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1 Introduction and preliminaries
The existence of a fixed point for contractive mappings in partially ordered metric spaces
has attracted the attention of many mathematicians (cf. [–] and the references therein).
In [], Bhaskar and Lakshmikantham introduced the notion of a mixed monotone map-
ping and proved some coupled fixed point theorems for the mixed monotone map-
ping. Afterwards, Lakshmikantham and Ciric in [] introduced the concept of a mixed
g-monotone mapping and proved coupled coincidence point results for two mappings F
and g , where F has the mixed g-monotone property and the functions F and g commute.
It is well known that the concept of commuting has been weakened in various directions.
One such notion which is weaker than commuting is the concept of compatibility intro-
duced by Jungck []. In [], Choudhury and Kundu defined the concept of compatibility of
F and g . The purpose of this paper is to present some coupled coincidence point theorems
for a mixed g-monotone mapping in the context of complete metric spaces endowed with
a partial order by using altering distance functions which extend some results of []. We
also present an example which illustrates the results.
Recall that if (X,�) is a partially ordered set, then f is said to be non-decreasing if for

x, y ∈ X, x � y, we have fx � fy. Similarly, f is said to be non-increasing if for x, y ∈ X, x� y,
we have fx � fy. We also recall the used definitions in the present work.

Definition . [] (Mixed g-monotone property) Let (X,�) be a partially ordered set,
g : X → X and F : X × X → X. We say that the mapping F has the mixed g-monotone
property if F is monotone g-non-decreasing in its first argument and is monotone g-non-
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increasing in its second argument. That is, for any x, y ∈ X,

x,x ∈ X, gx � gx ⇒ F(x, y) � F(x, y) ()

and

y, y ∈ X, gy � gy ⇒ F(x, y)� F(x, y). ()

Definition . [] (Coupled coincidence fixed point) Let (x, y) ∈ X × X, F : X × X → X
and g : X → X. We say that (x, y) is a coupled coincidence point of F and g if F(x, y) = gx
and F(y,x) = gy for x, y ∈ X.

Definition . [] Let X be a non-empty set and let F : X × X → X and g : X → X. We
say F and g are commutative if, for all x, y ∈ X,

g
(
F(x, y)

)
= F(gx, gy).

Definition . [] The mappings F and g , where F : X × X → X and g : X → X, are said
to be compatible if

lim
n→∞d

(
g
(
F(xn, yn)

)
,F(gxn, gyn)

)
= 

and

lim
n→∞d

(
g
(
F(yn,xn)

)
,F(gyn, gxn)

)
= ,

whenever {xn} and {yn} are sequences in X such that limn→∞ F(xn, yn) = limn→∞ gxn = x
and limn→∞ F(yn,xn) = limn→∞ gyn = y for all x, y ∈ X.

Definition . (Altering distance function) An altering distance function is a function
ψ : [,∞)→ [,∞) satisfying
. ψ is continuous and non-decreasing.
. ψ(t) =  if and only if t = .

2 Existence of coupled coincidence points
Let (X,�) be a partially ordered set and suppose that there exists a metric d in X such that
(X,d) is a complete metric space. Also, let ϕ and φ be altering distance functions. Now,
we are in a position to state our main theorem.

Theorem . Let F : X ×X → X be a mapping having the mixed g-monotone property on
X such that

ϕ
(
d
(
F(x, y),F(u, v)

))
≤ ϕ

(
max

(
d(gx, gu),d(gy, gv)

))
– φ

(
max

(
d(gx, gu),d(gy, gv)

))
()

for all x, y,u, v ∈ X with gx� gu and gy� gv. Suppose that F(X×X)⊂ g(X), g is continuous,
monotone increasing and suppose also that F and g are compatible mappings. Moreover,
suppose either
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(a) F is continuous, or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y� yn for all n.

If there exist x, y ∈ X with gx � F(x, y) and gy � F(y,x), then F and g have a coupled
coincidence point.

Proof By using F(X ×X)⊂ g(X), we construct sequences {xn} and {yn} as follows:

gxn+ = F(xn, yn) and gyn+ = F(yn,xn) for n≥ . ()

We are going to divide the proof into several steps in order to make it easy to read.
Step . We will show that gxn � gxn+ and gyn � gyn+ for n≥ .
Weuse themathematical induction to show that. From the assumption of the theorem, it

follows that gx � F(x, y) = gx and gy � F(y,x) = gy, so our claim is satisfied for n = .
Now, suppose that our claim holds for some fixed n > . Since gxn– � gxn, gyn � gyn– and
F has the mixed g-monotone property, then we get

gxn+ = F(xn, yn) � F(xn–, yn) � F(xn–, yn–) = gxn

and

gyn+ = F(yn,xn) � F(yn–,xn) � F(yn–,xn–) = gyn.

Thus the claim holds for n +  and by the mathematical induction our claim is proved.
Step . We will show that limn→∞ d(gxn, gxn+) = limn→∞ d(gyn, gyn+) = .
In fact, using (), gxn � gxn– and gyn � gyn–, we get

ϕ
(
d(gxn+, gxn)

)
= ϕ

(
d
(
F(xn, yn),F(xn–, yn–)

))
≤ ϕ

(
max

(
d(gxn, gxn–),d(gyn, gyn–)

))
– φ

(
max

(
d(gxn, gxn–),d(gyn, gyn–)

))
. ()

Since φ is non-negative, we have

ϕ
(
d(gxn+, gxn)

) ≤ ϕ
(
max

(
d(gxn, gxn–),d(gyn, gyn–)

))
,

and since ϕ is non-decreasing, we have

d(gxn+, gxn)≤ max
(
d(gxn, gxn–),d(gyn, gyn–)

)
. ()

In the same way, we get the following:

ϕ
(
d(gyn+, gyn)

)
= ϕ

(
d
(
F(yn,xn),F(yn–,xn–)

))
= ϕ

(
d
(
F(yn–,xn–),F(yn,xn)

))
≤ ϕ

(
max

(
d(gyn–, gyn),d(gxn–, gxn)

))
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– φ
(
max

(
d(gyn–, gyn),d(gxn–, gxn)

))
≤ ϕ

(
max

(
d(gxn, gxn–),d(gyn, gyn–)

))
, ()

and hence

d(gyn+, gyn) ≤ max
(
d(gxn, gxn–),d(gyn, gyn–)

)
. ()

Using () and (), we have

max
(
d(gxn+, gxn),d(gyn+, gyn)

) ≤ max
(
d(gxn, gxn–),d(gyn, gyn–)

)
.

From the last inequality, we notice that the sequence (max(d(gxn+, gxn),d(gyn+, gyn))) is
non-negative decreasing. This implies that there exists r ≥  such that

lim
n→∞max

(
d(gxn+, gxn),d(gyn+, gyn)

)
= r. ()

It is easily seen that if ϕ : [,∞) → [,∞) is non-decreasing, we have ϕ(max(a,b)) =
max(ϕ(a),ϕ(b)) for a,b ∈ [,∞) for a,b ∈ [,∞). Using this, () and (), we obtain

max(ϕ
(
d(gxn+, gxn)

)
,ϕ

(
d(gyn+, gyn)

)
= ϕ

(
max

(
d(gxn+, gxn)d(gyn+, gyn)

))
≤ ϕ

(
max

(
d(gxn, gxn–),d(gyn, gyn–)

))
– φ

(
max

(
d(gxn, gxn–)d(gyn, gyn–)

))
. ()

Letting n → ∞ in the last inequality and using (), we have

ϕ(r) ≤ ϕ(r) – φ(r) ≤ ϕ(r),

and this implies φ(r) = . Thus, using the fact that φ is an altering distance function, we
have r = . Therefore,

lim
n→∞max

(
d(gxn+, gxn),d(gyn+, gyn)

)
= . ()

Hence, limn→∞ d(gxn, gxn+) = limn→∞ d(gyn, gyn+) =  and this completes the proof of our
claim.
Step . We will prove that {gxn} and {gyn} are Cauchy sequences.
Suppose that one of the sequences {gxn} or {gyn} is not a Cauchy sequence. This implies

that limn,m→∞ d(gxn, gxm) �→  or limn,m→∞ d(gyn, gym) �→ , and hence

lim
n,m→∞max

(
d(gxn, gxm),d(gyn, gym)

) �→ .

Thismeans that there exists ε > , for which we can find subsequences {gxm(k)} and {gxn(k)}
with n(k) >m(k) > k, such that

max
(
d(gxm(k), gxn(k)),d(gym(k), gyn(k))

) ≥ ε. ()
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Further, we can choose n(k) corresponding to m(k) in such a way that it is the smallest
integer with n(k) >m(k) and satisfying (). Then

max
(
d(gxm(k), gxn(k)–),d(gym(k), gyn(k)–)

)
< ε. ()

Using (), gxn(k)– � gxm(k)– and gyn(k)– � gym(k)–, we get

ϕ
(
d(gxn(k), gxm(k))

)
= ϕ

(
d
(
F(xn(k)–, yn(k)–),F(xm(k)–, ym(k)–)

))
≤ ϕ

(
max

(
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

))
– φ

(
max

(
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

))
, ()

and also we get

ϕ
(
d(gyn(k), gym(k))

)
= ϕ

(
d
(
F(yn(k)–,xn(k)–),F(ym(k)–,xm(k)–)

))
= ϕ

(
d
(
F(ym(k)–,xm(k)–),F(yn(k)–,xn(k)–)

))
≤ ϕ

(
max

(
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

))
– φ

(
max

(
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

))
. ()

Combining () and (), we obtain

max
(
ϕ
(
d(gxn(k), gxm(k))

)
,ϕ

(
d(gyn(k), gym(k))

))
≤ ϕ

(
max

(
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

))
– φ

(
max

(
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

))
. ()

Using the triangular inequality and (), we get

d(gxn(k), gxm(k)) ≤ d(gxn(k), gxn(k)–) + d(gxn(k)–, gxm(k))

< d(gxn(k), gxn(k)–) + ε ()

and

d(gyn(k), gym(k)) ≤ d(gyn(k), gyn(k)–) + d(gyn(k)–, gym(k))

< d(gyn(k), gyn(k)–) + ε. ()

Using (), () and (), we have

ε ≤ max
(
d(gxn(k), gxm(k)),d(gyn(k), gym(k))

)
≤ max

(
d(gxn(k), gxn(k)–),d(gyn(k), gyn(k)–)

)
+ ε.

Letting k → ∞ in the last inequality and using (), we have

lim
k→∞

max
(
d(gxn(k), gxm(k)),d(gyn(k), gym(k))

)
= ε. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/194
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Similarly, using the triangular inequality and (), we have

d(gxn(k)–, gxm(k)–) ≤ d(gxn(k)–, gxm(k)) + d(gxm(k), gxm(k)–)

< ε + d(gxm(k), gxm(k)–) ()

and

d(gyn(k)–, gym(k)–) ≤ d(gyn(k)–, gym(k)) + d(gym(k), gym(k)–)

< ε + d(gym(k), gym(k)–). ()

Combining () and (), we obtain

max
(
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

)
<max

(
d(gxm(k), gxm(k)–),d(gym(k), gym(k)–)

)
+ ε. ()

Using the triangular inequality, we have

d(gxn(k), gxm(k)) ≤ d(gxn(k), gxn(k)–) + d(gxn(k)–, gxm(k)–)

+ d(gxm(k)–, gxm(k))

and

d(gyn(k), gym(k)) ≤ d(gyn(k), gyn(k)–) + d(gyn(k)–, gym(k)–)

+ d(gym(k)–, gym(k)).

Using the two last inequalities and (), we have

ε ≤ max
(
d(gxn(k), gxm(k)),d(gyn(k), gym(k))

)
≤ max

(
d(gxn(k), gxn(k)–),d(gyn(k), gyn(k)–)

)
+max

(
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

)
+max

(
d(gxm(l)–, gxm(k)),d(gym(k)–, gym(k))

)
. ()

Using () and (), we get

ε ≤ max
(
d(gxn(k), gxn(k)–),d(gyn(k), gyn(k)–)

)
≤ max

(
d(gxm(k)–, gxm(k)),d(gym(k)–, gymk))

)
≤ max

(
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

)
< max

(
d(gxm(k), gxm(k)–),d(gym(k), gym(k)–)

)
+ ε.

Letting k → ∞ in the last inequality and using (), we obtain

lim
k→∞

max
(
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

)
= ε. ()
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Finally, letting k → ∞ in () and using (), () and the continuity of ϕ and φ, we have

ϕ(ε)≤ ϕ(ε) – φ(ε) ≤ ϕ(ε)

and, consequently, φ(ε) = . Since φ is an altering distance function, we get ε = , and this
is a contradiction. This proves our claim.
Since X is a complete metric space, there exist x, y ∈ X such that

lim
n→∞F(xn, yn) = lim

n→∞ gxn = x and lim
n→∞F(yn,xn) = lim

n→∞ gyn = y. ()

Since F and g are compatible mappings, we have

lim
n→∞d

(
g
(
F(xn, yn)

)
,F(gxn, gyn)

)
=  ()

and

lim
n→∞d

(
g
(
F(yn,xn)

)
,F(gyn, gxn)

)
= . ()

We now show that gx = F(x, y) and gy = F(y,x). Suppose that assumption (a) holds. For
all n≥ , we have

d
(
gx,F(gxn, gyn)

) ≤ d
(
gx, g

(
F(xn, yn)

))
+ d

(
g
(
F(xn, yn)

)
,F(gxn, gyn)

)
.

Taking the limit as n → ∞, using (), (), () and the fact that F and g are continu-
ous, we have d(gx,F(x, y)) = . Similarly, using (), (), () and the fact that F and g are
continuous, we have d(gy,F(y,x)) = . Hence, we get

gx = F(x, y) and gy = F(y,x).

Finally, suppose that (b) holds. In fact, since {gxn} is non-decreasing and gxn → x and
{gyn} is non-increasing and gyn → y, by our assumption, gxn � x and gyn � y for every
n ∈N .
Applying (), we have

ϕ
(
d
(
F(x, y),F(xn, yn)

)) ≤ ϕ
(
max

(
d(gx, gxn),d(gy, gyn)

))
– φ(max

(
d(gx, gxn),d(gy, gyn)

)
≤ ϕ

(
max

(
d(gx, gxn),d(gy, gyn)

))
,

and as ϕ is non-decreasing, we obtain

d
(
F(x, y),F(xn, yn)

) ≤ max
(
d(gx, gxn),d(gy, gyn)

)
. ()

Using the triangular inequality and (), we get

d
(
gx,F(x, y)

) ≤ lim
n→∞d(gx, ggxn+) + d

(
ggxn+,F(x, y)

)

= lim
n→∞d(gx, ggxn+) + d

(
F(x, y), gF(xn, yn)

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/194
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= lim
n→∞d(gx, ggxn+) + d

(
F(x, y),F(gxn, gyn)

)

≤ d(gx, ggxn+) +max
(
d(gx, ggxn),d(gy, ggyn)

)
.

As xn → x and yn → y, taking n→ ∞ in the last inequality, we have

d
(
gx,F(x, y)

)
= ,

and, consequently, F(x, y) = gx.
Using a similar argument, it can be proved that gy = F(y,x) and this completes the

proof. �

Corollary . [] Let (X,�) be a partially ordered set and suppose that there exists a met-
ric d in X such that (X,d) is a complete metric space. Let F : X × X → X be a mapping
having the mixed monotone property on X such that

ϕ
(
d
(
F(x, y),F(u, v)

)) ≤ ϕ
(
max

(
d(x,u),d(y, v)

))
– φ

(
max

(
d(x,u),d(y, v)

))

for all x, y,u, v ∈ X with x � u and y � v, where ϕ and φ are altering distance functions.
Moreover, suppose either
(a) F is continuous, or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y� yn for all n.

If there exist x, y ∈ X with x � F(x, y) and y � F(y,x), then F has a coupled fixed
point.

Corollary . [] Let (X,�) be a partially ordered set and suppose that there exists a met-
ric d in X such that (X,d) is a complete metric space. Let F : X × X → X be a mapping
having the mixed monotone property on X such that

d
(
F(x, y),F(u, v)

) ≤ k

[
d(x,u) + d(y, v)

]

for all x, y,u, v ∈ X with x� u and y � v.Moreover, suppose either
(a) F is continuous, or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y� yn for all n.

If there exist x, y ∈ X with x � F(x, y) and y � F(y,x), then F has a coupled fixed
point.

Proof Let ϕ = identity and φ = ( – 
k )ϕ and g is the identity function. Then applying The-

orem ., we get Corollary .. �

3 Uniqueness of the coupled coincidence point
In this section, we prove the uniqueness of the coupled coincidence point. Note that if
(X,�) is a partially ordered set, then we endow the product X × X with the following
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partial order relation, for all (x, y), (u, v) ∈ X ×X,

(x, y) � (u, v) ⇔ x� u, y � v.

Theorem . In addition to the hypotheses of Theorem ., suppose that for every (x, y),
(z, t) in X × X, there exists a (u, v) in X × X that is comparable to (x, y) and (z, t), then F
and g have a unique coupled coincidence point.

Proof Suppose that (x, y) and (z, t) are coupled coincidence points of F , that is, gx = F(x, y),
gy = F(x, y), gz = f (z, t) and gt = F(t, z).
Let (u, v) be an element ofX×X comparable to (x, y) and (z, t). Suppose that (x, y)� (u, v)

(the proof is similar in the other case).
We construct the sequences {gun} and {gvn} as follows:

u = u, v = v, gun+ = F(un, vn), gvn+ = F(vn,un).

We claim that (x, y) � (un, vn) for each n ∈N . In fact, we will use mathematical induction.
For n = , as (x, y) � (u, v), this means u = u � x and y � v = v and, consequently,

(u, v) � (x, y). Suppose that (x, y) � (un, vn), then since F has the mixed g-monotone
property and since g is monotone increasing, we get

gun+ = F(un, vn) � F(x, vn) � F(x, y) = gx,

gvn+ = F(vn,un) � F(y,un) � F(y,x) = gy,

and this proves our claim.
Now, since un � x and un � y, using (), we get

ϕ
(
d(gx, gun)

)
= ϕ

(
d
(
F(x, y),F(un–, vn–)

))
≤ ϕ

(
max

(
d(gx, gun–),d(gy, gvn–)

))
– φ

(
max

(
d(gx, gun–),d(gy, gvn–)

))
≤ ϕ

(
max

(
d(gx, gun–),d(gy, gvn–)

))
. ()

In the same way, we have

ϕ
(
d(gy, gvn)

)
= ϕ

(
d
(
F(y,x),F(vn–,un–)

))
= ϕ

(
d
(
F(vn–,un–),F(y,x)

))
≤ ϕ

(
max

(
d(gx, gun–),d(gy, gvn–)

))
– φ

(
max

(
d(gx, gun–),d(gy, gvn–)

))
≤ ϕ

(
max

(
d(gx, gun–),d(gy, gvn–)

))
. ()

Using () and () and the fact that φ is non-decreasing, we get

ϕ
(
max

(
d(gx, gun),d(gy, gvn)

))
= max

(
ϕ
(
d(gx, gun),d(gy, gvn)

))
≤ ϕ(max

(
d
(
gx, gun–,d(gy, gvn–)

))

http://www.fixedpointtheoryandapplications.com/content/2013/1/194
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– φ
(
max

(
d(gx, gun–),d(gy, gvn–)

))
≤ ϕ

(
max

(
d(gx, gun–),d(gy, gvn–)

))
. ()

Using the last inequality and the fact that ϕ is non-decreasing, we have

max
(
d(gx, gun),d(gy, gvn)

) ≤ max
(
d(gx, gun–),d(gy, gvn–)

)
.

Thus the sequence (max(d(gx, gun),d(gy, gvn))) is decreasing and non-negative, and hence,
for certain r ≥ ,

lim
n→∞

(
max

(
d(gx, gun),d(gy, gvn)

))
= r. ()

Using () and letting n→ ∞ in (), we have

ϕ(r) ≤ ϕ(r) – φ(r) < ϕ(r).

This gives φ(r) =  and hence r = .
Finally, since limn→∞(max(d(gx, gun),d(gy, gvn))) = , we have gun → gx and gvn → gy.

Using a similar argument for (z, t), we can get gun → gz and gvn → gt, and the uniqueness
of the limit gives gx = gz and gy = gt. This completes the proof. �

Theorem . Under the assumptions of Theorem ., suppose that x and y are compa-
rable, then the coupled coincidence point (x, y) ∈ X ×X satisfies x = y.

Proof Assume x � y (a similar argument applies to y � x).
We claim that xn � yn for all n, where gxn = F(xn, yn) and gyn+ = F(yn,xn).
Obviously, the inequality is satisfied for n = . Suppose xn � yn. Using the mixed

g-monotone property of F , we have

gxn+ = F(xn, yn) � F(yn, yn) � F(yn,xn) = gyn+,

and since g is non-decreasing, this proves our claim.
Now, using () and xn � yn, we get

ϕ
(
d(gxn+, gyn+)

)
= ϕ

(
d(gyn+, gxn+)

)
= ϕ

(
d
(
F(yn,xn),F(xn, yn)

))
≤ ϕ

(
d(gxn, gyn)

)
– φ

(
d(gxn, gyn)

) ≤ ϕ
(
d(gxn, gyn)

)
, ()

and since ϕ is non-decreasing, we get

d(gxn+, gyn+) ≤ d(gxn, gyn).

We notice that the sequence d(gxn, gyn) is decreasing. Thus, limn→∞ d(gxn, gyn) = r for
certain r > . Hence,

ϕ(r) ≤ ϕ(r) – φ(r) ≤ ϕ(r),

and this gives us r = .
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Since gxn → x, gyn → y and limn→∞ d(gxn, gyn) = , we have

 = lim
n→∞d(gxn, gyn) = d(gxn, gyn) = d

(
lim
n→∞ gxn, limn→∞ gyn

)
= d(x, y)

and thus x = y. This completes the proof. �

4 Example
The following example illustrates our main result.

Example . LetX = [, ]. Then (X,≤) is a partially ordered set with the natural ordering
of real numbers. Let

d(x, y) = |x – y| for x, y ∈ [, ].

Then (X,d) is a complete metric space. Let g : X → X be defined as

g(x) = x for all x ∈ X,

and let F : X ×X → X be defined as

F(x, y) =

⎧⎨
⎩

x–y
 if x, y ∈ [, ],x≥ y,

 if x < y.

Then, F satisfies the mixed g-monotone property.
Let ϕ : [,∞)→ [,∞) be defined as

ϕ(t) =


t for t ∈ [,∞),

and let φ : [,∞) → [,∞) be defined as

φ(t) =


t for t ∈ [,∞).

Let {xn} and {yn} be two sequences in X such that limn→∞ F(xn, yn) = a, limn→∞ gxn = a,
limn→∞ F(yn,xn) = b and limn→∞ gyn = b. Then, obviously, a =  and b = . Now, for all
n≥ ,

g(xn) = xn, g(yn) = yn,

F(xn, yn) =

⎧⎨
⎩

xn–yn
 if xn ≥ yn,

 if xn < yn.

and

F(yn,xn) =

⎧⎨
⎩

yn–xn
 if yn ≥ xn,

 if yn < xn.

http://www.fixedpointtheoryandapplications.com/content/2013/1/194
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Then it follows that

lim
n→∞d

(
g
(
F(xn, yn)

)
,F(gxn, gyn)

)
= 

and

lim
n→∞d

(
g
(
F(yn,xn)

)
,F(gyn, gxn)

)
= .

Hence, the mappings F and g are compatible in X. Also, x =  and y = c (c > ) are two
points in X such that

g(x) = g() =  = F(, c) = F(x, y)

and

g(y) = g(c) = c ≥ c


= F(c, ) = F(y,x).

We next verify the contraction of Theorem .. We take x, y,u, v,∈ X such that gx ≥ gu
and gy ≤ gv, that is, x ≥ u and y ≤ v.
We consider the following cases.
Case . x ≥ y, u ≥ v. Then

ϕ
(
d
(
F(x, y),F(u, v)

))
=



[
d(F(x, y),F(u, v)

]

=



[
d
(
x – y


,
u – v



)]

=



∣∣∣∣ (x
 – y) – (u – v)



∣∣∣∣
≤ 


|x – u| + |y – v|



=



(
d(gx, gu) + d(gy, gv)



)

≤ 


[
max(d(gx, gu),d(gy, gv)

]

≤ 

[
max(d(gx, gu),d(gy, gv)

]

–


[
max(d(gx, gu),d(gy, gv)

]

= ϕ
(
max

{
d(gx, gu),d(gy, gv)

})
– φ

(
max

{
d(gx, gu),d(gy, gv)

})
.

Case . x ≥ y, u < v Then

ϕ
(
d
(
F(x, y),F(u, v)

))
=



[
d(F(x, y),F(u, v)

]

=



[
d
(
x – y


, 

)]
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=



|x – y|


≤ 


|v + x – y – u|


=



|(v – y) – (u – x)|


≤ 


|v – y| + |u – x|


=



|u – x| + |y – v|


=



( |u – x| + |y – v|


)

=



(
d(gx, gu) + d(gy, gv)



)

≤ 


(
max

{
d(gx, gu),d(gy, gv)

})

=


(
max

{
d(gx, gu),d(gy, gv)

})

–


(
max

{
d(gx, gu),d(gy, gv)

})

= ϕ
(
max

{
d(gx, gu),d(gy, gv)

})
– φ

(
max

{
d(gx, gu),d(gy, gv)

})
.

Case . x < y and u ≥ v. Then

ϕ
(
d
(
F(x, y),F(u, v)

))
=




[
d
(
,

u – v



)]

=



|u – v|


=



|u + x – v – x|


=



|(x – v) + (u – x)|


(since y > x)

≤ 


|y – v| + |u – x|


=



( |u – x| + |y – v|


)

=



(
d(gx, gu) + d(gy, gv)



)

≤ 


(
max

{
d(gx, gu),d(gy, gv)

})

=


(
max

{
d(gx, gu),d(gy, gv)

})

–


(
max

{
d(gx, gu),d(gy, gv)

})
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= ϕ
(
max

{
d(gx, gu),d(gy, gv)

})
– φ

(
max

{
d(gx, gu),d(gy, gv)

})
.

Case . x < y and u < v with x ≤ u and y ≥ v. Then F(x, y) =  and F(u, v) = , that is,

ϕ
(
d
(
F(x, y),F(u, v)

))
= ϕ

(
d(, )

)
= ϕ() = .

Obviously, the contraction of Theorem . is satisfied.
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