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1 Introduction and basic definitions

Let (X,d) be a metric space. A geodesic path joining x € X to ¥ € X (or, more briefly,
a geodesic from x to y) is a mapping c: [0,/] € R — X such that ¢(0) = x, ¢(/) = y and
d(c(a),c(b)) = |a—b| forall a,b € [0,/]. It is easy to see that ¢ is an isometry and d(x, ) = /.
The image ¢([0,]) is called a geodesic (or metric) segment joining x and y and is denoted
by [x,y] if it is unique.

The metric space (X, d) is said to be a geodesic space if every two points of X are joined
by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining
x and y for each x,y € X. A subset C of X is said to be convex if C includes every geodesic
segment joining any two of its point.

A geodesic triangle A(xy,x5,%3) in a geodesic metric space (X, d) consists of three points
x1,%2,%3 € X (the vertices of A) and a geodesic segment between each pair of vertices
(the edges of A). A comparison triangle for the geodesic triangle A(xy,x5,x3) in (X, d) is a
triangle A(xy, %, %3) := A(%1, %2, %3) in the Euclidean plane R? such that dp: (x;, %) = d(x;, %))
foralli,j € {1,2,3}. Bridson and Haefliger [1] have shown that such a triangle always exists.

A geodesic space is called a CAT(0) space if all geodesic triangles of appropriate size
satisfy the following CAT(0) comparison axiom:

« Let A be a geodesic triangle in X and let A € R? be a comparison triangle for A. Then

A is said to satisfy the CAT(0) inequality if for all x,y € A and all comparison points
X,y €A,

d(x,y) < dyo (&5). (L1)
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Complete CAT(0) spaces are often called Hadamard spaces (see [2]).
If x, y1, ¥, are points in a CAT(0) space and if y, is the midpoint of the segment [y1, -],
which is a unique point with

A 30) = 0, 72) = 5, 32), 12)

then the CAT(0) inequality (1.1) implies

1 1 1
d*(x,70) < §d2(x,y1) + Edz(x,yz) - Zdz()/hyz)- (1.3)

This inequality is called the (CN) inequality which due to Bruhat and Titz [3].

In fact (see [3], p.163), a geodesic metric space (X,d) is a CAT(0) space if and only if it
satisfies the (CN) inequality. If (X, d) is a CAT(0) space and x,y € X, then for each ¢ € [0,1],
there exists a unique point z € [, ] such that

d(x,z) =td(x,y) and d(y,z) =1 -8t)d(x,y). (1.4)

For convenience, from now on we will use the notation (1 — £)x @ ty for the unique point
z satisfying (1.4).

Definition 1.1 Let {x,} be a bounded sequence in a CAT(0) space (X, d).
1. The asymptotic radius r({x,}) of {x,} is given by

r(fxa)) = inf{r(x (xa) }

where r(x, {x,}) := limsup,_, . d(x,x,).
2. The asymptotic center A({x,}) of {x,} is the set

A({xn}) = {x eX: r(x, {x,,}) = r({xn})}.

In 2006, Dhompongsa et al. [4] showed that A({x,}) consists of exactly one point for
each bounded sequence {x,,} in a CAT(0) space (see Proposition 7 in [4])).
Next, we give the concept of A-convergent sequence in a CAT(0) spaces.

Definition 1.2 Let (X, d) be a CAT(0) space. A sequence {x,} in X is said to A-converge
to x € X if and only if x is the unique asymptotic center of all subsequences of {x,}. In this
case, we write A-lim,_, ,,%,, = x and x is called the A-limit of {x,}.

Let us recall some basics for nonlinear mappings on CAT(0) spaces.

Definition 1.3 Let C be a nonempty subset of a CAT(0) space (X, d). A mapping T : C —
C is said to be nonexpansive if

d(Tx, Ty) < d(x,y) (1.5)

forallx,y € C.
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Definition 1.4 ([5]) Let C be a nonempty subset of a CAT(0) space (X, d). A mapping T :
C — C is said to be asymptotically nonexpansive if there exists a sequences {k,} C [1,00)
with k,, — 1 as n — oo such that

d(T"x, T"y) < kyd(x,) (L6)
forallx,y e Cand n e N.

Definition 1.5 Let C be a nonempty subset of a CAT(0) space (X, d). A mapping T : C —
C is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(T"x, T"y) < Ld(x,y) 1.7)
forallx,ye Candn e N.

Definition 1.6 ([6]) Let C be a nonempty subset of a CAT(0) space (X,d). A mapping
T :C — C is said to be ({v,}, {u,}, ¢)-total asymptotically nonexpansive (briefly, total
asymptotically nonexpansive) if there exist nonnegative sequences {v,} and {u,} with
vy, = 0, u, — 0 and a strictly increasing continuous function ¢ : [0, 00) — [0, 00) with
£(0) = 0 such that

d(T"x, T"y) < d(x,9) + vat (d(x,9)) + ttn (1.8)
forallx,ye Cand m e N.

Remark 1.7 From Definitions 1.3, 1.4, 1.5, and 1.6, we note that each nonexpansive map-
ping is an asymptotically nonexpansive mapping with a sequence {k, := 1} for all » € Nand
each asymptotically nonexpansive mapping is a ({v,}, {#,,}, {)-total asymptotically nonex-
pansive mapping with two sequences {v, := k,, — 1} and {u, := 0} for all » € N and ¢ is an
identity mapping. Also, we see that each asymptotically nonexpansive mapping is a uni-
formly L-Lipschitzian mapping with L := sup, .y{k,}.

Lemma 1.8 ([7], Theorem 2.8) Let C be a closed convex subset of a complete CAT(0)
space (X,d) and T : C — C be a total asymptotically nonexpansive and uniformly
L-Lipschitzian mapping. If {x,} is a bounded sequence in C such that lim,,_, o d(x,, Tx,) = 0
and A-lim,_, - x, = p, then Tp = p.

In 2014, Panyanak [8] gave the following existence result of fixed points for total asymp-
totically nonexpansive mappings in CAT(0) spaces which is also need in our main results.

Theorem 1.9 ([8], Corollary 3.2) Let C be a nonempty bounded closed convex subset of a
complete CAT(0) space (X,d) and T : C — C be a continuous total asymptotically nonex-
pansive mapping. Then T has a fixed point.

Recently, Thakur et al. [9] introduced the modified Picard-Mann hybrid iteration pro-
cess {x,}, which is given by

X1 € C,
In = (1 —ap)x, @, T %y, (19)
Xns1 = T"yy
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for all n € N, where C is a nonempty bounded closed convex subset of a CAT(0) space
(X,d), {ay} is real sequence in the interval [0,1] and T': X — X is a total asymptotically
nonexpansive mapping. By using the iteration process (1.9) and Panyanak’s fixed point
result (Theorem 1.9), they proved A-convergence and strong convergence theorems for
total asymptotically nonexpansive mappings on CAT(0) spaces. They also compare the
convergence of the modified Picard-Mann hybrid iteration process (1.9) with the modified
Mann iteration process {x,}, which is given by

X1€C,

(1.10)
Xptl = (1 - an)xn D oy, Tnxn

for all n € N, where C is a nonempty bounded closed convex subset of a CAT(0) space
(X,d), {a,} is real sequence in the interval [0,1] and T : X — X is a total asymptotically
nonexpansive mapping. The original idea of the modified Mann iteration process was in-
troduced by Alber et al. [6].

Motivated by the above recorded studies, in this work, we introduce a new iterative
algorithm called ‘modified Picard-Ishikawa hybrid’ to approximate fixed points of total
asymptotically nonexpansive mappings on CAT(0) spaces. Our results are refinements
and generalizations of many recent results from the current literature. We also provide
two numerical examples to illustrate the convergence behavior of the proposed algorithm.

Before we show our main results in the next section, let us recall some useful lemmas.

Lemma1.10 ([10], Lemma 2) Let {a,}, {\,} and {c,} be the sequences of nonnegative num-
bers such that

ana < 1+ Ay)a, +cp.

If 23‘11 Ay < 00 and ZZZI ¢y < 00, then lim,,_, o a,, exists. Moreover, if there exists a subse-
quence {ay,,} C {a,} such that a,, — 0 as i — 00, then lim,_, a, = 0.

Lemma 1.11 Let (X,d) be a complete CAT(0) space. Then the following assertions hold:

(C1) every bounded sequence in X always has a A-convergent subsequence [11], p.3690;

(Ca) if {x4} is a bounded sequence in a closed convex subset C of X, then the asymptotic
center of {x,} is in C [12], Proposition 2.1;

(Cs) if{xn} is a bounded sequence in X with A({x,}) = {p}, {u,} is a subsequence of {x,} with
A({un}) = {u} and the sequence {d(x,, u)} converges, then p = u [13], Lemma 2.8.

Lemma 1.12 ([14], Lemma 4.5) Let x be a given point in a CAT(0) space (X, d) and {t,} be
a sequence in a closed interval [a,bl with0<a <b<land 0<a(l-b) < % Suppose that
{x,} and {y,} be two sequences in X such that

limsupd(x,,x) <r,

limsupd(y,,x) <r,

n—00

limsupd((1 - £,)%, ® tyynx) =71

n—0o0

for some r > 0. Then lim,_, oo d(x4,y,) = 0.
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2 Main results

In this section, we begin with the A-convergence theorem for a total asymptotically non-
expansive mapping T on a nonempty closed convex subset C of a CAT(0) space through
the modified Picard-Ishikawa hybrid iteration process as follows:

x € C,

Zy = (L= Bn)xn © BT "%y,
V=1 =-a,)z, © a,T"zy,
X1 = T"yn

(2.1)

for all n € N, where {«,,} and {8, } are real control sequences in the interval [0, 1].

Theorem 2.1 Let C be a bounded closed convex subset of a complete CAT(0) space (X, d)
and T : C — C be a uniformly L-Lipschitzian and ({v,}, {u,}, )-total asymptotically non-
expansive mapping. Suppose that the following conditions are satisfied:

(S1) Dopi va<ooand ) ooy ty < 00;
(Sy) there exist constants a,b with0 <a <a, <b<1forallneNand 0<a(l-b) <},
(S3) there exists a constant M* such that ¢ (r) < M*r for all r > 0.

Then the sequence {x,} which is defined by (2.1) A-converges to some point p € F(T), where
F(T) is the set of fixed points of T

Proof Since T is uniformly L-Lipschitzian, we have T is continuous. By using Theorem 1.9,
we get F(T) # . Next, we will divide the proof into three steps.

Step 1: First, we will prove that lim,,_, », d(x,, p) exists for each p € F(T), where {x,} is
defined by (2.1). Assume that {x,} is defined by (2.1) and let p € F(T). Then we obtain

d(zn,p) = d((L = Bu)xn ® BuT" %, p)
< (1= Bn)d(n,p) + Bud(T" %, p)
< (1= B)d @ p) + Bu[d(n, p) + vl (A, p)) + ]
= dXn,p) + Bu[Vnl (A%, p)) + 14 ]

< d(%up) + vul (A%, ) + tn
< (L4 vuM*)d(%, p) + tay (2.2)

for all n € N. Also, we have

Ay p) = d((1 - )z, @ 0, T2y, p)
< (1 - an)d(zn p) + ud(T" 2, p)
< (1 - n)d(@n, p) + [ Az p) + Vil (A2, p)) + 11 ]
= d(zu, p) + [Vl (d(2ns ) + 1]
<d(@up) + vul (d(2np)) + tn
< (1 + vnM*)d(zn,p) + Uy,

<1+ v,,M*)2d(x,,,p) + (14 vM* )ty + (2.3)
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for all n € N. From (2.1), (2.2), and (2.3), for each n € N, we get

d(xn+lrp) = d(Tn_ymp)
< AW p) + vul (A p)) + th
< (1 + V,,M*)d(yn,p) + Uy,

=(
(

= (1 +An)d(xn p) + Cuy (2.4)

1+v,M* ) (®mp) + (1 + V,,M*)zu,, + (1 + V,,M*)u,, +uy,

1+ V,,M*) ) +[(1+ V,,M*)2 + (1 +v,M*) +1]u,

where A, := 3v,,M* + 3(v,M*)? + (v,M*)? and c,, := [3 + 3v,M* + (v,M*)*]u,,. The assump-

tion (S;) yields
oo oo
Z)L,, <oo and ch < 00. (2.5)
n=1 n=1

By using Lemma 1.10 with assertions (2.4) and (2.5), we see that lim,,_, o, d(x,, p) exists.
Step 2: In this step, we will prove that lim,,_, o d(x,,, Tx,) = 0. Without loss of generality,
we may assume that

r:= lim d(x,,p) > 0. (2.6)
n—00
From (2.2), we have

limsupd(z,,p) <r. (2.7)

n—00

It follows from T being a ({v,}, {u,}, ¢)-total asymptotically nonexpansive mapping that

A(T"zn,p) < d(zn,p) + Vnl (d(2n, p)) + thn
< (1+v,M*)d(zy,p) + . (2.8)

From (2.7) and (2.8), we have

limsupd(T"z,,p) <r. (2.9)

n—00

Similarly, we get

lim sup d(T”xy,,p) <r. (2.10)

n—o0

Since
Axni1,0) < (1 + VM)AV, p) + th,
we obtain

r <limsupd(y,,p), (2.11)

n—00
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which implies that

r <limsupd(z,, p).

n—00

From (2.7) and (2.12), we can conclude that

r=limsupd(z,, p) = limsupd((1 - B)x, ® BT "%, p).

n—00 n—00

By using Lemma 1.12 with (2.6), (2.10), and (2.13), we get

lim d(x,,, T”x,,) =0.

n—00

From (2.3) and (2.6), we have

limsupd(y,,p) <r.

n—o0

Combining (2.11) and (2.15), we get

r =limsup d(y,, p) = lim supd((l -2, D oc,,T”z,,,p).

n—00 n—00

Again, by using Lemma 1.12 with (2.7), (2.9), and (2.16), we get

lim d(z,, T"z,) = 0.

n—00

By using condition (1.8), we have

A(T"2, T"%n) < A2, %) + Vil (A2 %)) + thy
< (1+vuM*)d(zy, %) + 11y
= (1 + vnM*)d((l — )%, Dy, T"x,,,x,,) +u,

< 1+ vuM*)[(A = o), 0) + ud (T" %0, 5) | + 14
for all n € N. From (2.14), we get

lim d(T"z,, T"x,) = 0.

n—00

Also, we have

A(T"Yn, T"2n) < AW 2n) + Vil (AYnr2n)) +
< (1 +vuM*)d Y 20) + 11
= (1+ vaM™)d(( - ap)zn ® nT" 21, 2) + Uy

< (1 + V,,M*)[(l —a,)d(zy, 2,) + oz,,d(T”z,,,zn)] + Uy,

Page 7 of 13
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for all # € N. From (2.17) and (2.20), we obtain

lim d(T"y,, T"z,) = 0. (2.21)

n—00

By using the triangle inequality, we have
A% %) = A (%0, T"yn) < A0, T"%) + d(T"%0, T"20) + A(T" 20, T"y)

for all n € N. Taking the limit # — oo in the above inequality with (2.14), (2.19), and (2.21),
we conclude that

lim d(x,,%,.1) = 0. (2.22)

n—00

By using the triangle inequality with (2.14) and (2.22), we have

dx,, Tx,) < d(x,,%,41) + d(x,,+1, T"+1xn+1) + d(T"+1xn+1, T"*lx,,) + d(T”*lx,,, Tx,,)
< d(®y, Xpi1) + d(xwrl; Tnﬂxnﬂ) + Ld (%1, %) + Ld(Tnxm xn)

— 0 asn— o0.

So Step 2 is proved.
Step 3: Now to claim that the sequence {x,} A-converges to a fixed point of T, we prove
that

Waln) = | A(lu}) SF(T)

{wntS{xn}

and W (x,) consists of exactly one point. Assume that w € W (x,,). From the definition of
Wa(x,), there is a subsequence {w,} of {x,} such that A({w,}) = {w}. By Lemma 1.11(C,),
there exists a subsequence {z,} of {w,} such that A-lim,_, « z, =z € C. Using Lemma 1.8,
we get z € F(T). Since {d(w,,z)} converges, by Lemma 1.11(C,), we obtain w = z. It yields
Wa(x,) € F(T). Finally, we show that W (x,,) consists of exactly one point. Let {w,} be a
subsequence of {x,} with A({w,}) = {w} and let A({x,}) = {x}. We have already seen that
w =z € F(T). Since {d(x,,z)} converges, by Lemma 1.11 (C3), we have x = z € F(T), that is,
Walx,) = {x}.

This completes the proof. a

By using the conclusion in Step 1 of Theorem 2.1 and the same technique as in the proof
of Theorem 3.2 of Thakur et al. [9], we get the strong convergence result (Theorem 2.2).
Then, in order to avoid repetition, the details are omitted.

Theorem 2.2 Let C be a bounded closed convex subset of a complete CAT(0) space (X, d)
and T : C — C be a uniformly L-Lipschitzian and ({v,}, {u,}, {)-total asymptotically non-
expansive mapping. Suppose that the following conditions are satisfied:

(S1) Yool va<ooandy ooy uy < 00;
(Sy) there exist constants a,b with 0 <a <a, <b<1forallne Nand 0<a(l-b) < %;

(S3) there exists a constant M* such that ¢ (r) < M*r for all r > 0.
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Then the sequence {x,} which is defined by (2.1) converges strongly to a fixed point of T if
and only if

liminfd(x,, F(T)) =0,
n—00
where d(x, F(T)) := inf{d(x, p) : p € F(T)}.
In [15], Senter and Dotson introduced the concept of special self mapping as follows.

Definition 2.3 ([15]) Let C be a nonempty subset of a CAT(0) space (X,d). A mapping
T :C— Cwith F(T) # @ is said to satisfy condition (J) if there is a nondecreasing function
f:[0,00) = [0,00) with f(0) = 0 and f(¢) > O for all £ > 0 such that

d(x, Tx) > f (d(x, F(T)))
forallx € C.

Using the result in Step 2 of Theorem 2.1 with Condition (/) and the same technique
as in the proof of Theorem 3.3 of Thakur et al. [9], we now state the following strong

convergence result for total asymptotically nonexpansive mappings without the proof.

Theorem 2.4 Let C be a bounded closed convex subset of a complete CAT(0) space (X, d)
and T : C — C be a uniformly L-Lipschitzian and ({v,}, {u,}, {)-total asymptotically non-
expansive mapping. Suppose that the following conditions are satisfied:

(S1) Yo vu<ooand Y o2ty < 00;

(Sy) there exist constants a, b with 0 <a <a, <b<1foralln e Nand 0 <a(l-b) < i;
(S3) there exists a constant M* such that ¢(r) < M*r for all r > 0;

(Sa) T satisfies Condition (I).

Then the sequence {x,} which is defined by (2.1) converges strongly to a fixed point of T

3 Numerical example

In this section, using Example 3.1, we will compare the convergence of the modified
Picard-Ishikawa hybrid iteration process (2.1) with the modified Mann iteration process
(1.10) and the modified Picard-Mann hybrid iteration process (1.9).

Example 3.1 Let X := R be a usual metric space with the metric d, which is also a complete
CAT(0) space, and C := [0, 2]. We see that C is abounded closed convex subset of X. Define
amapping 7:C — C by

1 ifx € [0,1];

%«/4 -x2 ifxell,2].

Tx =

Recently, Kim [16] showed that T is a continuous uniformly L-Lipschitzian and total
asymptotically nonexpansive mapping with F(T') = {1}. Also, he claimed that T is not Lip-

schitzian and then it is not an asymptotically nonexpansive mapping.
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Table 1 Iterates of modified Mann, modified Picard-Mann hybrid, and modified
Picard-Ishikawa hybrid iterations for x; = 1.5

Iterate

The modified Mann
iteration process

The modified

Picard-Mann hybrid

iteration

The modified

Picard-Ishikawa hybrid

iteration

X2
X3
X4
X5
X6
X7
Xg
X9
X10
XN
X12
X13
X14
X15

1.50000000000000
1.13188130791299
1.04396043597100
1.01099010899275
1.00219802179855
1.00036633696643
1.00005233385235
1.00000654173154
1.00000072685906
1.00000007268591
1.00000000660781
1.00000000055065
1.00000000004236
1.00000000000303
1.00000000000020

1.50000000000000
0.95198821855406
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000

1.50000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000

Table 2 Iterates of modified Mann, modified Picard-Mann hybrid, and modified
Picard-Ishikawa hybrid iterations for x; = 1.9

Iterate

The modified Mann
iteration process

The modified

Picard-Mann hybrid

iteration

The modified

Picard-Ishikawa hybrid

iteration

X
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15

1.90000000000000
1.13027756377320
1.04342585459107
1.01085646364777
1.00217129272955
1.00036188212159
1.00005169744594
1.00000646218074
1.00000071802008
1.00000007180201
1.00000000652746
1.00000000054395
1.00000000004184
1.00000000000299
1.00000000000020

1.90000000000000
0.95262315543817
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000

1.90000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000

Page 10 0of 13

Let &, := ;7 and B, := 1 for all n € N. By using MATLAB, we computed the iterates of
(1.10), (1.9), and (2.1) for two different initial points x; = 1.5 and x; = 1.9. The numerical
experiments of all iterations for approximating the fixed point 1 are given in Tables 1 and 2.

Moreover, the convergence behavior of all iteration is shown in Figure 1.

In Figures 2 and 3, we give the convergence behavior of the iterates of (1.10), (1.9), and

(2.1) for some initial point under the different control conditions.

Next, we will give an example to show the nontrivial difference between the rate of con-

vergence of the modified Picard-Ishikawa hybrid iteration process (2.1) with the modified

Picard-Mann hybrid iteration process (1.9).

Example 3.2 Let X := R bea usual metric space with the metric d, which is also a complete
CAT(0) space, and C := [1,999]. We see that C is a bounded closed convex subset of X.
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Figure 2 Convergence behavior for Example 3.1 in the cases atp := 1 - Tne and B, := -5 forallneN.
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Figure 3 Convergence behavior for Example 3.1 in the cases a, := - and B, := -2 forall
n+1 Jn+2 n+1
n+ n+.
neN.

Define a mapping 7: C — C by

Tx = Vx2 — 8x + 40.

It is easy to see that T is a continuous uniformly L-Lipschitzian and a total asymptotically
nonexpansive mapping with F(T) = {5}.
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Figure 4 Convergence behavior for Example 3.2 Intial number x,=999
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Let & := ;7 and B, := 1 for all n € N. By using MATLAB, we computed the iterates of
(1.10), (1.9), and (2.1) for an initial point x; = 999. The convergence behavior of all itera-
tions for approximating the fixed point 5 are given in Figure 4.

In Figures 5 and 6, we give the convergence behavior of the iterates of (1.10), (1.9), and

(2.1) for some initial point under the different control conditions.
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