Ceng and Wen Fixed Point Theory and Applications 2013, 2013:249 ® Fixed Point Theory and Applications
http://www.fixedpointtheoryandapplications.com/content/2013/1/249 a SpringerOpen Journal

RESEARCH Open Access

System of variational inequalities and an
accretive operator in Banach spaces

Lu-Chuan Ceng' and Ching-Feng Wen?"

“Correspondence:

cfwen@kmu.edu.tw Abstract

2Center for Fundamental Science, hi . q . . . hods f |

Kaohsiung Medical University, In this paper, we introduce composite Mann iteration methods for a general system
Kaohsiung, 807, Taiwan of variational inequalities with solutions being also common fixed points of a

Full list of author information is countable family of nonexpansive mappings and zeros of an accretive operator in real

available at the end of the article . . .
smooth Banach spaces. Here, the composite Mann iteration methods are based on

Korpelevich's extragradient method, viscosity approximation method and the Mann
iteration method. We first consider and analyze a composite Mann iterative algorithm
in the setting of uniformly convex and 2-uniformly smooth Banach space, and then
another composite Mann iterative algorithm in a uniformly convex Banach space
having a uniformly Gateaux differentiable norm. Under suitable assumptions, we
derive some strong convergence theorems. The results presented in this paper
improve, extend, supplement and develop the corresponding results announced in
the earlier and very recent literature.

MSC: 49J30; 47H09; 47J20

Keywords: composite Mann iteration methods; general system of variational
inequalities; accretive operator; nonexpansive mapping; sunny nonexpansive
retraction; fixed point; uniformly Gateaux differentiable norm; uniform smoothness;
uniform convexity

1 Introduction
Let X be a real Banach space whose dual space is denoted by X*. The normalized duality
mapping / : X — 2% is defined by

J(x) = {x* € X* i (x,2%) = [lx])* = ||#* H2}, Vx € X,

where (-, ) denotes the generalized duality pairing. It is an immediate consequence of the
Hahn-Banach theorem that J(x) is nonempty for each x € X. Let U = {x € X : ||x| = 1}
denote the unit sphere of X. A Banach space X is said to be uniformly convex if for each
€ € (0,2], there exists § > 0 such that for all x,y € U,

lx=yll=e = lx+yl/2=<1-6.

It is known that a uniformly convex Banach space is reflexive and strict convex. A Banach
space X is said to be smooth if the limit
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exists for all x, y € U; in this case, X is also said to have a Gateaux differentiable norm. X is
said to have a uniformly Gateaux differentiable norm if for each y € U, the limit is attained
uniformly for x € U. Moreover, it is said to be uniformly smooth if this limit is attained
uniformly for x,y € U. The norm of X is said to be the Frechet differential if for each x € U,
this limit is attained uniformly for y € U. Let C be a nonempty closed convex subset of X.
A mapping T : C — C is called nonexpansive if || Tx — Ty|| < ||x —y|| for every x,y € C. The
set of fixed points of T is denoted by Fix(T'). A mapping A : C — X is said to be accretive
if for each x,y € C, there exists j(x — y) € J(x — y) such that (Ax — Ay, j(x — y)) > 0.

Recently, Yao et al. [1] combined the viscosity approximation method and the Mann
iteration method, and gave the following hybrid viscosity approximation method:

Let C be a nonempty closed convex subset of a real uniformly smooth Banach space X,
T : C — C a nonexpansive mapping such that Fix(T) # ¥ and f € E¢ with a contractive
coeflicient p € (0,1), where Z¢ is the set of all contractive self-mappings on C. For an
arbitrary xy € C, define {x,} in the following way:

Y =y + (1 —a,) Ty,

Xn+l = ﬁnf(xn) + (1 - ﬁn)ynr Vn >0,

(YCY)

where {o,} and {8, } are two sequences in (0,1). They proved under certain control con-
ditions on the sequences {«,} and {B,} that {x,} converges strongly to a fixed point of T
Subsequently, Ceng and Yao [2] under the convergence of no parameter sequences to zero
proved that the sequence {x,} generated by (YCY) converges strongly to a fixed point of T'.
Such a result includes [1, Theorem 1] as a special case.

Theorem 1.1 (See [2, Theorem 3.1]) Let C be a nonempty closed convex subset of a uni-
formly smooth Banach space X. Let T : C — C be a nonexpansive mapping with Fix(T) # ()
and f € E¢ with contractive coefficient p € (0,1). Given sequences {a,} and {B,} in [0,1],
the following control conditions are satisfied:

(i) 1< B, <1-p,Vn=> ng for some integer no > 1;

(i) 32520 Bn = 00;

(iii) 0 <liminf,_ s o, <limsup,_ . o, <1;

H ] ﬂn+ /371 —
() 1My oo (0, ~ T i) = O
For an arbitrary xg € C, let {x,} be generated by (YCY). Then

=g = Bulf(xn) —xs) > 0,
where q € Fix(T) solves the variational inequality problem (VIP):
(a-f@).J(a-p) <0, VpeFix(T).
On the other hand, Cai and Bu [3] considered the following general system of variational

inequalities (GSVI) in a real smooth Banach space X, which involves finding (x*,y*) €
C x C such that

(By* +x* —y*,J(x —x*)) >0, VxeC(C, @)
(oBox™ +y* —x*, J(x —¥*)) >0, VxeC, '
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where C is a nonempty, closed and convex subset of X, By, B, : C — X are two nonlinear
mappings and p1 and p, are two positive constants. Here, the set of solutions of GSVI (1.1)
is denoted by GSVI(C, By, By). In particular, if X = H in a real Hilbert space, then GSVI (1.1)
reduces to the following GSVI of finding (x*,y*) € C x C such that

(By* +x* —y*,x—x*) >0, VxeC, 12)
(UaBox™ +y" —x*,x—y*) >0, VxeC, '

which p; and pu, are two positive constants. The set of solutions of problem (1.2) is still
denoted by GSVI(C, By, By). In particular, if B; = B = A, then problem (1.2) reduces to
the new system of variational inequalities (NSVI), introduced and studied by Verma [4].
Further, if x* = y* additionally, then the NSVIreduces to the classical variational inequality
problem (VIP) of finding x* € C such that

(Ax*,x —x*) >0, VxeC. 1.3)

The solution set of VIP (1.3) is denoted by VI(C, A). Variational inequality theory has been
studied quite extensively and has emerged as an important tool in the study of a wide class
of obstacle, unilateral, free, moving, equilibrium problems. It is now well known that the
variational inequalities are equivalent to the fixed point problems, the origin of which
can be traced back to Lions and Stampacchia [5]. This alternative formulation has been
used to suggest and analyze projection iterative method for solving variational inequalities
under the conditions that the involved operator must be strongly monotone and Lipschitz
continuous.

Recently, Ceng et al. [6] transformed problem (1.2) into a fixed point problem in the
following way.

Lemma 1.1 (See [6]) For given x,y € C, (x,y) is a solution of problem (1.2) if and only if x
is a fixed point of the mapping G : C — C defined by

G(x) = Pc[Pc(x — naByx) — mBiPc(x — uaBox)], VaeC, (1.4)

where y = Pc(x — o Box) and P is the projection of H onto C.
In particular, if the mappings B; : C — H is B;-inverse strongly monotone for i = 1,2, then
the mapping G is nonexpansive provided u; € (0,28;) fori=1,2.

In 1976, Korpelevich [7] proposed an iterative algorithm for solving the VIP (1.3) in
Euclidean space R":

Y =Pc(x, — TAx,),

Xntl = PC(xn - TAyn): n= 0:

with 7 > 0 a given number, which is known as the extragradient method. The literature on
the VIP is vast, and Korpelevich’s extragradient method has received great attention given
by many authors, who improved it in various ways; see, e.g., [3, 8—14] and the references

therein, to name but a few.
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In particular, whenever X is still a real smooth Banach space, B; = B, = A and x* = y*,
then GSVI (1.1) reduces to the variational inequality problem (VIP) of finding * € C such
that

(Ax*,J(x-x")) =0, VxeC, 1.5)

which was considered by Aoyama et al. [15]. Note that VIP (1.5) is connected with the fixed
point problem for nonlinear mapping (see, e.g., [16, 17]), the problem of finding a zero point
of a nonlinear operator (see, e.g., [18]) and so on. It is clear that VIP (1.5) extends VIP (1.3)
from Hilbert spaces to Banach spaces.

In order to find a solution of VIP (1.5), Aoyama et al. [15] introduced the following Mann
iterative scheme for an accretive operator A:

K1 = Ay + (L= ) (%, — X,Ax,), Vn>1, (1.6)

where I1¢ is a sunny nonexpansive retraction from X onto C. Then they proved a weak
convergence theorem.

Obviously, it is an interesting and valuable problem of constructing some algorithms
with strong convergence for solving GSVI (1.1), which contains VIP (1.5) as a special case.
Very recently, Cai and Bu [3] constructed an iterative algorithm for solving GSVI (1.1)
and a common fixed point problem of a countable family of nonexpansive mappings in a
uniformly convex and 2-uniformly smooth Banach space.

Theorem 1.2 (See [3, Theorem 3.1]) Let C be a nonempty closed convex subset of a uni-
formly convex and 2-uniformly smooth Banach space X. Let I1c be a sunny nonexpan-
sive retraction from X onto C. Let the mapping B; : C — X be p;-inverse-strongly ac-
cretive with 0 < u; < f—é for i =1,2. Let f be a contraction of C into itself with coeffi-
cient § € (0,1). Let {T,};°, be a countable family of nonexpansive mappings of C into
itself such that F = (\;5, Fix(T;) N 2 # ), where $2 is the fixed point set of the mapping
G =Ic( - uB)1c(I — uoBy) on C. For arbitrarily given x; € C, let {x,} be the sequence
generated by

%1 = Buxn + (L= B) Ty

In = of (%) + (1 = tn)2n

zy = Mc(uy — 1 Bruy),

uy = (%, — paBaxy), Yn=>1.

Suppose that {a,} and {B,} are two sequences in (0,1) satisfying the following conditions:
(i) limysooay =0and Y o0) o, = 00;
(ii) 0<liminf,_, B, <limsup,_, . B <1.
Assume that Y-, Sup,p | Tnsix — Tyxl|| < 00 for any bounded subset D of C, and let T be
a mapping of C into X defined by Tx = lim,,_, o T,x for all x € C and suppose that Fix(T) =
Moy Fix(Ty,). Then {x,} converges strongly to q € F, which solves the following VIP:

{@a-f(@.J(q-p)) <0, VpeF.
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Furthermore, recall that a (possibly multivalued) operator A C X x X with domain D(A)
and range R(A) in a real Banach space X is accretive if, for each x; € D(A) and y; € Ax;
(i = 1,2), there exists a j(x; — x3) € J(x1 — x5) such that (y; — yo,j(%; — x2)) > 0. (Here J
is the duality mapping.) An accretive operator A is said to satisfy the range condition if
D(A) c R(I + rA) for all r > 0. An accretive operator A is m-accretive if R(I + rA) = X for
each r > 0. If A is an accretive operator which satisfies the range condition, then we can
define, for each r > 0 a mapping J, : R(I + rA) — D(A) defined by J, = (I + rA)™}, which is
called the resolvent of A. We know that /, is nonexpansive and Fix(J,) = A0 for all r > 0.

Hence,
Fix(J,) =A™'0 = {z € D(A) : 0 € Az}.

If A7'0 # 0, then the inclusion 0 € Az is solvable. The following resolvent identity is well

known to us; see [19], where more details on accretive operators can be found.

Proposition 1.1 (Resolvent identity) For A >0, >0 and x € X,

hx =] (%x + (l - %)]Ax).

Recently, Aoyama et al. [20] studied the following iterative scheme in a uniformly con-
vex Banach space having a uniformly Gateaux differentiable norm: for resolvents J,, of an
accretive operator A such that A710 # % and D(A) € C C[),., RU + rA) and {o,,} C (0,1)

r>0

xo=x€C, 17)
Xnl = OpX + (1 - an)]rnxn'

They proved that the sequence {x,} generated by (1.7) converges strongly to a zero of A
under appropriate assumptions on {«,} and {r, }. Subsequently, Ceng et al. [21] introduced
and analyzed the following composite iterative scheme in either a uniformly smooth Ba-
nach space or a reflexive Banach space having a weakly sequentially continuous duality

mapping
xp=x€X,
Yn =0yl + (1- an)]ry,xn: (1.8)

X+l = (1 - ,Bn)yn + ,Bn]rnym

where u € D(A) is an arbitrary (but fixed) element, under the following control conditions:

(H1) lim,_ o oy, = 0;

(H2) >0, o, = 00, or, equivalently, [152,(1 - a,,) = 0;

(H3) 3205 e = et | < 005

(H4) r,>¢,Vn>0,forsomee>0and Y oo, 1y — 11| < 00;

(H5) Bu €10,a) for some a € (0,1) and > _2; |By — Bu-1l < 00.

Further, as the viscosity approximation method, Jung [22] purposed and analyzed the
following composite iterative scheme for finding a zero of an accretive operator A: for
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resolvent /,, of an accretive operator A such that A0 # @ and D(A) C C C ),., RU +rA),
f € Ec (Ec denotes the set of all contractions on C) and {«,},{8,} C (0,1),

xo=x€C,

Yn = Olnf(xn) + (1 - an)]r,,,xm (]S)

Xn+l = (]— - ,Bn)yn + ,anrnyn-

Theorem 1.3 (See [22, Theorem 3.1]) Let X be a strictly convex and reflexive Banach space
having a uniformly Gateaux differentiable norm. Let C be a nonempty closed convex sub-
set of X and A C X x X an accretive operator in X such that A™'0 # @ and D(A) C C C
(.0 RU +rA). Let {a,} and {B,,} be sequences in (0,1) which satisfy the conditions:

(i) limyooay =0and Y 2 oy = 00;

(i) B, €[0,a)forsome0<a<1foralln=>0.
Let f € Ec and xo € C be chosen arbitrarily. Let {x,} be a sequence generated by (JS) for

ry > 0. If {x,} is asymptotically regular, i.e., lim,_, o ||x,41 — %,|| = 0, then {x,} converges
strongly to q € A710, which is the unique solution of the variational inequality problem
(VIP)

(U-NaJq-p)=<0, VfeEcpeAo.

Let C be a nonempty closed convex subset of a real smooth Banach space X. Let I1¢c
be a sunny nonexpansive retraction from X onto C, and let f : C — C be a contraction
with coefficient p € (0,1). Motivated and inspired by the research going on in this area,
we introduce the composite Mann iteration methods for finding solutions of GSVI (1.1),
which are also common fixed points of a countable family of nonexpansive mappings and
zeros of an accretive operator A C X x X such that D(A) C C C (.0 RU + rA). Here,
the composite Mann iteration methods are based on Korpelevich’s extragradient method,

>0

viscosity approximation method and the Mann iteration method. We first consider and
analyze a composite Mann iterative algorithm in the setting of uniformly convex and 2-
uniformly smooth Banach space, and then another composite Mann iterative algorithm
in a uniformly convex Banach space having a uniformly Gateaux differentiable norm. Un-
der suitable assumptions, we derive some strong convergence theorems. The results pre-
sented in this paper improve, extend, supplement and develop the corresponding results

announced in the earlier and very recent literature; see, e.g, [2, 3, 6, 8, 22].

2 Preliminaries
Let X be a real Banach space. We define a function p : [0, 00) — [0, 00) called the modulus
of smoothness of X as follows:

1
p(r) = Sup{§(||x+y|| +llx=yll) =1:2y € X, llxll = 1, llyll = T}~

It is known that X is uniformly smooth if and only if lim,_,¢ p(tr)/t = 0. Let g be a fixed
real number with 1 < g < 2. Then a Banach space X is said to be g-uniformly smooth if
there exists a constant ¢ > 0 such that p(r) < ¢7? for all T > 0. As pointed out in [23],
no Banach space is g-uniformly smooth for ¢ > 2. In addition, it is also known that J is
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single-valued if and only if X is smooth, whereas if X is uniformly smooth, then J is norm-
to-norm uniformly continuous on bounded subsets of X. If X has a uniformly Gateaux
differentiable norm, then the duality mapping J is norm-to-weak* uniformly continuous
on bounded subsets of X. We use the notation — to indicate the weak convergence and
the one — to indicate the strong convergence.

Let C be a nonempty closed convex subset of X. Recall that a mapping A : C — X is said
to be

(i) a-strongly accretive if for each x,y € C, there exists j(x — y) € J(x — y) such that
(Ax - Ay, j(x - 9)) = allx - yII?
for some « € (0,1);

(ii) B-inverse-strongly-accretive if for each x,y € C, there exists j(x — y) € J(x — y) such
that

(Ax - Ay, j(x - y)) > BllAx - Ay|*
for some B8 > 0;

(iii) A-strictly pseudocontractive [24] if for each x,y € C, there exists j(x — y) € J(x — y)
such that

(Ax - Ay,j(x - 3)) < llx = yII> = 12—y - (Ax - Ap)|*

for some A € (0,1).
It is worth emphasizing that the definition of the inverse strongly accretive mapping is
based on that of the inverse strongly monotone mapping, which was studied by so many
authors; see, e.g, [9, 25, 26].

Proposition 2.1 (See [27]) Let X be a 2-uniformly smooth Banach space. Then
e+ y1I> < llxll® + 2y, /(%)) + 2llcyl®,  Va,y € X,

where K is the 2-uniformly smooth constant of X, and ] is the normalized duality mapping
from X into X*.

Proposition 2.2 (See [28]) Let X be a real smooth and uniform convex Banach space,

and let v > 0. Then there exists a strictly increasing, continuous and convex function
g:10,2r] = R, g(0) = 0 such that

gl =yll) < Ixl* = 2(x,J ) + Iyll*, V.3 € By,
where B, ={x € X : ||x|| <r}.
Next, we list some lemmas that will be used in the sequel. Lemma 2.1 can be found

in [29]. Lemma 2.2 is an immediate consequence of the subdifferential inequality of the
function 11| - [|%.
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Lemma 2.1 Let {s,} be a sequence of nonnegative real numbers satisfying
Sust < (L—au)sy + @B+ v, Yn 20,

where {a,}, {B,} and {y,} satisfy the conditions
(i) {an} C[0,1] and Y02, oty = 00;
(i) limsup,,_, ., Bx <0;
(ili) ¥4 >0,Vn>0,andy ., vu < 00.
Then limsup,,_, . s, = 0.

Lemma 2.2 [n a real smooth Banach space X, the following inequality holds:
e+ yI* < llel® +2(y, J(x + )}, Vx,y € X.

Let D be a subset of C, and let IT be a mapping of C into D. Then I7 is said to be sunny
if

H[H(x) + t(x - H(x))] = I1(x),

whenever I7(x) + t(x — I1(x)) € C forx € C and t > 0. A mapping I7 of C into itself is called
aretraction if IT? = IT.1fa mapping I7 of C into itself is a retraction, then I1(z) = z for every
z € R(IT), where R(IT) is the range of IT. A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D. The following

lemma concerns the sunny nonexpansive retraction.

Lemma 2.3 (See [30]) Let C be a nonempty closed convex subset of a real smooth Banach
space X. Let D be a nonempty subset of C. Let Il be a retraction of C onto D. Then the
following are equivalent:
(i) I is sunny and nonexpansive;
(i) 1177~ T < (x -3, (T(x) - TG)), Y,y € C;
(ili) (x—IMx),J(y—I(x)) <0,VxeC,yeD.

It is well known that if X = H in a Hilbert space, then a sunny nonexpansive retraction
I¢ is coincident with the metric projection from X onto C; that is, [1T¢ = Pc. If C is a
nonempty closed convex subset of a strictly convex and uniformly smooth Banach space X,
and if T': C — C is a nonexpansive mapping with the fixed point set Fix(T) # ¢, then the
set Fix(T) is a sunny nonexpansive retract of C.

Lemma 2.4 Let C be a nonempty closed convex subset of a smooth Banach space X. Let
I1¢ be a sunny nonexpansive retraction from X onto C, and let By, B, : C — X be nonlinear
mappings. For given x*,y* € C, (x*,y*) is a solution of GSVI (1.1) if and only if x* = [ (y* —
w1B1y*), where y* = I (x* — naBox™).

Proof We can rewrite GSVI (1.1) as

(a* = (y* — uB1y*),J(x —x*)) >0, VxeC,
(y* = (x* — paBox™),J(x —y*)) >0, VxeC(C,

Page 8 of 37
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which is obviously equivalent to

x* = Hc(y* — mBiy*),
y* = Tc(x* — paBox™),

because of Lemma 2.3. This completes the proof. d

In terms of Lemma 2.4, we observe that
x*=Tc [Hc(x* - Mszx*) — B¢ (x* - Mszx*)],

which implies that x* is a fixed point of the mapping G. Throughout this paper, the set of
fixed points of the mapping G is denoted by £2.

Lemma 2.5 (See [27]) Given a number r > 0. A real Banach space X is uniformly con-
vex if and only if there exists a continuous strictly increasing function g : [0,00) — [0, 00),
g(0) = 0 such that

2+ (@ =2y * < Al + @ = D)yl - A0 - Mg (Il - 1)
forall A € [0,1] and x,y € X such that ||x|| <r and ||y|| <r.

Lemma 2.6 (See [31]) Let C be a nonempty closed convex subset of a Banach space X. Let
S0,S1,... be a sequence of mappings of C into itself. Suppose that y -, sup{||S,x — S,_1%| :
x € C} < 00. Then for each y € C, {S,y} converges strongly to some point of C. More-
over, let S be a mapping of C into itself defined by Sy = lim,_, S,y for all y € C. Then
lim,,_, o sup{||Sx — S,x|| : x € C} = 0.

Let C be a nonempty closed convex subset of a Banach space X, andlet T:C — C be a
nonexpansive mapping with Fix(T') # @. As previously, let &¢ be the set of all contractions
on C. For t € (0,1) and f € Z¢, let x; € C be the unique fixed point of the contraction
x> tf(x) + (1 —t)Tx on C; that is,

xe = tf (%) + (1 — £) Txy.

Lemma 2.7 (See [17, 32]) Let X be a uniformly smooth Banach space, or a reflexive and
strictly convex Banach space with a uniformly Gédteaux differentiable norm. Let C be a
nonempty closed convex subset of X, let T : C — C be a nonexpansive mapping with
Fix(T) #0,andf € Ec. Then the net {x,} defined by x; = tf (x;) + (1—t) Tx; converges strongly
to a point in Fix(T). If we define a mapping Q : Ec — Fix(T) by Q(f) := s — lim;_ ¢ x;,
Vf € B¢, then Q(f) solves the VIP:

(T -HQE)T(Q) -p)) <0, Yf € Ec,p € Fix(T).

Lemma 2.8 (See [33]) Let C be a nonempty closed convex subset of a strictly convex Ba-
nach space X. Let {T,}52, be a sequence of nonexpansive mappings on C. Suppose that
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Moo Fix(T,) is nonempty. Let {1} be a sequence of positive numbers with Y oo Ay = 1.
Then a mapping S on C defined by Sx =Y o Ay Tux for x € C is defined well, nonexpan-
sive and Fix(S) = (-, Fix(T,,) holds.

Lemma 2.9 (See [15]) Let C be a nonempty closed convex subset of a smooth Banach
space X. Let I1c be a sunny nonexpansive retraction from X onto C, and let A: C — X

be an accretive mapping. Then for all . > 0,
VI(C,A) = Fix(I1c(I - 1A)).

Lemma 2.10 (See [34]) Let {x,} and {z,} be bounded sequences in a Banach space X,
and let {B,} be a sequence of nonnegative numbers in [0,1] with 0 < liminf,_, B, <
limsup,_, o Bn < 1. Suppose that xy.1 = Buxn + (1 — Bu)z, for all integers n > 0 and
1imsup, o (121 = Zull = 01 — % l}) < O. Then lim, o [1%, — 2l = 0.

Lemma 2.11 (See [35]) Let X be a uniformly convex Banach space and B, = {x € X : ||x|| <
r}, v > 0. Then there exists a continuous, strictly increasing and convex function g : [0,00] —
[0, 00], g(0) = O such that

lax + By + yzl|* < allxll® + Bllyl* + v llzl1* — eBg(llx - yll)
forallx,y,z€ B, and alla, B,y € [0, 1] witha +B+y =1.

3 Composite Mann iterative algorithms in uniformly convex and 2-uniformly
smooth Banach spaces

In this section, we introduce our composite Mann iterative algorithms in uniformly convex

and 2-uniformly smooth Banach spaces and show the strong convergence theorems. We

will use some useful lemmas in the sequel.

Lemma 3.1 (See [3, Lemma 2.8]) Let C be a nonempty closed convex subset of a real 2-
uniformly smooth Banach space X. Let the mapping B; : C — X be o;-inverse-strongly ac-

cretive. Then we have
2 2 2 2
|t = wiB)x = (I = wiBy)y||” < llx = yII* + 2ui(mic® — ;) |Bix - Byyll>,  Vx,y € C,

for i=1,2, where u; > 0. In particular, if 0 < p; < ;’—5’, then I — (1, B; is nonexpansive for
i=1,2.

Lemma 3.2 (See [3, Lemma 2.9]) Let C be a nonempty closed convex subset of a real
2-uniformly smooth Banach space X. Let I1c be a sunny nonexpansive retraction from
X onto C. Let the mapping B; : C — X be «;-inverse-strongly accretive for i = 1,2. Let
G: C — C be the mapping defined by

Gx = Iic [Hc(x - /Lngx) - ,ulBlﬂc(x - ,uszx)], Vx e C.

IfOo<p; < l‘:‘—;for i=1,2,then G: C — C is nonexpansive.
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Theorem 3.1 Let C be a nonempty closed convex subset of a uniformly convex and
2-uniformly smooth Banach space X. Let I1c be a sunny nonexpansive retraction from X
onto C. Let A C X x X be an accretive operator in X such that D(A) C C C (), R + rA).

Let B; : C — X be a;-inverse strongly accretive for i =1,2. Let f : C — C be a contraction

>0

with coefficient p € (0,1). Let {S;}75, be a countable family of nonexpansive mappings of C
into itself such that F = (i<, Fix(S;) N 2 N A710 # B, where 2 is the fixed point set of the
mapping G = (I — w1 B1) (I — pnaBy) with 0 < p; < %for i =1,2. For arbitrarily given
xo € C, let {x,} be the sequence generated by

Yn = BuXn + VuSuxn + 5n]r,, Gxy,
Xn+l = ar(f(xn) + (1 - an)ym Vn=>0,

(3.1)

where {ot,}, {Bu}, {vn} and {8,} are the sequences in [0,1] such that B, + y, + 8, = 1 for all
n > 0. Suppose that the following conditions hold:
(i) ZZio ay,=00and0<a, <1-p,Vn=> ny for some integer ny > 0;

(i) liminf,_ o ¥, > 0 and liminf,_, », 3, > 0;

: Aptl _ (o371 Sp+1 _ Sn —0-
(111) 11mn~>oo(| 1-(1~0y41) B+l 1-(1~an) B | + | 1-Bp+1 1-Bn |) - O’

(iv) limy— oo |41 —7u| =0 and r, > e >0 foralln > 0;

(v) 0<liminf,_ B, <limsup,_, . Bn < 1.
Assume thaty - SUp,cp [1Sus1x — Sux|| < 00 for any bounded subset D of C, and let S be a
mapping of C into itself defined by Sx = lim,_, o S,x for all x € C, and suppose that Fix(S) =
Mico Fix(S:). Then,

Xn —> 4 — an(f(xn) _xn) g 0;
where q € F solves the following VIP:

(a-f@.J(a-p)=<0, VpeF.

Proof First of all, let us show that the sequence {x,} is bounded. Indeed, take a fixed p € F
arbitrarily. Then we get p = Gp, p = S,p and p = J,, p for all n > 0. By Lemma 3.2, we know
that G is nonexpansive. Then from (3.1), we have

171 =PIl < Bullxn =PIl + YullSun = pIl + 84, Gxn = pi
< Bullxn = pll + Yullxn = pll + 8,11Gxy — pl
< Bullxn =PIl + Yullxn — pll + 8ullxn - pl
= [lxn = pll, (3.2)

and hence

%41 =PIl < oy Hf(xn) —P” + (1 =an)lyn —pl
< au(|[fexn) —f@)| + |f) - p]) + Q= an)lly. - pl
<au(pllx.—pl + |[f®) -p|) + A - a)llx, - pll
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If () - pll
= (1= (1= p))ls - pll + (1 - p)‘fl(”_—pp
fmaX{llxn—pll,M}.
1-p
By induction, we obtain
)_
lxn — pll < maX{ llxo = pII, %ﬁ)p” , Vn>0. (3.3)

Thus, {x,} is bounded, and so are the sequences {y,}, {Gx,} and {f(x,)}.
Let us show that

lim (l%,41 = x4l = 0. (3.4)
n—0o0
As a matter of fact, put o, = (1 — @) B4, Y1 > 0. Then it follows from (i) and (v) that
Brn=0n=0-0n)Bp>(1-Q1=p))Bu=pBn Yn=no,
and hence
0 <liminfo, <liminfo, < 1. (3.5)
n— 00 n— 00
Define
Xns1 = Op¥n + (1= 0,) 2. (3.6)
Observe that

Zn+l — Zn

_ Xn+2 — Onid¥n+l Xnel — On¥n

1_(7n+1 I_Un

an+]f(xn+1) +(1- O‘ml)}’ml — Op1%n+l _ ar{f(xn) +(1- an)yn — OpXn

1- On+l 1- On
(S @) anf @)\ (L= @) (B + YuSun + ), Gl — Ot
l1-0,1 1-o0, 1-0y,
+ (1 - an+1)[13n+lxn+1 + Vn+lSn+1xn+l + 5n+1]r,,+1 Gxn+l] — On+1%n+1
1-0un
opetf 1) f () 1-oun
= ( Yl+1f o ﬂf k + = (Vn+15n+1xn+l + 8n+1]rn+1 Gxn+1)
1- On+l 1- On 1- On+l
l-«o
- K (ynsnxn + an]ry, Gxn)
1-0,
_ O[n+1f(xn+l) _ ar(f(xn)
1-0u1 1-o0y,

+ (1 - an+1)(1 - 13n+1) |:Vn+lsn+lxn+l + 8n+1]r,,+1 Gxn+1 _ Vnsnxn + Sn]rn Gxn:|

1- On+l 1- ,3n+1 1- ,Bn
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1_Un+1 I_Gn

" [(1 - an+l)(1 - ;3n+1) (1 an)(]- ,Bn):| Vn nxn + an]rn Gxn
1- ﬁn

- (fen) ~f6sn) + Sl B ) f(x)
1-0,,

1_(7n+1 1_Un

(Spa1%ne1 — Sun)

(1 —atps1)(X = Bri1) |: VYn+1
+

1-0u1 Vel + Op1
+ < Vn+1 _ Vn >Snxn
Vn+1 t 8n+1 Yn t 6;1
) 1) O
niﬂ (]’"ml Gxn+1 - ]rn Gxn) + ( e >]rn Gxni|
Vn+l + 8n+1 VYn+1 t 8n+1 Vnt 8

_ ( Q1 oy ) VnSuXn + (Sn]r,, Gx,

1_Un+1_l_on Vn+8n

Oyl (f(xn+l) f(xn)) ( n+l )(f( n) _ Vn nxn + (Sn]rn Gxn)

1 Oyl 1 - VYn t+ (Sn
l-041—«
+ n+l n+l [ Vn+l (Si1Zmst — St) + ( Vn+1 _ Vn )Snxn

1- On+l Vn+1 + 5n+1 Vn+1 t 8n+1 Yn t (Sn
é $ Sn

ngﬂ(]rml C:"xn+1 _]r,, Gxn) + ( el )]rn Gxni|;

Vel + 01 Vn+1 t 8n+1 Yn + n

and hence
”Zn+1 —Zn ”
‘ VuSuXn + 8n]rn Gx,
Xp) = ——————
Yn +0n
l-0,1—«
n+l n+l VYn+l (Sn+1x”+1 _ Snxn) : ( Vn+l _ Vn )Snxn

1-0441 Vel + Op1 Vel + 01 Vi + 0,
Snsl Spel Sn

L(erl Gxn+1 _]rn Gxn) + ( = >]rﬂ Gxn

Vni1 t 8n+1 VYn+1 t 8n+1 Vnt 8

PUp41 Ayl ay
Xpe1 — X || + X)) ||+ 1 Suxnll + Gx
< T g =l + | 7= = = (G |+ 1Sl + W, Goeal)

Vn+l
Vn+l + 8n+l Vn t+ 8;1

Sl

1- On+l — Apyl Vn+l
||Sn+lxn+1 - Snxn” +

1-0441 Vnal + Opi1

8n+1

St
+ 7”]}“,”1 GXpa1 — ]rn Gx, |l +
Vn+1 t 8n+1 Ynt Sn

Vn+1 t 3n+

”]rn Gx, ||:| (3.7)

On the other hand, if r, < r,,1, using the resolvent identity in Proposition 1.1,

t,
erl+l + <1 - >]rn+1 Gxn"'l)’
Tnsl

I'n
]le Gxn+1 = ]ry, (

n+l

we get

”]’n+1 Gxn+1 - ]rn Gxn ”

ry Ty
],«n —Gxy+|1-— ]rn+1Gxn+l _]rnGxn
Tn+l Tn+1

- 1Gxp1 — Gyl + <1 -

Tnyl

IA

K ) ||]Vn+1 warl - Gxn ”

Tnsl
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el = Tn
< [[%pe1 = Xull + ——— ”]rml Gxp1 — G|
Tnyl
1
< %ne1 = Xull + g|rn+1 - rn“l]rml Gxp1 — G4

If 1,41 < ry, we derive in the similar way

1

”]le Gxpi1 _]r,, Gxull < I1%n — X |l + g |7 — rn+1|”]rn Gxy, — Gxpa |

Thus, combining the above cases, we obtain

”]’ml c:"xn+1 _]r,, Gxn” =< ”xn - xn+1|| +M0|rn - rn+1|: Vn > O¢ (38)

where SuPnzo{%(”]rm Gxpe1 — Gx || + ), Gy — Gxpaa |1)} < Mo for some My > 0. Substitut-
ing (3.8) for (3.7), we have

”ZVI+1 _Zn”
P41 i1 Oy
< T dpar — K|+ | —— — %) || + 11Suxull + 11y, Gt
= 1—0’,“1 ” n+l n” 1—0’n+1 l—O'n (“f( n)” ” n n” ” n n”)

1-0u1 — Qi1 Vn+l
(||Sn+1xn+l - Sn+1xn|| + ||Sn+1xn - Snxn”)

1- On+l Vn+1 + 5n+1
Vn+1 Yn 8n+1
- 1 Suxnll + 7(”96,,—96,”1” +M0|rn_rn+1|)
Vel +0ps1 YV + 6y el + Onel
8n+1 8n
+ - “]r,,Gxn”
Vn+1 t 8n+1 Vnt ‘Sn
P41 Ayl ay
< —— X =Xl + | ———— — X)) || + 1Suxull + ], G
1ol =l + | 7= m = o (L G|+ 1wl + 1, Gosal)

1-01 —apa 1
el Tl ] V(= 2l + 1 Smea — Suul)

1-0u4 Vsl + Ol

Sni1 (
Vel + Ol
Sl 3n

Vn+1 + 6n+1 Vn t 8n

|xn _xn+1” +M0|rn _rn+1|)

+

(1Sl + IIIVKGxnII)}

_ 1- 01—yl - p)

o1 = %l
1- On+l

(@) + 1Smxull + 11y, Gxull)

‘ (o 7788 | oy

1-0pn 1-o0y

8n+1
1Sn1%n — Suxull + —————Mol|ry, — rna
Vni1 t 5n+1 Vni1 t 8n+1

1-0u1 — i [ Vn+1
1- On+l

3n+1 _ (Sn
Vn+1 + 5n+1 Yn t (Sn

(ISuxall + IIIVnGxnII)}

(07788 | oy

< a1 = Xall + M + (|81 — Spxull + M1y, — 141

1-0yu 1-o0y
8n+1 _ 8n
Vn+1 t 8n+1 Vnt ‘Sn
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8n+1 8n

Vn+1 t 8n+1 - Yn t 8;4

Uil oy

= %41 — x| + M -
1- On+l 1- On

+ |rn+1_rn|)

+ 1S1%0 = Suxnll

which hence yields
1Zns1 = Zull = 1%ne1 — %l
o o 1) 1)
< M(‘ n+l _ n : n+l _ n + |7'n+1 _ rn|)
1-041 1-04 Vel + 01 Vi + 0,
+ ||Sn+1xn - Snxn ”r (39)

where sup, o {Ilf o)l + [ISuxnll + )y, Gxnll + Mo} < M for some M > 0. So, from (3.9),
conditions (iii), (iv) and the assumption on {S,}, it follows that

limsup(”ZnJrl = Zull = I%ns1 _xn”) <0.
n—0oQ

Consequently, by Lemma 2.10, we have
lim ||z, — x| = 0. (3.10)
n— o0
It follows from (3.5) and (3.6) that
lim [[%,41 — %4l = lim (1 - 0y,) |z, — %, = 0. (3.11)
n—0oQ n—0oQ
From (3.1), we have
KXnel — Xy = 0y (f(xn) - xn) + (1 - an)()’n - xn))

which hence implies that

olyn =%l = (1 -(1- ,0)) Y = %nll < (L= 0ta) 1y — %l
= ||xn+1 —Xn — Uy (f(xn) _xn) ||

< %1 = xull + ”an(f(xn) _xn) ”
Since %41 — x, — 0 and o, (f (x,) — x,) — 0, we get
lim ||y, — .| = 0. (3.12)
Hn—>0Q
Next, we show that ||x,, — Gx,|| — 0 as n — oo.

Indeed, for simplicity, put g = Ic(p — woBap), uy = (%, — 12Baxy,) and v, = He(u, —
u1Biuy,). Then v, = Gx, for all # > 0. From Lemma 3.1, we have

lln = qll* = || M — aBoxy) — Mc(p - Mszp)”2 < ||%n = p = 12 (Baxy — Bop) ||2

< lwn — pII* = 212 (2 — k> 2 |Baxn — Bop |, (3.13)
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and

v, = pII? = | Tty — p11Biy) = (g - miBig)||”
< it — g = u(Bitty - Big) |
<|lun —qll* = 2p1 (01 — 1) | Brusy, — Bag|l*. (3.14)

Substituting (3.13) for (3.14), we obtain

Vs = pII* < 160 = pII* = 242 (2 — €% 102) | Box — Bop|*
=21 (0 — k1) | Buuy — Bagll*. (3.15)

From (3.1) and (3.15), we have

17 = pII?
< Bull%n = pI* + Vull Sutn — pII* + 8,111, G — pI?
< Bullxn = pI* + Yl = pI* + 8ullva — pII
< Bull#n = pI* + Vulln = pII* + 8u[ 120 — pII>
= 2p5 (02 = 1% 112) 1Boxn = Bopl|* = 2111 (etr — k% 1) | Brte — Bag*]
= 1% = pI* = 28, 2 (02 — k> 112) | Ban — Bop|®

+2p1 (e — k> 1) | By — Bigll], (3.16)
which hence implies that
28, [ (o2 = k% 12) |Ban — Bopl|® + (01 = k° 1) | Bitay, — Brg||

<lxn=pI*> = lyn—pI*

< (1% = Il + 11y = pI) 1% = yull. (3.17)

Since 0 < u; < ;‘—5 fori=1,2, and {x,} is bounded, we obtain from (3.12), (3.17) and condi-
tion (ii) that

lim ||Byx, —Bypl =0 and lim |Biu, —Big| =0. (3.18)
n— 00 n—oo
Utilizing Proposition 2.2 and Lemma 2.3, we have
2
llet,, — q||2 = H (%, — paBaxy,) — Mc(p - MZB2P)”

< (% — 12Baxy — (p — 112 Bop), J (un — q))

= (%0 = p,J (tn — @)) + p2(Bop — Boxn,J (- q))
1
< E[Hxn =pI* + llun = ql* - @ (|#n —ten — 0 - D) |)]

+ W2 || Bap — Boxlll|ln — 41,

Page 16 of 37


http://www.fixedpointtheoryandapplications.com/content/2013/1/249

Ceng and Wen Fixed Point Theory and Applications 2013, 2013:249 Page 17 of 37
http://www.fixedpointtheoryandapplications.com/content/2013/1/249

which implies that

Nt = qll* < Il = pI* = @1 (|0 = 00 = (0 = @) ) + 20211Bop = Boxullln — qll. -~ (3.19)

In the same way, we derive

Ve = pI? = | Ac(tn — 1Br1a) — Mg - 11B1g) |
< (un — m1Br1t, — (q — 111B19),J (v — p))
=t — 4, vy = p)) + p1(B1g — Brtty, ] (v, — p))
< 5[ —al? + 19 =1 = a0 = v+ (0~ )]

+ plBig — Bruu || llva — pli,

which implies that
Vi =p1? < ltn = q* = &2 (|| ttn = v + 0 = @)|) + 21111Big = But |||V, = pll.~ (3.20)

Substituting (3.19) for (3.20), we get

Vi = pI% < 1% = P11 = &1 (|50 = n = (0= D) = &2(|| 0 = vu + 0 - D))

+ 242 ||Bop — Bou ||ty — qll + 211 11B1g — Buuau |||V — pII. (3.21)

By Lemma 2.2, we have from (3.16) and (3.21)

lys — 12
< Balln = pI2 + villxn = I + 8allv — pII?
< Bulltn =PI + yullotn = P11 + 812 — p1? &1 (| 0 = 10 — 0 - @)
~@([|tn = va+ 0 - q)|)) + 2211Bop — Boul| 1 — q|
+ 2 1B1g — Buat | v — ]
<l =2l = 8@ (|50 — 1n = 0 - D)) + &2 t0n = v + 0 - D)])]

+2442|Bap — Baxu | lttw — gl + 21111 Brg — Bautu |||V - pI,

which hence leads to

Suler (|0 = 1tn = 0 = D)) + &2 (s = vu + (0 = )]
< % = I = lyn = PII* + 212 [1Bop = Byl = g1l + 211 Brg = Bus |1V = p|
< (W =PIl + 119 = 1) 160 = 9all + 2211Bop = Baeul 4 = g
+211Big = But |17 = pl. (322)
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From (3.18), (3.22), condition (ii) and the boundedness of {x,}, {y.}, {#,} and {v,}, we
deduce that

Jim g ([0 —un - (P~ @)) =0 and  lim g>([lun ~vu+ (- 9)]) = 0.
Utilizing the properties of g and g, we deduce that

Jim |, ~uy = (P~ )| =0 and  lim [, — v, + (p - )| =0. (3.23)
From (3.23), we get

960 = Vall < |50 —thw = @ =D + |t =vu+ P-@)| > 0 asn— oo.
That s,

lim %, — Ga, | = 0. (3.24)

Next, let us show that
Jim [|Syx, =%l =0 and - lim ||y, %, =%l = 0.

Indeed, utilizing Lemma 2.5 and (3.1), we have

2

,ann+ nSnxn
19 = pII® = 8,0, Gt — ) + (B + yn)<_y ) p)
B+ Vn
S 2
<84, G — P> + (Bu + ) Brn + YuSu%n _
B+ Vn
B Y, 2
=8n||]r,,,G3Cn —P||2+(,B,,+y,,) " (xn_p)+ n (S, _p)
Bu+ Vu Bu+ VY
55"”%—P“2+(ﬂn+%«)[illxn—pn2+ S 0~ p?
/37! + Vn ,3,, + Vn
Bn¥Yn
=By 4y p 1 = Swall
Buvn_

=< dullxn _P||2 + Bullxn _19”2 + VYull%n _P”Z - gB(”xn - Snxn”)

Bn + Vu

Bn¥Vn
Bu+ Vn

= lxy - plI* - &30 = Spxull),

which immediately implies that

Buyngs (1 = Sutall) < 2V (360 = Syt

a ﬁn + Vn
< 1% = pII* = lyn - pII?

< (% = pll + Iyn = 21 1950 = Yl
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So, from (3.12), the boundedness of {x,}, {y,} and conditions (ii), (v), it follows that
,,,llg}ogg(”x" - Snan) =0.

From the properties of g3, we have
lim ||x, —S,x,| = 0. (3.25)
n—0oQ

Taking into account that
Vn — Xy = yn(Snxn - xn) + Sn(]rn Gxn _xn):

we have

3l GXy — X || = ”yn — %n = VYn(SnXn — %n) ”
=< ”yn =Xl + YullSuxn — x4l

S Myn = xull + 1Su%0 — % .
From (3.12), (3.25) and condition (ii), it follows that
lim ||, Gx, — x4 = 0. (3.26)
n—0o0
Note that
1 = Sxpll < 1% = Sl + (1S — Sl
So, in terms of (3.25) and Lemma 2.6, we have
lim ||x, — Sx,| = 0. (3.27)
n— 00
Also, note that

[E _]r,,xn” < [lxn _]r,,Gxn” + ”]r,,Gxn —]rnxn”

< %0 = Jr, Gxull + [|GXy — %]
From (3.24) and (3.26), we have
lim (%, — J;,, %4 = 0. (3.28)
n—00

Furthermore, we claim that lim,,_, o, ||, — J/%,|| = O for a fixed number r such that ¢ >
r > 0. In fact, taking into account the resolvent identity in Proposition 1.1, we have

r r
]r<_xn + <1 - _>]rﬂxn) _]rxn
'n T'n
r
S (1 - _) ”xn _]rnxn”
T'n

< ll%u = Jr, % ll. (3.29)

“]rnxn = Jrxull =

Page 19 of 37
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Thus, we get from (3.28) and (3.29)

12 = Jrxnll < 1% _]r,,xn” + ”]rnxn —Jr %l
S ”xn _]r,,xn” + ”xn _]rnxn”

=2|%, = Jr, %4l > 0 asn— oo.
That is,
lim ||x, — Jrx,| = 0. (330)
n— 00
Define a mapping Wx = (1-6; —6,)]J,x+601Sx + 0, Gx, where 6,6, € (0,1) are two constants

with 6; + 6, < 1. Then by Lemma 2.8, we have that Fix(W) = Fix(J,) N Fix(S) N Fix(G) = F.
We observe that

llocn — Wyl = ” (1 =01 — 02) (%, = Jrxn) + O1(x — Sx) + O, — Gxn)”

< (=601 = 0)llxn = Jrxull + O1llxn — Sxull + O2]lx, — Gyl
From (3.24), (3.27) and (3.30), we obtain
lim ||x, — Wax,| = 0. (3.31)
H—0Q
Now, we claim that

limsup(f(q) — ¢, (x» — q)) < 0, (3.32)

n—0oQ

where g = s — lim,_, ¢ x; with x; being the fixed point of the contraction
x> tf(x) + (1 —£) Wa.

Then x; solves the fixed point equation x; = ¢f(x;) + (1 — £) Wx;. Thus, we have
xp— %0 = (1= ) (Wa — %) + £(f (%) — ).

By Lemma 2.2, we conclude that

Nl = 2ull>
= [/ = (Wi, — %) + £(f (%) —x) |
< A=) | Wa — a1 + 28{f (%) — %, ] (% — %)
< (1= 0 (Il Wat, — Waty | + 1| Wat = all)” + 26f (x2) — 0, (e — %))
< (U= 0 (I =l + 1 Wt — 1) + 26{f (x2) = 0, T (e — 5,))
= (1= 02 [l = 2l + 2010 — 21| Wat — 2l + 1| Wty — 1]

+ 20(f () = 260, ] (%1 — %)) + 28(, — 20, ] (% — %))
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= (12 + ) o — xa1® + £(2)

+ 2t<f(xt) — x5, ) (% —xn)> + 2t % — %)% (3.33)
where
) = (= 1) (211 = | + (120 = Wat ) 65 = Wikl — 0, s 11— o0. (3.34)
It follows from (3.33) that
(ot F D = 00) = 2=l + ) (3.35)
Letting n — oo in (3.35) and noticing (3.34), we derive

M, (3.36)

N |~

limsup(w; — f (%), ] (% — %)) <

n—00

where M, > 0 is a constant such that |x; — x,||> < M, for all £ € (0,1) and 7 > 0. Taking
t — 0in (3.36), we have

lim sup lim sup(xt —f (o), J (e — xn)> =<o.

t—0 n—00

On the other hand, we have

(f(@-a)xn—a)
={f(q) - @] — @) = f(@) — @] @ — %)) + ([ (@) — . ] (% — %2))
—{f (@) = x0T en = x0)) + (@) = 0, T (0 = %)) = {f (30) = %0, T (30 — )
+{f (%) = %0, ] (60 — %))
={f(@) - 4T @n — @) = T (0 — %)) + (e — @, (60 — )
+{f(q) = f %), T Gon = x0)) + (F (30) = %2, (% = %2))-

It follows that
limsup(f(q) — q,] (x» — q)) < limsup(f(q) — q,] (xn — @) — ] (%n — %¢))

+ [|%: — gl limsup [|x, — x|l + pllg — x| lim sup [|x, — x|
n—00 n—o0

+ lim sup(f (%) — %2, ] (%, — %))

n—0o0

Taking into account that x, — g as £ — 0, we have

lim sup(f(q) —q,](x, - q)) =lim s(slp lim sup(f(q) —q,](x, — q))
n—0oQ0 t— H—>0Q

<limsuplim sup(f(q) —q,](xp—q) = J(x, — xt)>. (3.37)

t—0 n—00
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Since X has a uniformly Frechet differentiable norm, the duality mapping J is norm-to-
norm uniformly continuous on bounded subsets of X. Consequently, the two limits are
interchangeable, and hence (3.32) holds. From (3.4), we get (x,+.1 —¢q) — (x, —q) — 0. Notic-
ing the norm-to-norm uniform continuity of / on bounded subsets of X, we deduce from
(3.32) that

lim sup(f(q) —q,] (X1 — 61))

=limsup({f(q) - 4.J(xn — @) + {f(@) — @] %1 — @) = (% — q)))
= limsup{f(q) - ¢,J (x, — q)) < O. (3.38)

Finally, let us show that x,, — g as n — oo. Utilizing Lemma 2.2, from (3.1) and the

convexity of || - |2, we get

lyn =gl < Bullxn = qll* + vul Suxn — qll* + 8ull],, Gt — qlI*
< ﬂn”xn - 61||2 + yn”xn - 6]”2 + 8yl — 61||2

2
= [l%n — 4lI%

and

%1 = ql1? = et (F@n) = £ (@) + (1= )3 = @) + 0 (F(@) - 9) ||
< o (FGen) = £ (@) + 1 = ) n = )| + 200{f (@) = 4. oss1 — D)
< |[f ) — @ + @ = an)llyn — ql? + 20l (@) = 4T i1 — )
< aupllay = ql* + (1= @)%, — qlI* + 200,{f (q) — 4,] (X1 — @)
= (1= au(1 = ) 1% — qll* + 204{f (@) — @, ] K1 — 7))

(- anlt- )l =gl + - p) OB ZD) g 59)

Applying Lemma 2.1 to (3.39), we obtain that x, — g as n — oo. This completes the
proof. d

Corollary 3.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space X. Let Ilc be a sunny nonexpansive retraction from X
onto C. Let A C X x X be an accretive operator in X such that D(A) C C C [ ),.o RU + rA).
Let V : C — C be an a-strictly pseudocontractive mapping. Let f : C — C be a contraction
with coefficient p € (0,1). Let {S;}75, be a countable family of nonexpansive mappings of C
into itself such that F = (;5, Fix(S;) N Fix(V) N A™0 # @. For arbitrarily given xo € C, let
{x,} be the sequence generated by

Y = Bnn + YuSuxn + 8k, (L= DI + IV )x,,

(3.40)
Xntl = anf(xn) + (1 - O[,,) n Vn > 0,

where 0 < [ < ;%’ and {o,}, {Bu}, {vn} and {8,,} are the sequences in [0,1] such that 8, + y, +
8, =1 for all n> 0. Suppose that the following conditions hold:
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(i) Yrpan=00and 0 <a, <1-p,Vn> ny for some integer ny > 0;

(if) liminf,_ o v, > 0 and liminf,_, », 8, > 0;

: X+l _ (277} Snsl _ _%n -0
(Gi0) im0 (| ey~ | by~ D =0

(iv) limy— oo [ry41 —7u| =0 andr, > e >0 foralln > 0;

(v) 0<liminf,_. B, <limsup,_, . Bn < 1.
Assume thaty - SUp,cp [Sus1x — Syx|| < 00 for any bounded subset D of C, and let S be a
mapping of C into itself defined by Sx = lim,_, o S,x for all x € C, and suppose that Fix(S) =
Moo Fix(S:). Then

xn—>q = a(f(%)—x,) > 0,
where q € F solves the following VIP:
{a-f(@.](q-p))<0, VpeF.

Proof In Theorem 3.1, we put By =1 -V, By =0 and u; =, where 0 </ < :—2 Then GSVI
(1.1) is equivalent to the VIP of finding x* € C such that

(Bix*,J(x —x*)) =0, VxeC.

In this case, B; : C — X is a-inverse strongly accretive. It is not hard to see that Fix(V) =
VI(C, By). As a matter of fact, we have, for [ > 0,

ueVI(C,B)) & (BiuJ(y-u)>0, VyeC
< <u—lBlu—u,](u—y)>20, VyeC
& u=Ilc(u-I[Bu)
< u=Ilc(u—-Ilu+Vu)
& <u—lu+qu—u,](u—y))zO, VyeC
& <u—Vu,](u—y)>§0, VyeC
< u=Vu
< ueFix(V).

Accordingly, we know that F = (75, Fix(S;) N 2 NA™0 = (N, Fix(S;) NFix(V)N A0, and

ITc(I = B c(I — paBy)x,
= Mc(I - i Bi)xy,
= Hc((l —Dx, + le,,) = ((1 DI+ lV)x,,.

So, the scheme (3.1) reduces to (3.40). Therefore, the desired result follows from Theo-
rem 3.1. O

Remark 3.1 Theorem 3.1 improves, extends, supplements and develops Jung [22, Theo-
rem 3.1], Ceng and Yao [2, Theorem 3.1] and Cai and Bu [3, Theorem 3.1] in the following
aspects.
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(i) The problem of finding a point g € (-, Fix(S;) N £2 N A0 in our Theorem 3.1 is
more general and more subtle than any of the problems of finding a point g € A™10 in
[22, Theorem 3.1], the problem of finding a point g € Fix(T) in [2, Theorem 3.1], and the
problem of finding a point g € (;5; Fix(7;) N £2 in [3, Theorem 3.1].

(ii) The iterative scheme in [2, Theorem 3.1] is extended to develop the iterative scheme
(3.1) of Theorem 3.1 by virtue of the iterative schemes of [22, Theorem 3.1] and [3, Theo-
rem 3.1]. The iterative scheme (3.1) of Theorem 3.1 is more advantageous and more flexible
than the iterative scheme of [2, Theorem 3.1], because it can be applied to solving three
problems (i.e., GSVI (1.1), fixed point problem and zero point problem) and involves sev-
eral parameter sequences {r,}, {o,}, {84}, {vu} and {3,}.

(iii) Our Theorem 3.1 extends and generalizes Ceng and Yao [2, Theorem 3.1] from a
nonexpansive mapping to a countable family of nonexpansive mappings, and Jung [22,
Theorems 3.1] to the setting of a countable family of nonexpansive mappings and GSVI
(1.1) for two inverse-strongly accretive mappings. In the meantime, our Theorem 3.1 ex-
tends and generalizes Cai and Bu [3, Theorem 3.1] to the setting of an accretive operator.

(iv) The iterative scheme (3.1) in Theorem 3.1 is very different from any in [22, The-
orem 3.1], [2, Theorem 3.1] and [3, Theorem 3.1], because the mapping G in [3, Theo-
rem 3.1] and the mapping /., in [22, Theorem 3.1] are replaced by the same composite
mapping /., G in the iterative scheme (3.1) of our Theorem 3.1.

(v) Caiand Bu’s proofin [3, Theorem 3.1] depends on the argument techniques in [6], the
inequality in 2-uniformly smooth Banach spaces (see Proposition 2.1) and the inequality in
smooth and uniform convex Banach spaces (see Proposition 2.2). Because the composite
mapping /,, G appears in the iterative scheme (3.1) of our Theorem 3.1, the proof of our
Theorem 3.1 depends on the argument techniques in [6], the inequality in 2-uniformly
smooth Banach spaces (see Proposition 2.1), the inequality in smooth and uniform convex
Banach spaces (see Proposition 2.2), the inequalities in uniform convex Banach spaces (see
Lemmas 2.5 and 2.9 in Section 2 of this paper), and the resolvent identity for accretive
operators (see Proposition 1.1).

(vi) It is worth emphasizing that the assumption of asymptotic regularity on {x,} in [22,
Theorem 3.1] is dropped by Theorem 3.1, and there is no assumption of the convergence

of parameter sequences to zero in our Theorem 3.1.

4 Composite Mann iterative algorithms in uniformly convex Banach spaces
having uniformly Gateaux differentiable norms

In this section, we introduce our composite Mann iterative algorithms in uniformly con-

vex Banach spaces having uniformly Géteaux differentiable norms and show the strong

convergence theorems. First, we give some useful lemmas whose proofs will be omitted

because they can be obtained by standard argument.
Lemma 4.1 Let C be a nonempty closed convex subset of a smooth Banach space X, and

let the mapping B; : C — X be )\;-strictly pseudocontractive and o;-strongly accretive with
a;+A;>1fori=1,2. Then, for u; € (0,1] we have

1-q; 1
(I = wiBi)x — (I - wiBy)y| < {,/ A?‘l +(1—m)<1+ ;)}nx—yu, Vx,y € C,
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fori=1,2. In particular, if 1 — %(1 - 1;—‘;”) < w; <1, then I — y;B; is nonexpansive for
i=1,2.

Lemma 4.2 Let C be a nonempty closed convex subset of a smooth Banach space X. Let
I¢ be a sunny nonexpansive retraction from X onto C, and let the mapping B; : C — X
be )\;-strictly pseudocontractive and o;-strongly accretive with a; + A; > 1 for i =1,2. Let
G : C — C be the mapping defined by

Gx) = Hc[ﬂc(x — waBox) — 1Byl (x — ,u2ng)], Vx e C.

If1- %(1 - 11‘;"') < u; <1,then G:C — C is nonexpansive.

We now state and prove the main result of this section.

Theorem 4.1 Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gdteaux differentiable norm. Let I1c be a sunny non-
expansive retraction from X onto C. Let A C X x X be an accretive operator in X such
that D(A) C C C(),.oRU + rA). Let B; : C — X be A;-strictly pseudocontractive and o;-
strongly accretive with ,; + a; > 1 for i =1,2. Let f : C — C be a contraction with coeffi-

>0

cient p € (0,1). Let {S;}5, be a countable family of nonexpansive mappings of C into itself
such that F = (75, Fix(S;) N 2 N A™'0 # (), where $2 is the fixed point set of the mapping
G = el — Bl — 113By) with 1 - {(1 - \/?) < jui <1fori=1,2. For arbitrarily
given xg € C, let {x,,} be the sequence generated by

Vn = f (%) + B + YuSukn + 8ulr, Gy 1)

X+l = UnGxn + (1 - O—n)y;ﬂ Vn > 0;

where {a,}, {Bu}, {vn}, {61} and {0, } are the sequences in (0,1) such that o, + By + Y + 8, = 1
for all n > 0. Suppose that the following conditions hold:

(i) limyooay =0andy 2 a, = 00;

(i) {yu}, {8n} C lc, d] for some ¢, d € (0,1);

(i) Y021 (100 — Outl + ety — 1l + 1B = Bucal + ¥ — Yut| + |85 — 8uc]) < 005
(iv) Y02 |ry =7yl <00 andr, > e >0 foralln>0;

(v) 0<liminf,_ s By <limsup,_, ., Bn <1and 0 <liminf,_. 0, <limsup,_, ., o, <1.
Assume that y oo, sup,cp, |Sux — Sy_1x|| < 00 for any bounded subset D of C, and let S be a
mapping of C into itself defined by Sx = lim,_, o, S,x for all x € C, and suppose that Fix(S) =
Mico Fix(S:). Then {x,} converges strongly to q € F, which solves the following VIP:

(a-f@),J(q-p)<0, VYpeF.

Proof First of all, take a fixed p € F arbitrarily. Then we obtainp = Gp,p =S,pand J,,p=p
for all #» > 0. By Lemma 4.2, we get from (4.1)

Iy =PIl < ot |[f ) = || + Bulln =PIl + Vil Sutn = Pl + 8,115, G — P
<au(plxn—pl + |[f®) = p||) + Ballxn = pll + Vaullxn = pll + 8ullxn — plI

= (1= (1= p)) I = Pl + 0 | () - p

’
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and hence

%1 =PIl < 04l G — pll + A= 5,) 1y, — Pl
< oullxn —pll + A= 0)[(1 - ou@ = p)) % — pll + o | () - p|]
= (1- (1 -0naud- )% —pll + A - o) [ f () - p|

If (p) - pll
= (1 -1 -0p)a,(1- p)) %, = pll + (1 = 0o, (1 - p)lfl(p_ipp
If () - pll
< max{ 1%, —pll, lf(lpip . (4.2)
-p
By induction, we have
If () - pll
I —pll < max{ o — I Wl’”—‘” } V>0,
-p
which implies that {x,,} is bounded and so are the sequences {y,}, {Gx,}, {f(x,)}.
Let us show that
lim ||%,.1 — 4]l = 0. (4.3)
n—00

As a matter of fact, observe that y, can be rewritten as follows

Yn = Buxn + (L= Bu)zps

Susn+pJry G
where z,, = o Con) Sk ton)ra G- )hserve that

1-Bn
”Zn —Zp ”
| @) + vuSuxn + 8k, G etuaf K1) + Vi1 Spans + 8ni)r,, G
1- ﬂ” 1- ,Bn—l

_ Yn = BnXn _In1— Br-1%n-1
1- ,3,, 1- ﬁn—l

_ Yn — ,ann _ Yn-1— ﬁn—lxn—l Yn-1— ,Bn—lxn—l _ Yn-1— ,Bn—lxn—l
1_,314 l_ﬁn 1_/3n 1_,3;1—1

< Yn — ,ann _ Yn-1— lsn—lxn—l Yn-1— /Sn—lxn—l _ Yn-1— ﬂn—lxn—l

N 1—/3,,, l_ﬂn 1_/31'1 l_IBn—l
1 1 1

- 1-— ,Bn ”-y” - 'B”x" - (y”_l - 'B”_lx”_l)” + 1— lgn - 1_7/3’1_1 ‘ ”yn_l - ,Bn—lxn—ln
1 |Bn = Bual

- 1-5, ||y" B ()/n—l ﬂn—lxn—l)” + (1 _ ,anl)(l — ﬂn) “ynJ Bn-1%n1|l
1

= 5 ”a,‘f(xn) + YuSndn + 8k, Gty — 1 f K1) — VYie1Sn-1%n-1 — 8n-1)r,_,G%na ||

|,3n - ,371— |
+ ol lyn-1 = Bn-1%n-1ll

1= Bu-1)d = By)

=

1
1- ,3 [an Hf(xn) _f(xn—l) || + Vu ”Snxn - Sn—lxn—l ” + (Sn”]rnGxn _]anl Gxn—l ”
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+ lay — ey Hf(xn—l) ” + Y0 = Yue1 1 Sncaxnall + 180 — Sna 1, Gxn—l”]

|ﬁn - ,Bn—1|

+ A= pi-p) yn-1 = Bu1%n-1ll- (4.4)

On the other hand, repeating the same arguments as those of (3.8) in the proof of Theo-

rem 3.1, we can deduce that for all # > 0,
i1 GXs1 = T, G ll < %0 = X1l + Molry — 7wal,  ¥r >0, (4.5)
where supnzo{i(lllrn+1 Gxys1— Gy || + 1y, GXy — Gya1 [|)} < M for some My > 0. Taking into

account 0 < liminf,_, o B, < limsup,_, ., B, < 1, we may assume, without loss of generality,
that {8,} C [¢,d]. So, from (4.4) and (4.5), we have

”Zn — Zn-1 ”
1
= ﬁ[an “f(xn) _f(xnfl)” + Vn(”Snxn = Sunall + 1Suxn1 — Sn—lxn—ln)
~ Pn
+ Sn(”xn—l = x|l + Mo|rn-1 — rn') + oty — | Hf(xn—l) ” + 10 = Y1 1 Sncaxna |l

|Bn = Bl

+ 18, = 8palllry Gxn—l”] + m

”yn—l - ,Bn—lxn—l ”

= ﬁ[anp”xn = x|l + Vn(”xn = Xpall + 1 Spxn1 = Sn—lxn—lll)
- n

+ 8 (1% = Xull + Molru_y = al) + lotn = ot ||[f n1) | + 1V = Vi [ Sucrna

|Bn — Bn1l

+ 18, = 8pa |y mel”] + m

”yn—l - ,Bn—lxn—l ”

1
= 1-8 {(1 —Bu - o, (1 - ;0)) %6 = %1l + Vull Suxn1 = Su1xnall + 8uMolr1 — 1
~— Pn
+ loty = @t | [f @) | + 17 = VudlISucrna | + 185 = 85a 1,y G I}
|Bn = Bual
+ |1 — Buan |

1= Bu-1)d = By)

= (1_ O"i(fi;np))nxn—xn_lll +

8,Mo

l_ﬂn

Vn
—ﬁ 1Snxn-1 = Sp1Xna |l + |71 = 7l
— Pn

1
s [ltn = nl|[f @nt) | + 1V = Vit I Snc1dna Il + 180 = 8t [, G ]
1Bn = Bu-l

+ o [V = Bl

1= Bu-1)A = By)

(Xn(l—,O)
<|1- ﬁ %, = %1 |l + [SpXn-1 — Sp—1p—1ll + Mol|r—1 — 74l
— Pn

s [ltn = nl|[f @nt) | + 1V = Vit I Snc1dna Il + 180 = 8t [, G ]
1B = Bu-l

+ m ||Oln—1f(xn—1) + Yu1Su-1%n-1 + 81 )y, GXy1 “

a,(1-p)
= (1_ ;713 %, — %1l +M1[|rn—1 = Tul + |0ty — 0yl
~—Fn
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+ |:3n _,Bn—ll + |Vn - yn—l'

+ |5n - Sn—ll] + ”Snxn—l - Sn—lxn—l ”’ (4‘6)

1

where supnzo{(l_—a)z(ﬂf(x,,)ll + [|Suxnll + I, Gnll + Mo)} < M; for some M; > 0. In the

meantime, observe that
X1 — X = 04(Gxy — GXyp1) + (0 — 041Gyt — 2521) + (1= 04) (20 — 201).
This together with (4.6) implies that

12241 = %l

< 0ullGxy — Gxpa || + 10y — 01| Gyt — Zpa | + (1 — 0) 120 — Zua |l

ay(l-p)
=< Un”xn _xn—1|| + |on - O'n—l| ”Gxn—l - Zn—l” + (1 - On){ <1 - ;7) ||xn _xn—ln
— Pn

+M1[|rn - rn—1| + |an —0[,,_1| + |/3n - ,Bn—1| + |yn - Vn—l' + |5n _‘Sn—1|]

+ ”Snxn—l _Sn—lxn—ln}

(1 _ (1-o0n)a,1-p)
l_ﬂn

+ oty — o1l + 1By = Bual + 1 Vn = Va1l + 180 — 8n—1|] + [1Sn%n-1 — Su-1%u-1 |

< (1 _ (1-0on)a,1-p)
N 1_18;1

+ |IBVI - ,Bn—ll + |yn - Vn—l| + |8n - 8n—l|] + ”Snxn—l - Sn—lxn—lny (4'7)

<

)”xn — %ol + 10w = 01 1 Gney — Zua || + M [ |7 — 1|
)”xn _xn—ln +M2[|rn - rn—ll + |Un - O';'1—1| + |an _an—ll

where sup, .o {Mi + [|Gx,, — 2,||} < M, for some M, > 0. Since % >(1-o0,)a,1-

p), we obtain from conditions (i) and (v) that > -, W = 0o. Thus, applying

Lemma 2.1 to (4.7), we deduce from conditions (iii), (iv) and the assumption on {S,} that
lim %1 — x4 = 0.
n—0o0

Next, we show that ||x,, — Gx,| — 0 as n — oo.

Indeed, according to Lemma 2.2, we have from (4.1)

1y - pII?
= lotn(F @) = F2)) + Bul = ) + Vu(Sutn = P) + 84U, G — ) + 0t (F (0) — ) ||
< Je(f@n) = £ @) + Bul@n = P) + Vu(Sun — ) + 841, G — )|
+20,{f(p) — p. ) (yn - )
< [ Gn) =f O + Bulln =PI + ¥l Sutn =PI + 84l Gt — I
+2a,(f (p) = 2, ] - P))

< aupllxn = plI* + Bullxn = PI* + Yullw — plI* + 8,4llxn — pII?
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+ 20, | f (@) = p| Ilyn - Pl
= (1-a,(1 - p))ll%s — plI* + 20, ||f (B) = P Iy — Pl
< lxn =PI + 20, [ f(2) = 2| 1y - PII. (4.8)

Utilizing Lemma 2.5, we get from (4.1) and (4.8)

1 = P11 = [04(Gxn = p) + (1= 0) s — )|
< 0ullGxy = plI* + A= ) lyn — PI” = 041 = 0:)g (I G — yull)
< 0l = pI* + (1= 0,) [l = pII* + 20| f @) = p 19 — pII]
- 0,(1 = 0,)g(1Gx — ¥l
< 1n = pI* + 20 [ £ () = || 1190 = Pl = 0(1 = 0:)g (11 Gt = yull),

which hence yields

ou(1- Un)g(”Gxn _yn”)
<% =PI = [%ne1 =PI + 20 ||[f () = 2| 1y — I
< (I1n = Pl + [10s1 = P 1965 = a1 | + 20 [ (®) = p]| 190 =PI

Since «,, — 0 and ||%,41 — %,]| — O, from condition (v) and the boundedness of {x,} and
{yx}, it follows that

Tim ¢([IGxn = yull) = 0.

Utilizing the properties of g, we have
lim ”Gxn _yn” =0, (4‘9)
n—0oQ

which together with (4.1) and (4.3) implies that

e = yull < %0 = Xpir | + %041 = Yl

= [y = Xua1 | + 04| Gxy = yull > 0 as n — o0.
That is,
lim ||x, —y,|l = 0. (4.10)
n—0o0
Since
I — Gxull < 1% = yull + 10 — Gxall,s
it immediately follows from (4.9) and (4.10) that

lim ||x, — Gx,|| = 0. (4.11)
n— 00
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On the other hand, observe that y, can be rewritten as follows:

Vn = nf (%) + Bun + VuSuXn + 8,J, Gy
VnSnXy + an]rn Gx,

= arlf(xn) + Buxn + (Vu + 64)
Yn +0n

= atpf (%) + Bun + €42,

YnSnntSnfry Gxn

where e, =y, +68, and z,, = —y G, Utilizing Lemma 2.11, we have

19 =PI = ot G5) = ) + Bulta =) + €4 =)
=ay Hf(xn) —P||2 + lgnnxn _p||2 + en”2n —P||2 - ,Bnengl(”2n _xn”)

= |[f @) = p||* + Bulln — P11 = Buengi (120 — %ll)

VS + 80)r G |7
te,|—m—— —p
Vi + Op

= 6, [f(n) = 2| + Bulln =PI = Buengi (120 — %)
2

8
Yt Sty = ) + —— (], Gt — D)

+ey,
Vn + 0Oy Vn + Op

< |[f @) = p||* + Bulln — P11 = Buengi (120 — %ll)

+éy

¥, 8
" 1S —P||2 + - ”]rn Gx, —P||2i|
| VY + O Vn + 0p

=ay ‘V(xn) —P”2 + :Bn”xn —19||2 - ﬂnengl(llén _xn”)

+éy

¥, )
= |lx, — plI* + ——l%xn —pllz}
| Vn + 8 Vn + 0y

= o, |[f () = 2| > + (0 = @) 1% =PI = Buengi (120 — %)

< &, |[f @) = p||* + 120 = PI* = Buengs (12 — 24,

which hence implies that

Buengi (120 - xall) < | f @) = p||* + 120 = pI* = Iy — 21>

< au|[fGen) = 2| * + (120 = 21l + 1y = ) 10 = 3.

Utilizing (4.10), conditions (i), (ii), (v) and the boundedness of {x,}, {y,} and {f(x,)}, we

get
lim gl(”%n _xn”) =0.
H—0Q
From the properties of g1, we have

lim |2, — x,| = 0.
n—00
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Utilizing Lemma 2.5 and the definition of z,, we have

VuSndn + 84k, G|

12, - plI* = ’ -
Yn + On
Vn 8 2
= (S —}7) + (]rﬂ Gx, _P)
Vi + 6n Vi + 6y
¥, 1)
< ———1Swxn = pII> + —— 1y, G — pII*
Vn+ 6 '+ O

7!8}’1
- (nyr—S)zgz(llbn Gty — Sytall)

VinOn
< llxn - plI* - mgz(ll]rn Gty = Sptiull),

which leads to

VnOn )
mg2(”]rnGxﬂ - Snxn”) < ||x,, —p||2 — ”Zn _p”2
< (1% =PIl + 12 =PI 1% = 24l

Since {x,} and {2, } are bounded, we deduce from (4.12) and condition (ii) that

lim & (11Su% — 1, Gxull) = 0.
n— o0
From the properties of g;, we have
lim (S, — Jr,, Gxy| = 0.
n— 00
Furthermore, y, can also be rewritten as follows:

Vn = nf (Xn) + BuXn + YnSuXn + )y, Gy

of (xn) + )y, Gy
= BuXn + YnSn¥n + (0t + 8) rlf
o, + 6,

= ﬂnxn + VnSnxn + dnzm

(4.13)

Page 31 of 37

Onf Gon)+nry Gitn Utilizing Lemma 2.11 and the convexity of | - |2,

whered, = a,, +68,and z,, = rti
we have
2
lly. —pll

= ”ﬁn(xn —P) + yn(Snxn —P) + dn(%n —17) ”2
< Bullxn = pII* + ull Sutn = I + dullZn = PI* = Buvugs (164 — Sutull)

anf(xn) + Sn]rn Gxy, _ >
o, + 6,

= Bullxn — pII* + Vul Suxn — pII* +

- :Brlyngfi(”xn = Suxy ”)
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2

oy, Su
n) — an_
Oanr5}1(1‘(96) p)+an+8n(]” X — P)

= Balln = pII* + yull Sptn = pII* + s

- :Bnyng3(||xn = Suy ”)
Sn

oy, + 6y,

Ay

2
sﬁnnxn—pnz+yn||xn—p||2+dn[ ; If @) = p||” + ||/,nGxn—p||2]
n

o t
= Bu¥ngs (I1%n = Suul)

< [ G) = |* + (B + Vi) 16 = DI + 84112 =PI = s (15 — Suxall)

= o[£ Gen) = |* + (1= ) 12 =PI = s (115 — Suxll)

< au|[f () = 2| > + 120 = DI = Buyngs (1% = Suall),

which hence implies that

Buyns (160 = Suxull) < @l f ) = || + 126 = P11 = lyn = pII?

< au|[f o) = p||* + (120 =PIl + 1y = PU) 1% = 3.

Utilizing (4.10), conditions (i), (ii), (v) and the boundedness of {x,}, {y,} and {f(x,)}, we
get

lim gS(”xn - Snan) =0.
n— 00
From the properties of g5, we have
lim ||x, — S,x,| = 0. (4.14)
n—00
Thus, from (4.13) and (4.14), we get
(B _]Vn Gxull < %0 = Suxnll + 1S _]rn Gxull >0 asn— oo.
That is,
lim [}, — J,, Gl = 0. (4.15)
H—0Q
In terms of (4.14) and Lemma 2.6, we have
1 = S ll < 1% = Sl + 1Suxn — Sxull = 0 as m — oo.
That is,
lim ||x, — Sx,| = 0. (4.16)
n—00

Furthermore, repeating the same arguments as those of (3.30) in the proof of Theorem 3.1,
we can conclude that

lim ”xn _]rxn“ =0 (417)
n—00

for a fixed number r such that ¢ >r > 0.
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Define a mapping Wx = (1-6; —6,)],.x+6,Sx+0,Gx, where 6,6, € (0,1) are two constants
with 6; + 6, < 1. Then by Lemma 2.8, we have that Fix(W) = Fix(J,) N Fix(S) N Fix(G) = F.
We observe that

”xn - Wxn” = || (1 - 91 - 02)(xn _]rxn) + Ql(xn - an) + 92(xn - Gxn)”

< (=01 =)oy = Jrxull + Orllxn = Sl + 02 [0 — Gy
From (4.11), (4.16) and (4.17), we obtain
nlingo l%, — Wx, || = 0. (4.18)
Now, we claim that
liirisip(f @) - 4,] (@ — ) <0, (4.19)
where g = s — lim,_, ¢ x; with x; being the fixed point of the contraction
x> tf(x) + (1 —£) W

Then x; solves the fixed point equation x; = ¢f(x;) + (1 — t) Wx;. Repeating the same argu-
ments as those of (3.37) in the proof of Theorem 3.1, we can obtain that

lim sup(f (@) —q.J(x, — q)> = lirtn s(?p lim sup(f (@) —q.J(x, — q))

n— 00 n—00

< limsuplim sup(f(q) —-q,]J %y —q) —J(x, — xr)>'

t—0 n—00

Since X has a uniformly Gateaux differentiable norm, the duality mapping J is norm-to-
weak* uniformly continuous on bounded subsets of X. Consequently, the two limits are
interchangeable, and hence (4.19) holds. From (4.10), we get (y, —q) — (x, —¢q) — 0. Notic-
ing the norm-to-weak* uniform continuity of J on bounded subsets of X, we deduce from
(4.19) that

limsup(f(q) - 4,J(» — q))

n—00

=limsup({f(q) - 4. (xn — @) + (f (@) = 4.Tn — @) =] (% — q)))

n—00

=lim sup(f(q) —q,](x, — q)) <0. (4.20)
H—>0Q
Finally, let us show that x,, — g as # — oco. Indeed, observe that

1y, —qll?
= [|etn(FGn) = (@) + Bun = @) + V(S = @) + 8T, Gt — @) + 0 (f(q) — q) |
< ot (f Gen) = £ (@) + Buln = @) + V(S — @) + 805, G — @) |
+20,(f (q) = 4, ] O — )
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< [ (n) =@ + Bulltn = al* + Vil Sutn — qI1* + 8allJ, G — g1
+20,(f(q) = 4, ] v — 9))
< 0w = gl + Bulln = ql* + Vil = qll + 84l = g1 + 200(f (@) = 4. (yn — )
= (np + B+ Vn + 8w — q11> + 20u{f (@) — 0. T (v — )
(1 - au(1 = p))llxn — qlI* + 20uf (9) = 4. — 9)),

and hence

%01 — g1
< 0l Gy — qll* + (1= o) llyn — gl
<oullxn —ql* + L= 0)[(1 - an(l = p)) s — qll* + 20{f () — 7, (¥ — 9))]
= (1- A= 0w - p))llxn = qll* + 201 = 0)eulf (q) = 4. — 9))

)2(1’(61) - q,]Jn—q))
1-p ’

= (1 -1 -0p)a,(1- ,0)) ll, — q||2 +(1-on)a,(l-p (4.21)
Applying Lemma 2.1 to (4.21), we conclude from conditions (i), (v) and (4.20) that x, — ¢
as n — 00. This completes the proof. O

Corollary 4.1 Let C be a nonempty closed convex subset of a uniformly convex Banach
space X, which has a uniformly Gdteaux differentiable norm. Let I1c be a sunny nonex-
pansive retraction from X onto C. Let A C X x X be an accretive operator in X such that
D(A) € C C (,.oRU + rA). Let V : C — C be a self-mapping such that [ -V : C — X
is A-strictly pseudocontractive and a-strongly accretive with « + A > 1. Let f : C — C be

>0

a contraction with coefficient p € (0,1). Let {S;}75, be a countable family of nonexpansive
mappings of C into itself such that F = ("}, Fix(S;) N Fix(V) N A~0 # ¢. For arbitrarily
given xy € C, let {x,,} be the sequence generated by

Y = Onf (Xn) + Bukn + YuSun + Suly, (1= DI + IV )xy,
Xni1 =0 (L =DI+IV)xy + (1= 0)yn, Yn =0,

(4.22)

A

1=/ I’T“) <I[<1,and{a,}, {Bn} {yu}, {8,} and {0,} are the sequences in (0,1)
such that a, + By + Yn + 8, = 1 for all n > 0. Suppose that the following conditions hold:

where1—

(i) limyooay =0andy - a, = 00;

(i) {yu}, {8x} C lc,d] for some c¢,d € (0,1);

(iii) Y21 (10w — 0uctl + lotw — ot | + 1Bn = Buotl + ¥ = Vol + 184 = 8uc1]) < 003

(iv) Y02, |rw =1yl <00 and r, > & >0 for all n > 0;

(v) 0<liminf,— s By <limsup,_ o, Bx <1and 0 <liminf,_. 0, <limsup,_, ., 0, <1.
Assume that y oo, sup,cp, |Sux — Sy_1x|| < 00 for any bounded subset D of C, and let S be a
mapping of C into itself defined by Sx = lim,_, o S,x for all x € C, and suppose that Fix(S) =
Mico Fix(S:). Then {x,} converges strongly to q € F, which solves the following VIP:

{@a-f(@.J(q-p)) <0, VpeF.
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Proof In Theorem 4.1, weputB; =1-V, B, =0and u; =/, where1— ﬁ(l - 1_7"‘) <Il<l.
Then GSVI (1.1) is equivalent to the VIP of finding x* € C such that

(le*,](x—x*)) >0, VxeC.

In this case, B; : C — X is A-strictly pseudocontractive and «-strongly accretive. Repeating
the same arguments as those in the proof of Corollary 3.1, we can infer that Fix(V) =
VI(C, By). Accordingly, F = (5, Fix(S;) N 2 N A™0 = N3, Fix(S;) NFix(V) N A™0, and

Gxy=(A=DI+1V)x,, VYn>0.

So, the scheme (4.1) reduces to (4.22). Therefore, the desired result follows from Theo-
rem 4.1. (]

Remark 4.1 Theorem 4.1 improves, extends, supplements and develops Jung [22, Theo-
rem 3.1], Ceng and Yao [2, Theorem 3.1] and Cai and Bu [3, Theorem 3.1] in the following
aspects.

(i) The problem of finding a point g € (5, Fix(S;) N £2 N A710 in our Theorem 4.1 is
more general and more subtle than any of the problems of finding a point g € A™10 in
[22, Theorem 3.1], the problem of finding a point g € Fix(T) in [2, Theorem 3.1], and the
problem of finding a point g € (5, Fix(T;) N £2 in [3, Theorem 3.1].

(ii) The iterative scheme in [22, Theorem 3.1] is extended to develop the iterative scheme
(4.1) of Theorem 4.1 by virtue of the iterative schemes of [2, Theorems 3.1] and [3, Theo-
rem 3.1]. The iterative scheme (4.1) of Theorem 4.1 is more advantageous and more flex-
ible than the iterative scheme of [2, Theorem 3.1], because it can be applied to solving
three problems (i.e., GSVI (1.1), fixed point problem and zero point problem) and involves
several parameter sequences {o,}, {a,,}, {Bu}, {vn}> {64} and {r,}.

(iii) Theorem 4.1 extends and generalizes Ceng and Yao [2, Theorem 3.1] from a non-
expansive mapping to a countable family of nonexpansive mappings, and Jung [22, Theo-
rem 3.1] to the setting of a countable family of nonexpansive mappings and GSVI (1.1) for
two strictly pseudocontractive and strongly accretive mappings. In the meantime, Theo-
rem 4.1 extends and generalizes Cai and Bu [3, Theorem 3.1] to the setting of an accretive
operator.

(iv) The iterative scheme (4.1) in Theorem 4.1 is very different from any in [22, The-
orem 3.1], [2, Theorem 3.1] and [3, Theorem 3.1] because the mapping /,, in [22, The-
orem 3.1] and the mapping G in [3, Theorem 3.1] are replaced by the same composite
mapping /., G in the iterative scheme (4.1) of Theorem 4.1.

(v) Caiand Bu’s proofin [3, Theorem 3.1] depends on the argument techniques in [6], the
inequality in 2-uniformly smooth Banach spaces (see Proposition 2.1) and the inequality
in smooth and uniform convex Banach spaces (see Proposition 2.2). However, the proof
of Theorem 4.1 does not depend on the argument techniques in [6], the inequality in 2-
uniformly smooth Banach spaces (see Proposition 2.1), and the inequality in smooth and
uniform convex Banach spaces (see Proposition 2.2). It depends on only the inequalities
in uniform convex Banach spaces (see Lemmas 2.5 and 2.11 in Section 2 of this paper) and

the resolvent identity for accretive operators (see Proposition 1.1).
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(vi) The assumption of the uniformly convex and 2-uniformly smooth Banach space X
in [3, Theorem 3.1] is weakened to the one of the uniformly convex Banach space X hav-
ing a uniformly Géteaux differentiable norm in Theorem 4.1. Moreover, the assumption
of the uniformly smooth Banach space X in [2, Theorem 3.1] is replaced by the one of
the uniformly convex Banach space X having a uniformly Géateaux differentiable norm in
Theorem 4.1. It is worth emphasizing that the assumption of asymptotic regularity on {x,,}
in [22, Theorem 3.1] is dropped by Theorem 4.1.
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