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Abstract
The purpose of this article is to establish a kind of non-convex hybrid iteration
algorithms and to prove relevant strong convergence theorems of common fixed
points for a uniformly closed asymptotically family of countable quasi-Lipschitz
mappings in Hilbert spaces. Meanwhile, the main result is applied to get the common
fixed points of finite family of quasi-asymptotically nonexpansive mappings. It is
worth pointing out that a non-convex hybrid iteration algorithm is first presented in
this article, a new technique is applied in our process of proof. Finally, an example is
given which is a uniformly closed asymptotically family of countable quasi-Lipschitz
mappings. The results presented in this article are interesting extensions of some
current results.
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1 Introduction
Construction of fixed points of nonexpansive mappings (and asymptotically nonexpan-
sive mappings) is an important subject in the theory of nonexpansive mappings and finds
application in a number of applied areas. Recently, a great deal of literature on iteration
algorithms for approximating fixed points of nonexpansive mappings has been published
since one has a variety of applications in inverse problem, image recovery, and signal pro-
cessing; see [–]. Mann’s iteration process [] is often used to approximate a fixed point of
the operators, but it has only weak convergence (see [] for an example). However, strong
convergence is often much more desirable than weak convergence in many problems that
arise in infinite dimensional spaces (see [] and references therein). So, attempts have been
made to modify Mann’s iteration process so that strong convergence is guaranteed (see
[–] and references therein).

In , Nakajo and Takahashi [] proposed a modification of Mann iteration method
for a single nonexpansive mapping in a Hilbert space. In , Kim and Xu [] proposed
a modification of Mann iteration method for asymptotically nonexpansive mapping T in a
Hilbert space. They also proposed a modification of the Mann iteration method for asymp-
totically nonexpansive semigroup in a Hilbert space. In , Martinez-Yanes and Xu []
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proposed a modification of the Ishikawa iteration method for nonexpansive mapping in a
Hilbert space. Martinez-Yanes and Xu [] proposed also a modification of the Halpern
iteration method for nonexpansive mapping in a Hilbert space. In , Su and Qin []
proposed first a monotone hybrid iteration method for nonexpansive mapping in a Hilbert
space. In , Dong and Lu [] proposed a new iteration method for nonexpansive map-
ping in a Hilbert space. In , Liu et al. [] proposed a new iteration method for a finite
family of quasi-asymptotically pseudocontractive mappings in a Hilbert spaces.

Throughout this paper, let H be a real Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖. We write xn → x to indicate that the sequence {xn} converges strongly to x. We write
xn ⇀ x to indicate that the sequence {xn} converges weakly to x. Let C be a nonempty,
closed, and convex subset of H , we denote by PC(·) the metric projection onto C. It is well
known that z = PC(x) is equivalent to that z ∈ C and 〈z – y, x – z〉 ≥  for every y ∈ C.
Recall that T : C → C is nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. A point x ∈ C
is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of T , that
is, F(T) = {x ∈ C : Tx = x}. It is well known that F(T) is closed and convex. A mapping
T : C → C is said to be quasi-Lipschitz, if the following conditions hold:

() the fixed point set F(T) is nonempty;
() ‖Tx – p‖ ≤ L‖x – p‖ for all x ∈ C, p ∈ F(T),

where  ≤ L < +∞ is a constant. T is said to be quasi-nonexpansive, if L = .
Recall that a mapping T : C → C is said to be closed if xn → x and ‖Txn – xn‖ →  as

n → ∞ implies Tx = x. A mapping T : C → C is said to be weak closed if xn ⇀ x and
‖Txn – xn‖ →  as n → ∞ implies Tx = x. It is obvious that a weak closed mapping must
be a closed mapping, the inverse is not true.

Let C be a nonempty, closed, and convex subset of a Hilbert space H . Let {Tn} be
sequence of mappings from C into itself with a nonempty common fixed point set F .
{Tn} is said to be uniformly closed if for any convergent sequence {zn} ⊂ C such that
‖Tnzn – zn‖ →  as n → ∞, the limit of {zn} belongs to F .

The purpose of this article is to establish a kind of non-convex hybrid iteration algo-
rithms and to prove relevant strong convergence theorems of common fixed points for a
uniformly closed asymptotically family of countable quasi-Lipschitz mappings in Hilbert
spaces. Meanwhile, the main result was applied to get the common fixed points of finite
family of quasi-asymptotically nonexpansive mappings. It is worth pointing out that a non-
convex hybrid iteration algorithm was first presented in this article, a new technique has
been applied in our process of proof. Finally, an example has been given which is a uni-
formly closed asymptotically family of countable quasi-Lipschitz mappings. The results
presented in this article are interesting extensions of some current results.

2 Main results
The following lemma is well known and is useful for our conclusions.

Lemma . Let C be a nonempty, closed, and convex subset of real Hilbert space H . Given
x ∈ H and z ∈ C. Then z = PCx if and only if we have the relation

〈x – z, z – y〉 ≥ 

for all y ∈ C.



Guan et al. Fixed Point Theory and Applications  (2015) 2015:214 Page 3 of 11

Definition . Let H be a Hilbert space, let C be a closed convex subset of E, and let {Tn}
be a family of countable quasi-Ln-Lipschitz mappings from C into itself, {Tn} is said to be
asymptotically, if limn→∞ Ln = .

Lemma . Let H be a Hilbert space, let C be a closed convex subset of E, and let {Tn} be a
uniformly closed asymptotically family of countable quasi-Ln-Lipschitz mappings from C
into itself. Then the common fixed point set F is closed and convex.

Proof Let pn ∈ F and pn → p as n → ∞, we have

‖Tnpn – pn‖ =  → , pn → p

as n → ∞. Since {Tn} is uniformly closed, we know that p ∈ F , therefore F is closed. Next
we show that F is also convex. For any x, y ∈ F , let z = tx + ( – t)y for any t ∈ (, ), we have

‖Tnz – z‖ = 〈Tnz – z, Tnz – z〉
= ‖Tnz‖ – 〈Tnz, z〉 + ‖z‖

= ‖Tnz‖ – 
〈
Tnz, tx + ( – t)y

〉
+ ‖z‖

= ‖Tnz‖ – t〈Tnz, x〉 + ( – t)〈Tnz, y〉 + ‖z‖

= t‖Tnz – x‖ + ( – t)‖Tnz – y‖ – t‖x‖ – ( – t)‖y‖ + ‖z‖

≤ tL
n‖z – x‖ + ( – t)L

n‖z – y‖ – t‖x‖ – ( – t)‖y‖ + ‖z‖

= t‖z – x‖ + ( – t)‖z – y‖ – t‖x‖ – ( – t)‖y‖ + ‖z‖

+ t
(
L

n – 
)‖z – x‖ + ( – t)

(
L

n – 
)‖y – x‖

= ‖z‖ – 〈z, z〉 + ‖z‖

+ t
(
L

n – 
)‖z – x‖ + ( – t)

(
L

n – 
)‖y – x‖ → 

as n → ∞. Since z → z, and {Tn} is uniformly closed, z ∈ F . Therefore F is convex. This
completes the proof. �

The following conclusion is well known.

Lemma . Let C be a closed convex subset of a Hilbert space H , for any given x ∈ H , we
have

p = PCx ⇔ 〈p – z, x – p〉 ≥ , ∀z ∈ C.

Theorem . Let C be a closed convex subset of a Hilbert space H , and let {Tn} : C → C be
a uniformly closed asymptotically family of countable quasi-Ln-Lipschitz mappings from
C into itself. Assume that αn ∈ (a, ] holds for some a ∈ (, ). Then {xn} generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C = Q chosen arbitrarily,

yn = ( – αn)xn + αnTnxn, n ≥ ,

Cn = {z ∈ C : ‖yn – z‖ ≤ ( + (Ln – )αn)‖xn – z‖} ∩ A, n ≥ ,

Qn = {z ∈ Qn– : 〈xn – z, x – xn〉 ≥ }, n ≥ ,

xn+ = Pco Cn∩Qn x,
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converges strongly to PF x, where co Cn denotes the closed convex closure of Cn for all n ≥ ,
A = {z ∈ H : ‖z – PF x‖ ≤ }.

Proof We split the proof into seven steps.
Step . It is obvious that co Cn, Qn are closed and convex for all n ≥ . Next, we show

that F ∩ A ⊂ co Cn for all n ≥ . Indeed, for each p ∈ F ∩ A, we have

‖yn – p‖ =
∥∥( – αn)xn + αnTnxn – p

∥∥

=
∥∥αn(xn – p) + ( – αn)(Tnxn – p)

∥∥

≤ ( – αn)‖xn – p‖ + αnLn‖xn – p‖
=

(
 + (Ln – )αn

)‖xn – z‖

and p ∈ A, so p ∈ Cn which implies that F ∩ A ⊂ Cn for all n ≥ . Therefore, F ∩ A ⊂ co Cn

for all n ≥ .
Step . We show that F ∩A ⊂ co Cn ∩Qn for all n ≥ . It suffices to show that F ∩A ⊂ Qn,

for all n ≥ . We prove this by mathematical induction. For n = , we have F ∩A ⊂ C = Q.
Assume that F ∩A ⊂ Qn. Since xn+ is the projection of x onto co Cn ∩Qn, from Lemma .,
we have

〈xn+ – z, xn+ – x〉 ≤ , ∀z ∈ co Cn ∩ Qn

as F ∩A ⊂ co Cn ∩Qn, the last inequality holds, in particular, for all z ∈ F ∩A. This together
with the definition of Qn+ implies that F ∩ A ⊂ Qn+. Hence the F ∩ A ⊂ co Cn ∩ Qn holds
for all n ≥ .

Step . We prove {xn} is bounded. Since F is a nonempty, closed, and convex subset of
C, there exists a unique element z ∈ F such that z = PF x. From xn+ = Pco Cn∩Qn x, we
have

‖xn+ – x‖ ≤ ‖z – x‖

for every z ∈ co Cn ∩ Qn. As z ∈ F ∩ A ⊂ co Cn ∩ Qn, we get

‖xn+ – x‖ ≤ ‖z – x‖

for each n ≥ . This implies that {xn} is bounded.
Step . We show that {xn} converges strongly to a point of C (we show that {xn} is a

Cauchy sequence). As xn+ = Pco Cn∩Qn x ⊂ Qn and xn = PQn x (Lemma .), we have

‖xn+ – x‖ ≥ ‖xn – x‖

for every n ≥ , which together with the boundedness of ‖xn – x‖ implies that there exists
the limit of ‖xn – x‖. On the other hand, from xn+m ∈ Qn, we have 〈xn – xn+m, xn – x〉 ≤ 
and hence

‖xn+m – xn‖ =
∥∥(xn+m – x) – (xn – x)

∥∥

≤ ‖xn+m – x‖ – ‖xn – x‖ – 〈xn+m – xn, xn – x〉
≤ ‖xn+m – x‖ – ‖xn – x‖ → , n → ∞
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for any m ≥ . Therefore {xn} is a Cauchy sequence in C, then there exists a point q ∈ C
such that limn→∞ xn = q.

Step . We show that yn → q, as n → ∞. Let

Dn =
{

z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖ + (Ln – )(Ln + )
}

.

From the definition of Dn, we have

Dn =
{

z ∈ C : 〈yn – z, yn – z〉 ≤ 〈xn – z, xn – z〉 + (Ln – )(Ln + )
}

=
{

z ∈ C : ‖yn‖ – 〈yn, z〉 + ‖z‖ ≤ ‖xn‖ – 〈xn, z〉 + ‖z‖ + (Ln – )(Ln + )
}

=
{

z ∈ C : 〈xn – yn, z〉 ≤ ‖xn‖ – ‖yn‖ + (Ln – )(Ln + )
}

.

This implies that Dn is closed and convex, for all n ≥ . Next, we show that

Cn ⊂ Dn, n ≥ .

In fact, for any z ∈ Cn, we have

‖yn – z‖ ≤ (
 + (Ln – )αn

)‖xn – z‖

= ‖xn – z‖ +
[
(Ln – )αn + (Ln – )α

n
]‖xn – z‖

≤ ‖xn – z‖ +
[
(Ln – ) + (Ln – )]‖xn – z‖

= ‖xn – z‖ + (Ln – )(Ln + )‖xn – z‖.

From

Cn =
{

z ∈ C : ‖yn – z‖ ≤ (
 + (Ln – )αn

)‖xn – z‖} ∩ A, n ≥ ,

we have Cn ⊂ A, n ≥ . Since A is convex, we also have co Cn ⊂ A, n ≥ . Consider xn ∈
co Cn–, we know that

‖yn – z‖ ≤ ‖xn – z‖ + (Ln – )(Ln + )‖xn – z‖

≤ ‖xn – z‖ + (Ln – )(Ln + ).

This implies that z ∈ Dn and hence Cn ⊂ Dn, n ≥ . Since Dn is convex, we have co(Cn) ⊂
Dn, n ≥ . Therefore

‖yn – xn+‖ ≤ ‖xn – xn+‖ + (Ln – )(Ln + ) → 

as n → ∞. That is, yn → q as n → ∞.
Step . We show that q ∈ F . From the definition of yn, we have

αn‖Tnxn – xn‖ = ‖yn – xn‖ → 
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as n → ∞. Since αn ∈ (a, ] ⊂ [, ], from the above limit we have

lim
n→∞‖Tnxn – xn‖ = .

Since {Tn} is uniformly closed and xn → q, we have q ∈ F .
Step . We claim that q = z = PF x, if not, we have that ‖x – p‖ > ‖x – z‖. There must

exist a positive integer N , if n > N then ‖x – xn‖ > ‖x – z‖, which leads to

‖z – x‖ = ‖z – xn + xn – x‖ = ‖z – xn‖ + ‖xn – x‖ + 〈z – xn, xn – x〉.

It follows that 〈z – xn, xn – x〉 <  which implies that z ∈Qn, so that z ∈F , this is a
contradiction. This completes the proof. �

Next, we give an example of Cn not involving a convex subset.

Example . Let H = R, Tn : R → R be a sequence of mappings defined by

Tn : (t, t) �→
(

t,



t

)
, ∀(t, t) ∈ R,∀n ≥ .

It is obvious that {Tn} is a uniformly closed asymptotically family of countable quasi-Ln-
Lipschitz mappings with the common fixed point set F = {(t, ) : t ∈ (–∞, +∞)}. Take
x = (, ), α = 

 , we have

y =



x +



Tx =
(

 × 


+



× 


, 
)

= (, ).

Take  + (L – )α =
√


 , we have

C =
{

z ∈ R : ‖y – z‖ ≤
√



‖x – z‖

}
.

It is easy to show that z = (, ), z = (–, ) ∈ C. But

z′ =



z +



z = (, )∈C,

since ‖y – z′‖ = , ‖x – z′‖ = . Therefore C is not convex.

Corollary . Let C be a closed convex subset of a Hilbert space H , and let T : C → C be
a closed quasi-nonexpansive mapping from C into itself. Assume that αn ∈ (a, ] holds for
some a ∈ (, ). Then {xn} generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C = Q chosen arbitrarily,

yn = ( – αn)xn + αnTxn, n ≥ ,

Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖} ∩ A, n ≥ ,

Qn = {z ∈ Qn– : 〈xn – z, x – xn〉 ≥ }, n ≥ ,

xn+ = PCn∩Qn x,

converges strongly to PF(T)x, where A = {z ∈ H : ‖z – PF x‖ ≤ }.
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Proof Take Tn ≡ T , Ln ≡  in Theorem ., in this case, Cn is closed and convex, for all
n ≥ , by using Theorem ., we obtain Corollary .. �

Since a nonexpansive mapping must be a closed quasi-nonexpansive mapping, from
Corollary ., we obtain the following result.

Corollary . Let C be a closed convex subset of a Hilbert space H , and let T : C → C be a
nonexpansive mapping from C into itself. Assume that αn ∈ (a, ] holds for some a ∈ (, ).
Then {xn} generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C = Q chosen arbitrarily,

yn = ( – αn)xn + αnTxn, n ≥ ,

Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖} ∩ A, n ≥ ,

Qn = {z ∈ Qn– : 〈xn – z, x – xn〉 ≥ }, n ≥ ,

xn+ = PCn∩Qn x,

converges strongly to PF(T)x, where A = {z ∈ H : ‖z – PF x‖ ≤ }.

3 Application to family of quasi-asymptotically nonexpansive mappings
In this section, we will apply the above result to study the following finite family of asymp-
totically quasi-nonexpansive mappings {Tn}N–

n= . Let

∥∥Tj
i x – p

∥∥ ≤ ki,j‖x – p‖, ∀x ∈ C, p ∈ F ,

where F denotes the common fixed point set of {Tn}N–
n= , limj→∞ ki,j =  for all  ≤ i ≤

N – . The finite family of asymptotically quasi-nonexpansive mappings {Tn}N–
n= is said to

be uniformly L-Lipschitz, if

∥∥Tj
i x – Tj

i y
∥∥ ≤ L‖x – y‖, ∀x, y ∈ C

for all i = , , , . . . , N – , j ≥ , where L ≥ .

Theorem . Let C be a closed convex subset of a Hilbert space H , and let {Tn}N–
n= : C → C

be a uniformly L-Lipschitz finite family of asymptotically quasi-nonexpansive mappings
with nonempty common fixed point set F . Assume that αn ∈ (a, ] holds for some a ∈ (, ).
Then {xn} generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C = Q chosen arbitrarily,

yn = ( – αn)xn + αnTj(n)
i(n) xn, n ≥ ,

Cn = {z ∈ C : ‖yn – z‖ ≤ ( + (ki(n),j(n) – )αn)‖xn – z‖} ∩ A, n ≥ ,

Qn = {z ∈ Qn– : 〈xn – z, x – xn〉 ≥ }, n ≥ ,

xn+ = Pco Cn∩Qn x,

converges strongly to PF x, where co Cn denotes the closed convex closure of Cn for all n ≥ ,
n = (j(n) – )N + i(n) for all n ≥ , A = {z ∈ H : ‖z – PF x‖ ≤ }.
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Proof It is sufficient to prove the following two conclusions.

Conclusion  {Tj(n)
i(n) }∞n= is a uniformly closed asymptotically family of countable quasi-Ln-

Lipschitz mappings from C into itself.

Conclusion  F =
⋂N

n= F(Tn) =
⋂∞

n= F(Tj(n)
i(n) ), where F(T) denotes the fixed point set of

the mapping T .

Proof of Conclusion  Let

∥∥Tj(n)
i(n) xn – xn

∥∥ → , xn → p

as n → ∞. Observe that

‖Ti(n)xn – xn‖ ≤ ∥∥Tj(n)
i(n) xn – xn

∥∥ +
∥∥Tj(n)

i(n) xn – Ti(n)xn
∥∥

≤ ∥∥Tj(n)
i(n) xn – xn

∥∥ + L
∥∥Tj(n)–

i(n) xn – xn
∥∥

≤ ∥∥Tj(n)
i(n) xn – xn

∥∥ + L
∥∥Tj(n–N)

i(n) xn – Tj(n–N)
i(n) xn–N

∥∥

+ L
∥∥Tj(n–N)

i(n–N) xn–N – xn–N
∥∥ + L‖xn–N – xn‖

≤ ∥∥Tj(n)
i(n) xn – xn

∥∥ +
(
L + L)‖xn–N – xn‖

+ L
∥∥Tj(n–N)

i(n–N) xn–N – xn–N
∥∥

from which it turns out that ‖Ti(n)xn – xn‖ →  as n → ∞. This implies there exists sub-
sequence {nk} ⊂ {xn} such that

‖Tixnk – xnk ‖ → , i = , , , . . . , N – 

as k → ∞. That is, p ∈ F =
⋂N–

n= F(Tn). Therefore, p ∈ ⋂∞
n= F(Tj(n)

i(n) ), hence {Tj(n)
i(n) } is uni-

formly closed. On the other hand, we have

∥∥Tj(n)
i(n) x – p

∥∥ ≤ ki(n),j(n)‖x – p‖, ∀x ∈ C, p ∈
∞⋂

n=

F
(
Tj(n)

i(n)
)
,

and limn→∞ ki(n),j(n) = . So, {Tj(n)
i(n) } is a uniformly closed asymptotically family of countable

quasi-Ln-Lipschitz mappings from C into itself with Ln = ki(n),j(n). �

Proof of Conclusion  It is obvious that

N–⋂

n=

F(Tn) ⊂
∞⋂

n=

F
(
Tj(n)

i(n)
)
.

On the other hand, for any p ∈ ⋂∞
n= F(Tj(n)

i(n) ), let n = , , , . . . , N – , we obtain

p ∈ F(T), p ∈ F(T), p ∈ F(T), . . . , p ∈ F(Tn–),
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which implies that

N–⋂

n=

F(Tn) ⊃
∞⋂

n=

F
(
Tj(n)

i(n)
)
.

Hence

N–⋂

n=

F(Tn) =
∞⋂

n=

F
(
Tj(n)

i(n)
)
. �

By using Theorem ., the iterative sequence {xn} converges strongly to P⋂∞
n= F(Tj(n)

i(n) )x =

PF x. This completes the proof of Theorem .. �

Corollary . Let C be a closed convex subset of a Hilbert space H , and let T : C → C be a
L-Lipschitz asymptotically quasi-nonexpansive mappings with nonempty fixed point set F .
Assume that αn ∈ (a, ] holds for some a ∈ (, ). Then {xn} generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C = Q chosen arbitrarily,

yn = ( – αn)xn + αnTnxn, n ≥ ,

Cn = {z ∈ C : ‖yn – z‖ ≤ ( + (kn – )αn)‖xn – z‖} ∩ A, n ≥ ,

Qn = {z ∈ Qn– : 〈xn – z, x – xn〉 ≥ }, n ≥ ,

xn+ = Pco Cn∩Qn x,

converges strongly to PF(T)x, where co Cn denotes the closed convex closure of Cn for all
n ≥ , A = {z ∈ H : ‖z – PF x‖ ≤ }.

Proof Take Tn ≡ T in Theorem ., we obtain Corollary .. �

Since a nonexpansive mapping must be a Lipschitz asymptotically quasi-nonexpansive
mapping, from Corollary ., we can obtain Corollary ..

4 Example
Conclusion . Let H be a Hilbert space, {xn}∞n= ⊂ H be a sequence such that it converges
weakly to a non-zero element x and ‖xi – xj‖ ≥  for any i �= j. Define a sequence of map-
pings Tn : H → H as follows:

Tn(x) =

⎧
⎨

⎩
Lnxn if x = xn (∃n ≥ ),

–x if x �= xn (∀n ≥ ),

where {Ln}∞n= is a sequence of number such that Ln > , limn→∞ Ln = . Then {Tn} is a
uniformly closed asymptotically family of countable quasi-Ln-Lipschitz mappings with the
common fixed point set F = {}.

Proof It is obvious that {Tn} has a unique common fixed point . Next, we prove that {Tn}
is uniformly closed. In fact, for any strong convergent sequence {zn} ⊂ E such that zn → z

and ‖zn – Tnzn‖ →  as n → ∞, there exists sufficiently large natural number N such that
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zn �= xm, for any n, m > N . Then Tnzn = –zn for n > N , it follows from ‖zn – Tnzn‖ →  that
zn →  and hence z ∈ F . Finally, from the definition of {Tn}, we have

‖Tnx – ‖ = ‖Tnx‖ ≤ ‖Lnx‖ = Ln‖x – ‖, ∀x ∈ H ,

so that {Tn} is a uniformly closed asymptotically family of countable quasi-Ln-Lipschitz
mappings. �

Remark In the result of Liu et al. [], the boundedness of C was assumed and the hy-
brid iterative process was complex. In our hybrid iterative process, Cn was constructed
as a non-convex set can makes it more simple, meanwhile, the boundedness of C can be
removed. Of course, a new technique has been applied in our process of proof.
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