) = €0 }. (4.8)

With this choice of u°,1°, g, and &y we can use hypothesis (3.5); then there exist 1 > 0
and ry € N such that

Vien o (45 V) < €0 + 110 = CagJug (#770,170) < g0} (4.9)

Further, by (4.1), 87, 4iaq.ko (4% V°) = Inf{A 7. 400,k 4%, V°, 1) : 1 € N}. This implies, using
(4.8), that

Fnoeri{ 8¢ aseo ko (17,V7) = €0 = A, gianko (5", 110) < £0 + 10}

Next, in view of (4.3), we have that A 7. a0k @°,v°, o) = max{Jy, (u¥,V!) : 1o < 5,0 <mp +
ko}. Thus,

Voo <s <m0 +ko o (U5 V') < 20 + 10},
and, using (4.9), we get V., <s1<ng+ko { Cag S @70, VH70) < g0}, which we can write as
Vno +ro <s,l<ng+rg+ko {Caoloto (us’ Vl) <& }
Now, note that
A T pser0 ko (uo,vo,no + ro) = max{]ao (us,vl) Mg+ <SS, <my+rp+ ko}
in view of (4.3). Consequently,
Cao A T, 500,k (uo, Wong + ro) < &p. (4.10)
Finally, from (4.8), (4.1), and (4.10) it follows that
€0 = 87¢, sa0.ko (uo, V°) = inf{AJC;A;ao,ko (uo,vo,n) tne N}
< AJeaseoko (uo, VW, ng + ro) < Cop A T sse0.ko (uo,vo,no + ro) < &0,

which is impossible. Therefore, (4.6) holds.
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The proof of (4.7) is identical to the proof of (4.6) and is omitted.
Step 3. Let u’ € X, a € A, and € > 0 be arbitrary and fixed. Let " = T"(u®) for m €
{0} UN, and let

Bps0FrenVsen {Ju (1, u') < £+ = CoJo (', u""") < £}, (4.11)
We show that

Fupen{Ca A g g (%5 u°,10) = CaT g, giarr (4”5 4°, m0) < min{e, n}} (4.12)
and

Vi izno o (1, 1) < 26} (4.13)

By (4.1), (4.2), (4.6), and (4.7), 8. 40r(@® u®) = inf{A 7. 4ur(@®u’,n) : n € N} =
0, Y7o psr (@, u®) = inf{T 7. 40 (u®,u,m) : m € N} = 0, and Vuen{A g, ys0,r (0, u%, 1) =
[ ¢ (@’ u%, n)}. Then there exists 1o € N such that (4.12) holds.

By (4.3) and (4.4) we see that (4.12) implies

CQAJC;A;Q,,(MO, u®, no) = CQFJC;A;QJ(MO, u®, no)

= max{Ca]a (us, ul) tng <s,l<ny+ r} < min{g, n}. (4.14)
First, we establish that
Visno { Calue (w™*, u') < €}. (4.15)

If (4.15) is false, then 3>, { CoJo (7077, u') > g}, that is,

L={leN:l1>nyAColu(u™",u) > e} # 2. (4.16)
Denote
lo =minL. (4.17)

Of course, in view of (4.14), this gives

lo > Hnp. (418)
Note that
Voo <tety { Calue (w0, ut') < €} (4.19)

in view of (4.16)-(4.18).
Next, note that also

Iy >ng +r. (4.20)
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Otherwise, Iy < 1 + r, and by (4.13) we get C,J, (0*", u0) < max{CyJ,(u', ) : ny < i,j <
1o + 71} = CoA gg, g0 (u°,u°, mg) < minfe, n} < &, which, in view of (4.16), (4.17), and (4.19),
is impossible. Thus, (4.20) holds.

In view of (4.18) and (4.20), we have that ny < [y — r < Iy, and, consequently, using (4.16)
and (4.17), we conclude that

Colu (u”O”, ulo") <e&. (4.21)
Next, using (J1) of Definition 2.1, (4.13), (4.14), and (4.21), we obtain

T (uno , ulO*’”)
< Ca[ (70, u"0) + Ty (0, ulo—r)]
< CQAJC;A;a,r(MO, u®, no) +¢€
<n+e.
Hence, since r satisfies (4.11), we get C,J, (0", u') < &. In view of (4.16) and (4.17), this
is impossible.

Consequently, (4.15) holds.
We can show in a similar way that

Yoo { Coo (1%, ™) < £} (4.22)

the proof of (4.22) is identical to the proof of (4.15) and is omitted.
To establish (4.13), we see that by (J1) of Definition 2.1, (4.22), and (4.15) we obtain

A {]D, (us, ul) < Colu (us, u"o”) +Colo (u”O”, ul) <e+e= 28}.

Step 4. Let w° € W ~JGA be arbitrary and fixed. Define the sequence (W = T (w°) :
m € {0} UN). We show that

Vaea¥es0TngenVsizno [Ju (W W) < £/2}. (4.23)
Indeed, let oy and g be arbitrary and fixed. By (3.5) we get

31050 o e Vssen o (W' W) < 80 + 1o = Coglag (W0, W) < &0}
Next, by (4.3) and (4.4) we have VaeaVienVuen{A ¢ gak(W0, W, 1) = Tge tax (W0,

w®,n)}. Moreover, by Step 2 we have Vae AVien {876, 4ok (W, W°) = ¥7¢_gak (W0, w°) = 0}
Hence, it follows that there exists 1y € N such that

0.0
Cap AJC;A;D‘O,"O (W W ”0)

= Coo L Te.aswom0 (WO, wP, no) <min{ey/4, 1o} (4.24)

Now, from (4.24), using Step 3, we get Vs>, {Jo, (W', w!) < 2(0/4) = £9/2}. This proves
that (4.23) holds.
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Step 5. Let w° € WICA be arbitrary and fixed. Define the sequence (W = T (w°) :
m € {0} UN). We show that

VO,EA{ lim supJ, (wm, w") = O} (4.25)
and
VaeA{ lim sup/, (w", w”’) = O}. (4.26)

Indeed, in view of (4.23), we obtain, in particular, that

VO(EAV£>03m06NVH>m2mO {]a (Wm, Wn) < 8/2}

and

VaeAVes0 EImo ENVVDWIZWIO {]a (Wn; Wm) < 8/2}

From this it follows that

V(XEAV€>03WI0€NVWIZVH0 HSUP]a (er Wn) <el2< 8}

n>m

and

VaeAVs>03moeNvmzm0 {Sup]zx (Wn’ Wm) <el2< 8};
and hence (4.25) and (4.26) hold.
Step 6. Statement (A) holds.
Indeed, let w® € W ~JcA be arbitrary and fixed. Define the sequence (w” = T"(w°) :
m € {0} UN). By (4.25), Definition 2.2, and hypothesis (H3) we get that this sequence is

left Jc, 4-convergent in X, that is, there exists a nonempty set LIMfV;,‘,Zfrjﬁm}UN) C X such
that
Voigoa Ve A{ Tim J (w,w") = o}. (4.27)

(W":me{0}UN)

However, by hypothesis (H1), Jc, 4 is left family generated by Pc; 4. Therefore, fixing w €
LIM(L_jC‘A{O}UN), defining (u,, = w” : m € {0} UN) and (v, = w: m € {0} UN), and using

;
w:me

(4.25) and (4.27) we obtain
VQEA{ lim sup Jy (t4y, ) = 0} and V‘,EA{ lim J, (Vs th) = 0}.
m— 00 n>m m— 00
By Definition 2.1 this gives Vye 4 {limy,— oo Po (Vi ) = 0}, which means that
VO,EA{ lim p,(w,w") = 0}.
m—> 00

w:me

_Ppe.
Therefore, LIM(L C’A{O}UN) 7 9.
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Step 7. Conclusions (B1) and (B2) hold.

Let w® € W -Jc:A be arbitrary and fixed. Define the sequence (w” = T (w°) : m € {0} U
N).

First, we prove that Fix(T'?) # & and that there exists a point w € Fix(T"?!) such that
this sequence is left Pc, 4-convergent to w. Indeed, by statement (A), LIMLW;D fn“: JuNy 7 9-
Next, for this sequence, we have w”?+k = Tl (w(n-Da+k) for k = 1,2,...,q and m € N,

Let, in the sequel, k = 1,2,...,q be arbitrary and fixed. Defining (z,, = w"*7 : m € N),

P,
we see that & #LIMLW,,, fnﬁ{o}UN LIM(LZ PEE{O}UN and that the sequences (v,, = w"4*f
m e N) and (u,, = w9, . 1 € N) satisfy V,en{Vim = T19(u,,)} and, as subsequences

of (W” :m € {0} UN), are left Pc, - convergent to each point of w € LIM(LV;,ZD fné{ 0JUN)*

Clearly, by Remark 2.2, LIM, -S4, C LIM, "S4, and LIM;, 54  LIM,, -S4, . There-
fore, since T is left Pc,a-closed on Wwi-JcA | in virtue of Definition 3.2, we get

— 7ldl ; lq] i
EIweLIML_m LIML Pea {w = T'"(w)}. Consequently, Fix(T'?) # &, and there exists a
(w 0}UN) ™" (zm:meN)

point w € le(T[q]) such that the sequence (w” = T"(w°) : m € {0} UN) is left Pc,4-
convergent to w, so (B1) and (B2) hold.

Step 8. Conclusion (B3) holds.

Suppose that

JoedTyerineriay {Jao (W, TW)) > 0V Joo (T(w), w) > 0}.
If Joo (W, T (w)) > 0, then, putting
€0 = Joo (W, T(W)), (4.28)
by (3.5) we get

35105030 en Visien oo (T (W), TH(w)) < g0 + o

= CapJuo (TE7 (W), T (w)) < £ }. (4.29)
Since
VweFix(qul)VmeN{ T4 (w) = W}, (4.30)
we have

Jao (T (W), T () = Ty (w, T(W)) = &0 < &0 + 10
Hence, using (4.29) for s =g and [ = g + 1, we get

CooJag (T[q”"](w), T[q*l”"](w)) <&y < &+ No-
We note that then, in particular, since C,, > 1,

Jao (T[q”"](w), T[‘“l”"](w)) <&y < & + No- (4.31)
Next, by (4.31), using (4.29) for s =g + ro and [ = g + 1 + rp, we have

CaoJaro (T2} (w), TI+270N(w)) < £ < £0 + 0.
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Hence, since C,, > 1,
Juo (T2 (w), T 120 (1)) < £ < &9 + 1. (4.32)
Using (4.31) and (4.32), by induction we have that (4.28) gives

Voment {Jug (T4} (), THH1770) ()

< CapJug (T (w), T 0] (1)) < £ < £0 + 10 ). (4.33)
Putting m = q in (4.33), we find
Joo (T[q+q’°](w), T[q+1+q’°](w)) <80 < &g+ 0. (4.34)
Finally, by (4.28), (4.31), and (4.34) we obtain that
£0 = Juo (W, T(W)) = Juo (T 70N (w), T +470] () < &,

a contradiction. Therefore, J,,(w, T (w)) = 0.

Similarly, we prove that J,, (T(w), w) = 0. We proved that (B3) holds.

Step 9. Conclusion (C1) holds.

First, we show that Fix(T?) = Fix(T) # @. Indeed, let w € Fix(T'?)). Then, by (B3),
Voealla(w, T(w)) = Jo (T (w), w) = 0}. By Theorem 2.2 this gives w = T(w), i.e. w € Fix(T).
Consequently, Fix(T'9) = Fix(T) # @.

Next, we show that Fix(T) = {w} for some w € X. Otherwise, u, v € Fix(T) and u # v for
some u, v € X; recall that, by the preceding, Fix(T) # @. Then, by Theorem 2.2 there exists
oo € Asuch that J,, (1, v) > 0 or Jo, (v, u) > 0. Suppose Jy, (1, v) > 0. Then, for g9 = Jo, (4, v) >
0, by (3.5) there exist 179 > 0 and ry € N such that

Vs,leN{{]ao (T[S](u)t TU] (V)) <&+ Tlo}
= {C%]ao (T[“’O](u), TU”O](V)) < & } } (4.35)

However, for all 5,/ € N, we have ]o,O(T[s] (w), TO(v)) = Joo (4, V) = &9 < &9 + 1o, and thus by
(4.35) We get 0 < 0 = Jug (1Y) = Jag (T} (1), T (1) < Cay g (T1570)a0), T0) (1) < s,
which is impossible. We obtain a similar implication in the case where J,, (v, ) > 0. There-
fore, Fix(T) = {w} for some w € X, so (C1) holds.

Step 10. Conclusion (C2) holds.

Step 9 with (B) means that, for each w® € W.~JcA, the sequence (W” = T"(w°) : m €
{0} UN) is left Pc, 4-convergent to w. Thus, (C2) holds.

Step 11. Conclusion (C3) holds.

Finally, we show that Vyc 4 {J (W, w) = 0}, where Fix(T) = {w}. Indeed, if we assume that
there exists g € A such that J,, (w, w) > 0, then, denoting &y = J,, (w, w) > 0, by (3.5) there
exist 19 > 0 and ry € N such that

Vi en{ P (T (w), TH(w)) < &0 + 10}

= { CugJao (TE7 (W), T (W) < 60} }. (4.36)
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However, for all 5,/ € N, we have J, (TSN (w), TH (w)) = Juo (W, W) = g9 < €9 + 1o. Thus, using
(4.36), we obtain that

0 < €0 = Jug (W, W) = Joo (TF*70)(w), TH+70)(w))
< CapJao (TE (w), T () < &,

which is impossible. Therefore, (C3) holds.
The proof of Theorem 3.1 is complete. 0

Proof of Theorem 3.2 Assume that condition (3.6) holds. Then, defining (w” = T (w?) :
m € {0} UN), where w® € X isasin (3.6), and next, using a similar argument as in the proof

of Theorem 3.1 for this sequence, we have the assertions. d
5 Examples

Example 5.1 Let X = (0;3). For A = (1/2;2] and y > 0, we let p : X — [0; 00) be a distance
of the form

0 ifAN{u,v}={uv},

) = 51
p) ifA N {1, v) 7 {1, V). (5.1)
Define T: X — X by
1+x ifx € (0;1],
T(x) =13 x/2 ifx e (1;2], (5.2)

1+x)/2 ifxe(2;3).

(1) Notice that (X, Puyay), Puyny = {p)s is a triangular space. See Definition 1.2(E) and
[27], Example 2, p.11; p does not vanish on the diagonal, is symmetric, and is triangular.
(2) We show that (X, T) is Puy,n)-contraction on X, that is,

VayexVes03psodrenVssen {p(TH (), TG)) <& + = p(T87 @), T () <€} (53)
First, we claim that

Ven{ T (X) C A} (5.4)
Indeed, observing that

2-(1-x)/2k  ifxe(0;1],
TR () = 31— (2 -x)/2%1  ifxe (1;2], ke{O}UN, (5.5)
2-(3-x)/2 ifx e (2;3),

and

1-(1-x)/2k  ifxe(0;1],
TP ={2-(2-x)/2F ifxe(12], keN, (5.6)
1-(3-x)/21 ifx e (2;3),
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we see that (5.5) and (5.6) imply (5.4). Now, using (5.4) and (5.1), we obtain

VayexVmuen {p (T (x), T (3)) = 0}. (5.7)

In view of (5.7), we conclude that (5.3) holds.

(3) We show that (X, T) is left and right Py -admissible in each point w° € X; thus, by
Deﬁmtlon 3.1, WEPmm = WP = X, Indeed it is clear that, for arbitrary and fixed
w® € X, the sequence (w ime {0} U N), where V,,cojun{w”! = T(w™)} satisfies

Vimen{w” € A}. (5.8)
Then, in view of (5.8) and (5.1),
lim supp(w”,w") = lim supp(w”,w") =0,
m— 00 n>m m— 00 n>m

and also

m—> 00

VWEA{mleoop(W’ Wm) = lim p(wm,w) = 0},

Thus, LIM(n 20 o = LIMn 00 =A% @.

(W":me{0}UN) (Ww":me{0}UN)
(4) We show that the smgle valued dynamic system (X, T®) is left and right Ppuy,y-
closed on WEPu = WR-Pus = X, Indeed, if w® € X is arbitrary and fixed and if

(w" =T W) :m e {O} U N) is a left or right Pj;,n)-converging sequence in X having
subsequences (v,, : m € N) and (u,,, : m € N) satlsfymg Ve {Vm = T? (,,)}, then by (5.4),
(5.1), and (5.6) we have that A = LL wm me = LIMmePy:,e{O}uN and {1 = T¥(1),2 =
T21(2)} c A. Hence, in virtue of Definition 3. 2 L[ V = WEPum = wR-Pun = X,

(5) Puyny = {p) is not separating on X. This follows from Definition 1.2(B) since, for each
x,y € X such that A N {x,y} # {x,y}, we have p(x,y) = p(y,x) =y > 0.

Claim [t follows from (1)-(5) that, for (X, Puyny), Payy = (o) (X, T), and Ty = Py
defined by (5.1) and (5.2) and for q = 2, statements (A) and (B) of Theorem 3.1 hold:
(a) Statement (A) holds since, for each w° € X, the sequence (wm Tl (WO) m € {0} UN)
is left and right Py, -convergent to each point w € A; WE=Pui = WP = X by (3).
(b) We have that Fix(T™) = {1,2); thus, conclusion (B1) holds. (c) Conclusion (B2) follows
from statement (A) and conclusion (B1) since Fix(T"?') C A. (d) Conclusion (B3) holds;
by (5.1), we have Vg 121y o) Ip(v, T(v)) = p(T(v) v) = 0} since T(1) =2, T(2) =1, and
thus T({1,2}) = {1,2} = Fix(T'?) C A. (e) By (5), (X, Puy,)) is not separable. (f) We see that
Fix(T) = @ and that statement (C) does not hold.

Example 5.2 Let X = (0;1) U (1;2], and let p : X? — [0; 00) be of the form

ifu>v,

0
) = o ) X. 5.9
plwv) i(v—u)4 ifu<v, hve (5:9)

Define T: X — X by

_ ll +2  ifxe(0;1), 510

1+x/2 ifxe(1;2].
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(1) Notice that (X, Psyny), Pisyiy = {p) is a quasi-triangular space. See Definition 1.2(A)
and [27], Example 1, p.10; p vanishes on the diagonal, is asymmetric, and is quasi-
triangular since V., wex {p(t, w) < 8[p(u,v) + p(v,w)]}.

(2) We show that (X, T) is Pigy,uy-contraction, that is,

VyexVe>03y503renVsieN {P(T[S] ), s ()/)) <€+

=8 p(T6"(x), TV (y)) <&}, (5.11)

Indeed, by (5.10),

_ a2 m-1 .
—— :2 -2t ifxe@D, 512

2-2-x)/2"  ifxe(1;2],

Next, in the sequel, let ¢ > 0 be arbitrary and fixed, and let n = . Without loss of gener-
ality, to prove (5.11), it suffices to prove that if x,y € X and s,/ € N are such that W;; < 2e,
then there exists » € N such that 8 - W;’;"“’ < ¢, where

VayeVsien{ Wiy = p(TH ), TV () }. (513)

With this aim, we consider the following cases:

Case A. Let x,y € (0;1).

(A1) Ifs,,r € Nand TV (x) = 2 — (1 —x?)/2°"1 > T (y) = 2 — (1 — y?)/2"}, then TE7(x) =
2 — (1—a2)/21 > TH(y) =2 — (1 —9%)/2"*~1, and by (5.9) and (5.13) we get that W;é =
WirHT = 0, that is, (5.11) holds.

(A2)If s,l,r e Nand T¥(x) =2 — (1 -«?)/251 < TU(y) =2 — (1 - y?)/2, then T¥(x) =
2 — (1—a2)/27 71 < T (y) = 2 — (1 - 9%)/21*"1, and by (5.9) and (5.13) we get that

Wy =[(1-2") 2" - (1 —9c2)/25‘1]4 <2e
whenever s and [ are sufficiently great, and, for such s and /,
8. W;,;r,m _ (8/24r)[(1 _y2)/2l—1 _ (1 —xz)/2s‘1]4 <e
whenever also r is sufficiently great. Thus, (5.11) holds.

Case B. Let x,y € (1;2].

(B1)Ifs,I,r e Nand T (x) = 2— (2—-x)/2° > T (y) = 2—(2-9)/2!, then T+ (x) =2 (2
x)/254" > T (y) =2 — (2 — 9)/21*7, and by (5.9) and (5.13) we get that W;é = W;E”“’ =0,
that is, (5.11) holds.

(B2) If s,,r e Nand TF(x) = 2 — (2 — %)/2° < TW(y) = 2 — (2 — 9)/2!, then TB*(x) =
2 —(2-x)/2 < TH")(y) = 2 — (2 — y)/27", and by (5.9) and (5.13) we get that

Wil =[@ -2 - 2 -x)/2°]" < 2¢
whenever s and / are sufficiently great, and, for such s and /,

8- W = (8/2%) [ - )/2 - 2 -w)/2°] <

whenever also r is sufficiently great. Thus, (5.11) holds.
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Case C.Letx € (0;1) and y € (1' 2].

(C1) If s,,,r € N and Ts](x) — A —-x2)/27 > TU(y) =2 — (2 - )/2), then T+ (x) =
2 — (1 —a?)/25 1 > T(y) = 2 — (2 = 9)/247, and by (5. 9) and (5.13) we get that W? =
Wb = 0, that is, (5.11) holds.

(C2) Ifs,l,r e Nand TVH(x) = 2 - (1 = %%)/25"' < Tl(y) = 2 — (2 — y)/2/, then Tl (x) =

2—(1—a2)/2v 1 < T (y) =2 - (2 —9)/2"7, and by (5.9) and (5.13) we get that
Wyl =[@-y2 - (1-22)/27]" < 2¢
whenever s and [ are sufficiently great, and, for such s and /,
8- Wil = (8/2%)[2 - y)2' - (1-4%) /2] <6
whenever also r is sufficiently great. Thus, (5.11) holds.
Case D. Let x € (1;2] and y € (0;1). Then, with analogous consideration as in Case C, we

obtain that (5.11) holds.
(3) We show that (X, T) is left and right Pisy,)-admissible in each point w° € X; thus, by

Definition 3.1, WE-Pesn = WEPein = X, Indeed let w° € X be arbitrary and fixed, and
let the sequence (W” : m € {0} U N) be defined by V,.cojun{w” = T(w™)}. We consider
the cases:

Case A. Let w° € (0;1). Then w” =2 — [1 - (w°)?]/2" L <w” =2 - [1 - W®)?]/2"  for n >
m. Using (5.9), we then have p(w”, w") = [1—-(w°)?]*(1/24"-D)(1-1/2"-")* and p(W", w™") =
0. Hence, we conclude that

lim supp(w”,w") = [1- (W0)2]4 lim sup(1/2*"V)(1- 1/2”"”)4

Mm=00 y>m m=00 y>m
— 1 — (w921 15 4(m-1)y _
=[1- ()] mlgnoo(l/Z )=0
and lim,,_, » sup,,.,, pP(w", w") = 0, respectively.
Next, observe that

Py
(2} C LI wmri)e([)}UN) and (0;1)U(1;2) C LL 8l Ny

(w, me{ JUN

thus, LIM o4 | #© and LI

(W me

‘ ojuny 7 - In fact, by (5.9) we have

wW‘ me

lim p(2,w") = lim [1 - (w°)2]4/24(””1) =0.
Moreover, by (5.9), Vieo1)ua2) {limy— 0o p(W”, w) = 0}.
Case B. Let w° € (1;2]. Then w” =2 — (2 - w°)/2" < w" = 2 — [2 — w°]/2" for n > m, and
thus, by (5.9), p(w™, w") = [2 = wP]*(1/2%")(1 - 1/2"~™)%, p(w", w™) = 0. Consequently, we
get

lim supp(wm, w”) = [2 - wo]4 lim sup(1/24m))(1 - 1/2”””)4 =0,

m— 00 nw>m m—00 n>m

lim supp(w",w’") =0.

m— 00 n>m
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In addition, we see that lim,,,_, o, p(2, W) = lim,,,_, oo [2 — w°]*/2%" = 0 and

Vie(0;)u(1,2) {mli_r)noop(wm, w) = O}.
Thus, {2} C LIM, 4 | #@ and (0;1) U (1;2) C LI mee‘ oy 7 9.

(4) We show that (X, T) is left Pis);1)-closed on X = W P11, Indeed, by Definition 3.2,
if w® € X is arbitrary and fixed and if W = T w0 :m e {0} UN) is a left Pisyy-
converging sequence in X having subsequences (v,, : m € N) and (u,, : m € N) satisfying
Vouen{Vm = T(u)}, then by (5.9) (5 10), and (5.12) we have that 2 € LIMLWZ,):}E{{I(’)}UN and
2 = T(2). Therefore, U = W P51 = X. Clearly, V = @.

(5) Psy;uy = {p} is separating on X. Indeed, for each x,y € X such that x # y, we have
p(x,y) >0 or p(y,x) > 0. Thus, (1.4) holds.

Claim Iz follows from (1)-(5) that, for (X, Pisy,my), Py = {p) (X, T), and Jsyay = Pisy
defined by (5.9) and (5.10) and for q = 1, statements (A), (B), and (C) of Theorem 3.1 in the
left case hold: (a) We have Fix(T) = {2}. (b) Conclusions (B3) and (C3) hold since by (5.9)
we have p(2, T(2)) = p(T(2),2) = p(2,2) = 0. (c) For each w° € X = W-=Pss), the sequence
(w" = T"(WP) : m € {0} UN) is left Pig)-convergent to 2.

Example 5.3 Let X = (0;3], and let p : X2 — [0; 00) be of the form

0 if u>v,
pu,v) = . 1 n=v u,veX. (5.14)
v-—u)* ifu<v,

Define T : X — X by

1+x)/2 ifxe(0;1],
Tx)={2+x)/2 ifxe(1;2], (5.15)
(B+x)/2 ifxe(2;3].

(1) Observe that (X, Pyny), Pisyny = (p)s is a separable quasi-triangular space.

(2) When Jisny = Pisyy, we will show that: (a) Fix(T) = {1,2,3}, (b) for each w° € X,
there exists w € Fix(T) such that the sequence (W™ = T (w°) : m € {0} UN) is left Pig);q1)-
convergent to w, and (c) Yyerix(r){p(w, w) = 0}.

To prove this, we see that (5.15) implies

Y=1-(1-x)/2" ifxeX;=(0;1],
T )= 1 T (%) =2 - (2 -x)/2" ifxeX,=(1;2], meN. (5.16)
)=3-(3-x)/2" ifxeXs=(2;3],

This means that, for each k = {1,2,3}, Ty : Xx — X where X = (k — 1;k], and (Xx, Psy,13)
is a separable quasi-triangular space.

It is not hard to show that, for each k = {1,2,3}, we have: (a) (Xi, Tx) is a Pgy;-
contraction on XX. (b) (X, Tx) is left and right Pg),(1;-admissible on X; = WL P =
WEPsr; if w® e X; is arbltrary and fixed, then the sequence (w" = T,Em] W) :m e
{0} U N) satisfies k € LIMLW,Z’ i and (k - L;k) C LIM 8 . (¢) (Xe, T) is left

Pisy;1y-closed on Xy = WL-Peru; indeed, if w° € Xi is arbitrary and fixed and if (w”
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T,Em] (w°) : m € {0} UN) is a left Pyg),;1;-converging sequence in X and having subsequences
(Vi :m € N) and (u,, : m € N) satisfying V,uen{Vi = Tx(t4n)}, then by (5.14)-(5.16) we have
that k € LIM % o and k = Ti(k).

w":me{0}UN

Claim For each k = {1,2,3}, all assumptions of Theorem 3.1 in the left case hold, and we
see that: (a) Fix(Ty) = {k}. (b) For each w° € X, the sequence (w™" = T,Em](wo) :m e {0}UN)
is left Pisy,ny-convergent to k. (c) p(k, k) = 0.

Example 5.4 Let X = (0;1) U (1;2). For y > 0 and A = {1/2,3/2}, set

p(u,v) = 0 %fA Niwv) = {u,vi, u,veX. (5.17)
if AN {u, v} # {u,v},
Define T : X — X by
T(x) = 1+x ?fx € (0;1), (5.18)
2-x ifxe(1;2).

(1) Observe that (X, Puyuy), Puywy = (p), is a triangular space.

3

(2) (X, T) is a weak Pyy,p-contraction on X. More precisely, for each w° € A,

V€>03n>03reNVs,leN {P(T[S] (WO)’ T[l] (WO)) <E+T

= p(T57(w?), T (wP)) <e}. (5.19)

In fact, by (5.18) we calculate that, for each m € {0} UN,

Tl () 1+x %fx € (0;1), (5.20)
2-x ifxe(1;2),
1- if 0;1),
T[4m+2] (x) _ x Lxe ( ) (521)
3-x ifxe(1;2),
2 - if 0;1),
T[4m+3] (x) _ X Ixe ( ) (522)
x-1 ifxe(1;2),
if 0;1),
T[4m+4](x) i R 1 x€(0;1) (5.23)
x ifxe(1;2).
Putting m € {0} UN, this becomes
Fix(T""*1) = Fix(T""+3) = g,
Fix(T"™%) = {1/2,3/2}, Fix(Tm4) = X, Tl - gy (5.24)
Also, from (5.17) and (5.20)-(5.23) we conclude that
V0 ea=(1/2,3/2) VmeN { Tl (WO) € A}- (5.25)

Hence, V,,0c4 Vs en{p(TH (W), TH(wP)) = 0}. Consequently, (5.19) holds.
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(3) (X, T) is left and right Pyy,ny-admissible in each point w° € A; thus, WP =
WR-Pusny = A, To verify this, we take any w° € A and define (w” = T (w°) : m € {0} UN).
Then, by (5.17) and (5.25),

lim supp(w"‘,w”) =0}, lim supp(w",w"‘) =0,
m—)00n>m m—)00n>m
Py .
A= LM = {x e X Vaea] tim p(s,w) =0} ],
A= LM ) = {x e X Vaea] tim p(w,x) = 0}].
m—> 00

(4) We show that (X, T')) is left and right Py, -closed on A = WE=Pusn = WRPui, In-
deed, if w° € A, then by (5.25) and (5.17) the sequence (w” = T (w°) : m € {0} UN) is con-
tained in A, is left and right Pj;,q)-convergent in X to each point of A4, has subsequences
(Vpm : m € N) and (u,, : m € N) satistying V,,en{v,, = T?(u,,)}, and LIM(wame (OIUN) =
LIM'RW,Z,DmE{0 oy =A = Fix(T™) holds.

(5) We show that the smgle valued dynamic system (X, T) is also left and right Ppy, -
closed on WL=Pwi = WR-Pusn) = A, Indeed, if w° € A is arbitrary and fixed and if (w
T (wP) : m € {0} UN) is a left or right Py),;1)-converging sequence in X having subse-
quences (v,, : m € N) and (u,,, : m € N) satisfying Voen{Vm = T[4](um)} then by (5.4), (5.1),
(5.6),and (5.24) we have that A = LIM-E - LM e{o juy and A C X = Fix(T™").

(w: me{O JUN) (w":m

Hence, by virtue of Definition 3.2, U = V = W:-Pun = WR-Pusn = A4,

Claim I By (1)-(4) it follows that we may use Theorem 3.2 in the left and right cases (when
Jusm = Puyay), and we see that statements (A) and (B) of this theorem hold. We have:
(a) For each w° € A and for each w € A, the sequence (W™ = T"(w°) : m € {0} UN) is left
and right Ppy,n)-convergent to w, and thus statement (A) holds. (b) Fix(T?) = {1/2,3/2} #
@; thus, conclusion (B1) holds. (c) For each w° € A, the sequence (W™ = T (w°) : m €
{0} UN) is left and right Ppy,ny-convergent to each point w € Fix(T®), and thus conclu-
sion (B2) holds. (d) Vw°eFix(Tl2]){P(W0r T(W°)) = p(TWP), w®) = 0}, and thus conclusion (B3)
holds. (e) (X, Puy,qy) is not separable, Fix(T) = &, and statement (C) does not hold.

Claim II Iz follows from (1)-(3) and (5) that, for (X, Puyay), Pupyy = ) (X, T) and
Juyswy = Puyqy defined by (5.1) and (5.2) and for q = 4, statements (A) and (B) of The-
orem 3.1 hold: (a) Statement (A) holds since, for each w° € X, the sequence (W" =
T (wo) :m € {0} UN) is left and right Py, -convergent to each point w € A; WP
WR-Pusr = A by Theorem 3.1. (b) We have that Fix(T™) = X; thus, conclusion (B1) holds.
(c) Conclusion (B2) follows from statement (A) and conclusion (B1) since A C Fix(T™).
(d) Conclusion (B3) holds; by (5.1) we have ¥ 0 .4  gixrtaty (P W°, T(W°)) = p(T(w°), w°) = 0}.
(e) (X, Puyy) is not separable, Fix(T) = @, and statement (C) does not hold.

Example 5.5 Let X = (0;3), p: X> — [0;00) be of the form

0 if u>v,
p(u,v) = BE=Y L vex, (5.26)
(v—u)? ifu<v,
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and Jpy = U}, ] : X2 — [0;00), be given by the formula

](M, V) _ P(u’ V) 1f {u) V} NE= {ur V}r wveX,
7 if {u, v} NE #{u,v},

where u =9/64 and
E={en=2-(2/3)"" :meN}Ufex =2}
Let T': X — X be given by

filx) ifxe(0;1/2),
folx) ifx=1/2,
T(x) =1 fslx) ifxe(1/2;1],
falx) ifx e (1;2],
filx) ifx e (2;3),

where

i) =1/2-[114-22]"7,  £:(0;1/2) > (0;1/2),

A =2,  f:1/2-2,

f3(x) =4 - 2x, f3:(1/2;1] — [2;3),

falx)=(B/2)x-1=(3/2)(x-2) + 2, fa: (1;2] = (1/2;2],

f®=[1-G-2"+2,  f:23) - (23).
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(5.27)

(5.28)

(5.29)

(5.30)
(5.31)
(5.32)
(5.33)

(5.34)

(1) X, Peyay), Peyay = {p), is a separable quasi-triangular space. See [27], Exam-

ple 4, p.11; p vanishes on the diagonal, is asymmetric, and is quasi-triangular since

Vu,v,weX{p(u» W) S 2[17(14’ V) + P(V; W)] }

(2) Jiapy is the left and right family generated by Ppy,ny = {p}, and Jpyy is separating

on X (see Theorems 2.1 and 2.2).

(3) (X, T) is a weak Jpay,)-contraction on X, that is, there exists w° € X such that

Ves0Tp503renVs en {](T[S] (wo), T (WO)) <e+n

=2 ~](T[5+’] (w°), yaosy (w°)) <&}

More precisely, we show that (5.35) holds for each w° € E.

The proof proceeds in four steps.

(5.35)

Step 1. We construct T in (0;1] U (2;3), m € N. Using (5.28)-(5.34), for m € N, we have:

Case A. If x € (0;1/2), then TV = " : (0;1/2) — (0;1/2).

Case B. If x =1/2, then T"(1/2) = (f" Y o f)(1/2) = fI" M (2) = 2.
Case C. If x € (1/2;1), then T = fI" ™ o £ : (1/2;1) — (2;3).
CaseD. If x = e, =1, then T (1) = (f" ™V o f3)(1) = f" M (2) = 2.

Case E.If x € (2;3), then T = fI": (2;3) — (2;3).
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Step 2. We construct T" in (1;2], m € N. Using (5.33), we compute that if m € N, then
Fim ) = (3/2)m(x—-2) +2, [ : R = R, fI"(e,) = 1/2, /" N(em) = 1, €4 = 2 (2/3)"1, and
ﬁfm] (eso =2) = 2. Using (5.28)-(5.34), we therefore have:

Case A. Let m = 1. Since fy(x) = (3/2)x — 1 = (3/2)(x — 2) + 2, we see that f; : R — R,
fa:(1;2] = (1/2;2], fa(er) =1/2, e1 = 1, and fa(es = 2) = 2. Consequently,

T|az2) =falag : (e1;2] = (1/2;2], Jfaler =1) =1/2, Jaleso =2) = 2.

Case B. Let m = 2. Thenfm (x) = (3/2)%(x = 2) + 2, fm R—R, f[2](€2 =1/2,e5=2—
(2/3) = 4/3, fales) =1, faler =1) = 1/2, £ (es = 2) =2, and in view of (5.29), this implies

T e =frofa: (3] = A(U/21) C23),  f1)=2,
T2 = £ 2 (e2:2] > (1/2;2).

Case C. Let m = 3. We see thatf4 (x) =(3/2)%(x - 2) +2, f[s] R— R, jj[g](eg) =1/2,
e3 =2 — (2/3)% =14/9, fI(e3) =1, P (e2) = 1/2, and /) (es = 2) = 2. Now (5.31) implies
that

T een) =S5 0 fs ofa : (ense2] — £ (f((1/2:1])) € £5([253)) C [2;3),
T eyes) =f3 o fi7 1 (enses] —> f((1/231]) C [253),
T2 = £ 2 (e3:2] — (1/2;2).
Case D. Let m > 3. Since f"\(x) = (3/2)"(x = 2) + 2, /" : R > R, fi"(e,n) = 1/2, e, =
2 —(2/3)" 1,f4[m Ue,,) = l,ﬁ,l[m Yen1)=1/2, andﬁ[m] (eso = 2) = 2. Hence,
T l(eseal :fS[m_Z] of3ofy:(e;er] —>f5[m_2] (f?,((l/z; 1]))
A (12;3)) € [2;3),
T e =P o fy o f2): (s €3] — £ (B((1/2:11))
cfmN(12;3)) € [12;3),
T[m]|(5k—1$3k] = 5[m_k] ofs oﬂl[k_ll :(ex-1sex] — S [m “ (fB((l/Z 1]))
cfI"M((2;3))  [2:3), k=4,5,...,m,
T[m]l(em;z] =ﬁ4[m] (e 2] — (1/2;2].
Step 3. We describe the sequence (W” = TV (w°) : m € {0} UN), w° € E. Let w° € E be

arbitrary and fixed. We consider the following cases:
Case A. If k=0 and w° = e, = 1, then

Vomen{ TV (w°) = 2}. (5.36)

This is a consequence of Case B of Step 1.
Case B. If k e N\{1} and w° = e, then

Elmo :k+lvm>m0 {Wm = 2} (537)
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In fact, by Case D of Step 2 we have

VmeN{Wm+k+1 TUmket) g,y = ] (T(T[k] (ex)))
= TN(T(Fen))) = T (T(D) = T (2) = 2}.
Case C. If W° = ex, =2 and m € N, then
W =2. (5.38)
Indeed, by Case D of Step 2 we obtain V,,cn{w” = T"(2) =f4[m] (2) =2}.

Step 4. We will show that (5.35) holds on E. Let w° € E be arbitrary and fixed. Using
(5.36)-(5.38) in Cases A-C of Step 3 and (5.26)-(5.28), we observe that

VaoeeImoersizm [1(TH (w°), TV (w°)) = (T (w), T (w"))

=p(2,2)=0}.

In view of this, we conclude that (5.35) holds.
(4) (X, T) is left and right Jpy,ny-admissible on

wi-Jenn = wR-Jewy = E,

Indeed, by Step 3 it is clear that, for arbitrary and fixed w° = ¢; € E, k € NU {00}, the
sequence (W” = T"(w°) : m € {0} UN) satisfies

gkt Vimsmo {W" =2 € E}. (5.39)
Then, in view of (5.39), (5.26), and (5.27), we have
lim sup/(w”,w") = lim supp(w”,w") =0
m—> 00 n>m m— 00 n>m

and

lim sup/(w",w”) = lim supp(w",w") =0.

m=>0 y>m m=>0 p>m
Also, we have
- m\ _ 13 m\ _
Jin ) = fim (2% =0

and

m— 00

Vwes{ lim ](w ,w) = lim p(w",w) = 0},
that is,
LIM{ /2 = (2) and  LIMg - E.

(wW":m (w: me O}UN)

Therefore, (3.1)-(3.4) of Definition 3.1 hold.
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(5) We show that the single-valued dynamic system (X, T) is left and right Piy,qy-closed
on U=V =W-EJeun = WR-J2s0 = E. Indeed, if w° € E then, by Step 3 and (5.26) we
conclude that the sequence (w” = T"(w°) : m € {0} U N) satisfies

.3) ~Pri .97 = ~Peiy
[2:3) = LIM 200 o and (052] = LIM, 200 .

(Ww":me w:me

Clearly, the subsequences (v,, = w”*! : m € N) and (u,, = w" : m € N) of (w” = T (w?) :
m € {0} UN) satisty Vuen{vi = T(t4,,)}. We have 2 € Fix(T).

Claim By (1)-(5) it follows that, for each w° € E, we may use Theorem 3.2 in the cases of left
and right (when Jpya # Prayny), and we see that statements (A)-(C) of this theorem hold.
We have: (a) (X, Ppyq)) is separable. (b) For each w° € E, the sequence (W™ = T (w0 .
m € {0} UN) is left and right Pyy,n)-convergent to w = 2 € Fix(T) = {2}. (c) For w° =w =2,
we have J(W°, w°) = 0.

Example 5.6 Let X, p, E, T, and Pjy),q1; be such as in Example 5.5.
(1) We show that, for each w° € X,

Ves0Tps0FrenVsien {p(TH (w°), TV (w°)) < + 1

=2 -p(T[W] (), Tl (w°)) <&}, (5.40)

that is, (X, T) is a weak Pay,n,-contraction on X.
Indeed, let w° € (0;1/2) U [(1/2;3)\E] be arbitrary and fixed. Then, for all s,/ € N,

0 if TE(w0) > TH(w9),

TR TROM) = N oy — 79wy i 78 00) < 71000

Using Steps 1 and 2 of Example 5.5, we therefore have

Va>03moeNVs,lzmo {P(T[S] (WO)’ T[l] (WO)) < 8}’

which means that (5.40) holds.
If w° € {1/2} UE, then by Steps 1 and 3 of Example 5.5 we see that

VaoeraueImoen Vsizm (p(TH (w°), TV (w°)) = p(2,2) = 0},

and therefore (5.40) also holds.
(2) We may not use Theorems 3.1 and 3.2 for Jpyuy = Py in the left and right cases
since condition (Al) of Definition 3.1 in these cases does not hold. Indeed, we consider two

cases:
Case A. Let w° € (1/2;3)\E be arbitrary and fixed. It is clear that
ng ENvamO { T[m] (WO) € (2, 3)}

and that the sequence (w” = T (w°) : m > my) is increasing. Hence,

lim supp(w"’,w”) = lim sup[T["] (WO) -l (WO)]2 = lim [3 — (WO)]2 =0,

m—>oon>m m—>oon>m m— 00
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that is, property (3.1) holds, whereas LIM(ijzz Z?{%}uN) = @. In fact, since

VWE(O;S)HWI()ENVW!ZW[O {P(W: wm) = (Wm - W)z};

we have

Vaeom| lim p(ww”) = lim (w” - w)” = (3-w)* 70},

m—> 00

that is, property (3.3) does not hold.
Case B. Let w° € (0;1/2) be arbitrary and fixed. It is clear that

Jno e Vomzmo { T (W°) € (051/2)}
and that the sequence (w” = T"(w°) : m > m,) is decreasing. Hence,

lim supp(w”,w") = lim sup[ 7" (w°) - T (wo)]2

m—> 00 n>m m—> 00 n>m

= lim [T (w®) - 0]’ = 0,

m—0Q

that is, property (3.2) holds. Note, however, that LIM'(R 773‘2”[1&}UN) = @. In fact, since

w":me
Ywe(03) InmoenYmzmo (PW", W) = (w — w™)?}, we have

Yiwe(0:3) {r}Lmoop(wm,w) = lim (w—w")* = (w-0)* 710},

m— 00

that is, property (3.4) does not hold.

Remark 5.1 We make the following remarks about Examples 5.5 and 5.6: (a) By Exam-
ple 5.5 we observe that, for (X, T'), we may apply Theorem 3.2 in (X, Pc, 1) with the left
and right family Jc, 4 generated by Pc, 4 where Jc, 4 # Pc, 4; (b) By Example 5.6 we note,
however, that, for (X, T') in the left and right cases, we do not apply Theorems 3.1 and 3.2 in
(X, Pc,4) when Jc, 4 = Pc, 4; (c) From (a) and (b) it follows that, in Theorems 3.1 and 3.2,
the existence of the family Jc, 4 generated by Pc, 4 and such that Jc, 4 # Pc;, 4 is essential.
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