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The purpose of this paper is to present a fixed point theorem for generalized contractions in
partially ordered complete metric spaces. We also present an application to first-order ordinary
differential equations.

1. Introduction

Existence of fixed point in partially ordered sets has been considered recently in [1–17].
Tarski’s theorem is used in [9] to show the existence of solutions for fuzzy equations and
in [11] to prove existence theorems for fuzzy differential equations. In [2, 6, 7, 10, 13] some
applications to ordinary differential equations and to matrix equations are presented. In [3–
5, 17] some fixed point theorems are proved for a mixedmonotone mapping in a metric space
endowed with partial order and the authors apply their results to problems of existence and
uniqueness of solutions for some boundary value problems.

In the context of ordered metric spaces, the usual contraction is weakened but at the
expense that the operator is monotone. The main tool in the proof of the results in this context
combines the ideas in the contraction principle with those in themonotone iterative technique
[18].

Let S denote the class of the class of the functions β : [0,∞) → [0, 1) which satisfies
the condition

β(tn) −→ 1 =⇒ tn −→ 0. (1.1)

In [19] the following generalization of Banach’s contraction principle appears.
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Theorem 1.1. Let (X, d) be a complete metric space and let T : X → X be a mapping satisfying

d
(
Tx, Ty

) ≤ β
(
d
(
x, y

)) · d(x, y), for x, y ∈ X, (1.2)

where β ∈ S. Then T has a unique fixed point z ∈ X and {Tn(x)} converges to z for each x ∈ X.

Recently, in [2] the authors prove a version of Theorem 1.1 in the context of ordered
complete metric spaces. More precisely, they prove the following result.

Theorem 1.2. Let (X,≤) be a partially ordered set and suppose that there exists a metric d in X such
that (X, d) is a complete metric space. Let T : X → X be a nondecreasing mapping such that

d
(
Tx, Ty

) ≤ β
(
d
(
x, y

)) · d(x, y), for x, y ∈ X with x ≤ y, (1.3)

where β ∈ S. Assume that either T is continuous or X satisfies the following condition:

if {xn} is a nondecreasing sequence in X such that xn −→ x, then xn ≤ x ∀n ∈ N. (1.4)

Besides, suppose that for each x, y ∈ X there exists z ∈ X which is comparable to x and y. If there
exists x0 ∈ X with x0 ≤ Tx0, then T has a unique fixed point.

The purpose of this paper is to generalize Theorem 1.2 with the help of the altering
functions.

We recall the definition of such functions.

Definition 1.3. An altering function is a function ψ : [0,∞) → [0,∞) which satisfies the
following.

(a) ψ is continuous and nondecreasing.

(b) ψ(t) = 0 if and only if t = 0.

Altering functions have been used in metric fixed point theory in recent papers [20–
22].

In [7] the authors use these functions and they prove some fixed point theorems in
ordered metric spaces.

2. Fixed Point Theorems

Definition 2.1. If (X,≤) is a partially ordered set and T : X → X, we say that T is monotone
nondecreasing if for x, y ∈ X,

x ≤ y =⇒ T(x) ≤ T
(
y
)
. (2.1)

This definition coincides with the notion of a nondecreasing function in the caseX = R

and ≤ represents the usual total order in R.
In the sequel, we prove the main result of the paper.
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Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that there exists a metric d in X such
that (X, d) is a complete metric space. Let T : X → X be a continuous and nondecreasing mapping
such that

ψ
(
d
(
T(x), T

(
y
))) ≤ β

(
d
(
x, y

)) · ψ(d(x, y)), for x ≥ y, (2.2)

where ψ is an altering function and β ∈ S.
If there exist x0 ∈ X with x0 ≤ T(x0), then T has a fixed point.

Proof. If T(x0) = x0, then the proof is finished. Suppose that x0 < T(x0). Since x0 < T(x0) and
T is a nondecreasing mapping, we obtain by induction that

x0 < T(x0) ≤ T2(x0) ≤ T3(x0) ≤ · · · ≤ Tn(x0) ≤ Tn+1(x0) ≤ · · ·. (2.3)

Put xn+1 = T(xn). Taking into account that β ∈ S and since xn ≤ xn+1 for each n ∈ N, then, by
(2.2), we get

ψ(d(xn+1, xn)) = ψ(d(T(xn), T(xn−1)))

≤ β(d(xn, xn−1)) · ψ(d(xn, xn−1))

≤ ψ(d(xn, xn−1)).

(2.4)

Using the fact that ψ is nondecreasing, we have

d(xn+1, xn) ≤ d(xn, xn−1). (2.5)

If there exists n0 ∈ N such that d(xn0 , xn0−1) = 0, then xn0 = T(xn0−1) = xn0−1 and xn0−1 is a fixed
point and the proof is finished. In another case, suppose that d(xn+1, xn)/= 0 for all n ∈ N.
Then, taking into account (2.5), the sequence {d(xn+1, xn)} is decreasing and bounded below,
so

lim
n→∞

d(xn+1, xn) = r ≥ 0 (2.6)

Assume that r > 0.
Then, from (2.4), we have

ψ(d(xn+1, xn))
ψ(d(xn, xn−1))

≤ β(d(xn, xn−1)) < 1. (2.7)

Letting n → ∞ in the last inequality and by the fact that ψ is an altering function, we get

1 ≤ lim
n→∞

β(d(xn, xn−1)) ≤ 1 (2.8)
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and, consequently, limn→∞β(d(xn, xn−1)) = 1. Since β ∈ S this implies that limn→∞(d(xn+1,
xn)) = 0 and this contradicts our assumption that r > 0.Hence,

lim
n→∞

(d(xn+1, xn)) = 0. (2.9)

In what follows, we will show that {xn} is a Cauchy sequence.
Suppose that {xn} is not a Cauchy sequence. Then, there exists ε > 0 for which we can

find subsequences {xm(k)} and {xn(k)} of {xn}with n(k) > m(k) > k such that

d
(
xn(k), xm(k)

) ≥ ε. (2.10)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the smallest
integer with n(k) > m(k) and satisfying (2.10), then

d
(
xn(k)−1, xm(k)

)
< ε. (2.11)

Using (2.10), (2.11), and the triangular inequality, we have

ε ≤ d
(
xn(k), xm(k)

)

≤ d
(
xn(k), xn(k)−1

)
+ d

(
xn(k)−1, xm(k)

)

< d
(
xn(k), xn(k)−1

)
+ ε.

(2.12)

Letting k → ∞ and using (2.9), we get

lim
k→∞

d
(
xn(k), xm(k)

)
= ε. (2.13)

Again, the triangular inequality gives us

d
(
xn(k), xm(k)

) ≤ d
(
xn(k), xn(k)−1

)
+ d

(
xn(k)−1, xm(k)−1

)
+ d

(
xm(k)−1, xm(k)

)
,

d
(
xn(k)−1, xm(k)−1

) ≤ d
(
xn(k)−1, xn(k)

)
+ d

(
xn(k), xm(k)

)
+ d

(
xm(k), xm(k)−1

)
.

(2.14)

Letting k → ∞ in the above two inequalities and using (2.9) and (2.13), we have

lim
k→∞

d
(
xn(k)−1, xm(k)−1

)
= ε. (2.15)

As n(k) > m(k) and xn(k)−1 ≥ xm(k)−1, by (2.2), we obtain

ψ
(
d
(
xn(k), xm(k)

))
= ψ

(
d
(
Txn(k)−1, Txm(k)−1

))

≤ β
(
d
(
xn(k)−1, xm(k)−1

)) · ψ(d(xn(k)−1, xm(k)−1
))

≤ ψ
(
d
(
xn(k)−1, xm(k)−1

))
.

(2.16)
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Taking into account (2.13) and (2.15) and the fact that ψ is continuous and letting
k → ∞ in (2.16), we get

ψ(ε) ≤ lim
k→∞

β
(
d
(
xn(k)−1, xm(k)−1

)) · ψ(ε) ≤ ψ(ε). (2.17)

As ψ is an altering function, ψ(ε) > 0, the last inequality gives us

lim
k→∞

β
(
d
(
xn(k)−1, xm(k)−1

))
= 1. (2.18)

Since β ∈ S, this means that

lim
k→∞

d
(
xn(k)−1, xm(k)−1

)
= 0. (2.19)

This fact and (2.15) give us ε = 0 which is a contradiction.
This shows that {xn} is a Cauchy sequence.
Since (X, d) is a complete metric space, there exists z ∈ X such that limn→∞xn = z.

Moreover, the continuity of T implies that

z = lim
n→∞

T(xn) = lim
n→∞

xn+1 = Tz, (2.20)

and this proves that z is a fixed point.

In what follows, we prove that Theorem 2.2 is still valid for T not necessarily
continuous, assuming the following hypothesis in X (which appears in [10, Theorem 1]):

if (xn) is a nondecreasing sequence in X such that xn −→ x, then xn ≤ x ∀n ∈ N. (2.21)

Theorem 2.3. Let (X,≤) be a partially ordered set and suppose that there exists a metric d in X
such that (X, d) is a complete metric space. Assume that X satisfies (2.21). Let T : X → X be a
nondecreasing mapping such that

ψ
(
d
(
T(x), T

(
y
))) ≤ β

(
d
(
x, y

)) · ψ(d(x, y)), for x ≥ y, (2.22)

where ψ is an altering function and β ∈ S. If there exists x0 ∈ X with x0 ≤ T(x0), then T has a fixed
point.

Proof. Following the proof of Theorem 2.2, we only have to check that T(z) = z. As (xn) is a
nondecreasing sequence in X and limn→∞xn = z then, by (2.21), we have xn ≤ z for all n ∈ N,
and, consequently,

ψ
(
d
(
xn+1, f(z)

))
= ψ(d(T(xn), T(z))) ≤ β(d(xn, z)) · ψ(d(xn, z)) ≤ ψ(d(xn, z)). (2.23)



6 Fixed Point Theory and Applications

Letting n → ∞ and using the continuity of ψ, we have

0 ≤ ψ(d(z, T(z))) ≤ ψ(0) = 0, (2.24)

or, equivalently,

ψ(d(z, T(z))) = 0. (2.25)

As ψ is an altering function, this gives us d(z, T(z)) = 0 and, thus, T(z) = z.

Now, we present an example where it can be appreciated that the hypotheses in
Theorems 2.2 and 2.3 do not guarantee uniqueness of the fixed point. This example appears
in [10].

Let X = {(1, 0), (0, 1)} ⊂ R
2 and consider the usual order

(
x, y

) ≤ (z, t) ⇐⇒ x ≤ z, y ≤ t. (2.26)

(X,≤) is a partially ordered set whose different elements are not comparable. Besides, (X, d2)
is a complete metric space considering d2 as the Euclidean distance. The identity map
T(x, y) = (x, y) is trivially continuous and nondecreasing and condition (2.2) of Theorem 2.2
is satisfied since elements inX are only comparable to themselves. Moreover, (1, 0) ≤ T(1, 0) =
(1, 0) and T has two fixed points in X.

In what follows, we give a sufficient condition for the uniqueness of the fixed point in
Theorems 2.2 and 2.3. This condition appears in [16] and says that

for x, y ∈ X, there exists a lower bound or an upper bound. (2.27)

In [10] it is proved that condition (2.27) is equivalent to

for x, y ∈ X, there exists z ∈ X which is comparable to x and y. (2.28)

Theorem 2.4. Adding condition (2.28) to the hypotheses of Theorem 2.2 (resp., Theorem 2.3), we
obtain uniqueness of the fixed point of f .

Proof. Suppose that there exist y, z ∈ X which are fixed points of T and y /= z. We distinguish
two cases.

Case 1. If y and z are comparable, then Tn(y) = y and Tn(z) = z are comparable for n =
0, 1, 2, . . . . Using the contractive condition appearing in Theorem 2.2 (or Theorem 2.3) and
the fact that β ∈ S, we get

ψ
(
d
(
y, z

))
= ψ

(
d
(
Tn(y

)
, Tn(z)

))

≤ β
(
d
(
Tn−1(y

)
, Tn−1(z)

))
· ψ

(
d
(
Tn−1(y

)
, Tn−1(z)

))

≤ β
(
d
(
y, z

)) · ψ(d(y, z))

< ψ
(
d
(
y, z

))
,

(2.29)

which is a contradiction.
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Case 2. Using condition (2.28), there exists x ∈ X comparable to y and z. Monotonicity of T
implies that Tn(x) is comparable to Tn(y) = y and to Tn(z) = z, for n = 0, 1, 2, . . . . Moreover,
as β ∈ S, we get

ψ(d(z, Tn(x))) = ψ(d(Tn(z), Tn(x)))

≤ β
(
d
(
Tn−1(z), Tn−1(x)

))
· ψ

(
d
(
Tn−1(z), Tn−1(x)

))

= β
(
d
(
z, Tn−1(x)

))
· ψ

(
d
(
z, Tn−1(x)

))

≤ ψ
(
d
(
z, Tn−1(x)

))
.

(2.30)

Since ψ is nondecreasing the above inequality gives us

d(z, Tn(x)) ≤ d
(
z, Tn−1(x)

)
. (2.31)

Thus, limn→∞d(z, Tn(x)) = γ ≥ 0.

Assume that γ > 0.
Taking into account that ψ is an altering function and letting n → ∞ in (2.30), we

obtain

ψ
(
γ
) ≤ lim

n→∞
β
(
d
(
z, Tn−1(x)

))
· ψ(γ) ≤ ψ

(
γ
)
, (2.32)

and this implies that limn→∞β(d(z, Tn−1(x))) = 1.
Since β ∈ S then we get

lim
n→∞

d
(
z, Tn−1(x)

)
= 0, (2.33)

and, consequently, γ = 0, which is a contradiction.
Hence, limn→∞d(z, Tn(x)) = 0.
Analogously, it can be proved that

lim
n→∞

d
(
y, Tn(x)

)
= 0. (2.34)

Finally, as

d
(
z, y

) ≤ d(z, Tn(x)) + d
(
Tn(x), y

)
(2.35)

and taking limit, we obtain d(z, y) = 0.
This finishes the proof.

Remark 2.5. Under the assumptions of Theorem 2.4, it can be proved that for every x ∈ X,
limn→∞Tn(x) = z, where z is the fixed point (i.e., the operator T is Picard).
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In fact, for x ∈ X and x comparable to z then using the same argument that is in Case
1 of Theorem 2.4 can prove that limn→∞d(z, Tn(x)) = 0 and, hence, limn→∞Tn(x) = z.

If x is not comparable to z, we take that y ∈ X is comparable to x and z. Using a similar
argument that is in Case 2 of Theorem 2.4, we obtain

lim
n→∞

d
(
z, Tn(y

))
= 0, lim

n→∞
d
(
Tn(x), Tn(y

))
= 0. (2.36)

Finally,

d(z, Tn(x)) ≤ d
(
z, Tn(y

))
+ d

(
Tn(y

)
, Tn(x)

)
, (2.37)

and taking limit as n → ∞, we obtain limn→∞d(z, Tn(x)) = 0 or, equivalently, limn→∞Tn(x) =
z.

Remark 2.6. Notice that if (X,≤) is totally ordered, condition (2.28) is obviously satisfied.

Remark 2.7. Considering ψ the identity mapping in Theorem 2.4, we obtain Theorem 1.2,
being the main result of [2].

3. Application to Ordinary Differential Equations

In this section we present an example where our results can be applied.
This example is inspired by [10].
We study the existence of solution for the following first-order periodic problem

u′(t) = f(t, u(t)), t ∈ [0, T],

u(0) = u(T),
(3.1)

where T > 0 and f : I × R → R is a continuous function.
Previously, we considered the space C(I) (I = [0, T]) of continuous functions defined

on I. Obviously, this space with the metric given by

d
(
x, y

)
= sup

{∣∣x(t) − y(t)
∣∣ : t ∈ I

}
, for x, y ∈ C(I), (3.2)

is a complete metric space. C(I) can also be equipped with a partial order given by

x, y ∈ C(I), x ≤ y ⇐⇒ x(t) ≤ y(t), for t ∈ I. (3.3)

Clearly, (C(I),≤) satisfies condition (2.28), since for x, y ∈ C(I) the functionmax{x, y} ∈ C(I).
Moreover, in [10] it is proved that (C(I),≤) with the above-mentioned metric satisfies

condition (2.21).
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Now, let A denote the class of functions φ : [0,∞) → [0,∞) satisfying the following.

(i) φ is nondecreasing.

(ii) φ(x) < x, for x > 0.

(iii) β(x) = φ(x)/x ∈ S,

where S is the class of functions defined in Section 1.
Examples of such functions are φ(t) = μ · t, with 0 ≤ μ < 1, φ(t) = t/(1 + t), and

φ(t) = ln(1 + t).
Recall now the following definition

Definition 3.1. A lower solution for (3.1) is a function α ∈ C1(I) such that

α′(t) ≤ f(t, α(t)) for t ∈ I,

α(0) ≤ α(T).
(3.4)

Now, we present the following theorem about the existence of solution for problem
(3.1) in presence of a lower solution.

Theorem 3.2. Consider problem (3.1) with f : I × R → R continuous and suppose that there exist
λ, α > 0 with

α ≤
(

2λ
(
eλT − 1

)

T
(
eλT + 1

)

)1/2

, (3.5)

such that for x, y ∈ R with x ≤ y

0 ≤ f
(
t, y

)
+ λy − [

f(t, x) + λx
] ≤ α

√(
y − x

)
φ
(
y − x

)
, (3.6)

where φ ∈ A. Then the existence of a lower solution for (3.1) provides the existence of a unique
solution of (3.1).

Proof. Problem (3.1) can be written as

u′(t) + λu(t) = f(t, u(t)) + λu(t) for t ∈ I = [0, T],

u(0) = u(T).
(3.7)

This problem is equivalent to the integral equation

u(t) =
∫T

0
G(t, s)

[
f(s, u(s)) + λu(s)

]
ds, (3.8)
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where G(t, s) is the Green function given by

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eλ(T+s−t)

eλT − 1
0 ≤ s < t ≤ T,

eλ(s−t)

eλT − 1
0 ≤ t < s ≤ T.

(3.9)

Define F : C(I) → C(I) by

(Fu)(t) =
∫T

0
G(t, s)

[
f(s, u(s)) + λu(s)

]
ds. (3.10)

Notice that if u ∈ C(I) is a fixed point of F, then u ∈ C1(I) is a solution of (3.1).
In the sequel, we check that hypotheses in Theorem 2.4 are satisfied.
The mapping F is nondecreasing since, by hypothesis, for u ≥ v

f(t, u) + λu ≥ f(t, v) + λv, (3.11)

and this implies, taking into account that G(t, s) > 0 for (t, s) ∈ I × I, that

(Fu)(t) =
∫T

0
G(t, s)

[
f(s, u(s)) + λu(s)

]
ds ≥

∫T

0
G(t, s)

[
f(s, v(s)) + λv(s)

]
ds = (Fv)(t).

(3.12)

Besides, for u ≥ v, we have

d(Fu, Fv) = sup
t∈I

|(Fu)(t) − (Fv)(t)|

= sup
t∈I

((Fu)(t) − (Fv)(t))

= sup
t∈I

∫T

0
G(t, s)

[
f(s, u(s)) + λu(s) − f(s, v(s)) − λv(s)

]
ds

≤ sup
t∈I

∫T

0
G(t, s)α

√
(u(s) − v(s))φ(u(s) − v(s))ds

= α sup
t∈I

∫T

0
G(t, s)

√
(u(s) − v(s))φ(u(s) − v(s))ds.

(3.13)

Using the Cauchy-Schwarz inequality in the last integral, we get

∫T

0
G(t, s)α

√
(u(s) − v(s))φ(u(s) − v(s))ds

≤
(∫T

0
G(t, s)2ds

)1/2(∫T

0
(u(s) − v(s))φ(u(s) − v(s))ds

)1/2

.

(3.14)
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The first integral gives us

∫T

0
G(t, s)2ds =

∫ t

0
G(t, s)2ds +

∫T

t

G(t, s)2ds

=
∫ t

0

e2λ(T+s−t)
(
eλT − 1

)2 ds +
∫T

t

e2λ(s−t)
(
eλT − 1

)2 ds

=
1

2λ
(
eλT − 1

)2

(
e2λT − 1

)

=
eλT + 1

2λ
(
eλT − 1

) .

(3.15)

As φ is nondecreasing, the second integral in (3.14) can be estimated by

∫T

0
(u(s) − v(s))φ(u(s) − v(s))ds ≤ T · ‖u − v‖ · φ(‖u − v‖) = d(u, v) · φ(d(u, v)) · T. (3.16)

Taking into account (3.14), (3.15), and (3.16), from (3.13)we get

d(Fu, Fv) ≤ α ·
(

eλT + 1
2λ

(
eλT − 1

)

)1/2

· d(u, v)1/2 · φ(d(u, v))1/2 · T1/2

= α ·
(

T · (eλT + 1
)

2λ
(
eλT − 1

)

)1/2

· d(u, v)1/2 · φ(d(u, v))1/2.
(3.17)

Since α ≤ (2λ(eλT − 1)/T · (eλT + 1))1/2, the last inequality gives us

d(Fu, Fv) ≤ d(u, v)1/2 · φ(d(u, v))1/2 (3.18)

or, equivalently,

d(Fu, Fv) ≤ d(u, v) ·
(
φ(d(u, v))
d(u, v)

)1/2

. (3.19)

This implies that

d(Fu, Fv)2 ≤ φ(d(u, v))
d(u, v)

· d(u, v)2. (3.20)

Putting ψ(x) = x2, which is an altering function, and β = φ(x)/x ∈ S because φ ∈ A, we have

ψ(d(Fu, Fv)) ≤ β(d(u, v)) · ψ(d(u, v)) for u ≥ v. (3.21)

This proves that the operator F satisfies condition (2.2) of Theorem 2.2.
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Finally, letting α(t) be a lower solution for (3.1), we claim that α ≤ F(α).
In fact,

α′(t) + λα(t) ≤ f(t, α(t)) + λα(t), for t ∈ I. (3.22)

Multiplying by eλt,

(
α(t)eλt

)′ ≤ [
f(t, α(t)) + λα(t)

]
eλt, for t ∈ I, (3.23)

and this gives us

α(t)eλt ≤ α(0) +
∫ t

0

[
f(s, α(s)) + λα(s)

]
eλsds, for t ∈ I. (3.24)

As α(0) ≤ α(T), the last inequality implies that

α(0)eλT ≤ α(T)eλT ≤ α(0) +
∫T

0

[
f(s, α(s)) + λα(s)

]
eλsds (3.25)

and so

α(0) ≤
∫T

0

eλs

eλT − 1
[
f(s, α(s)) + λα(s)

]
ds. (3.26)

This and (3.24) give us

α(t)eλt ≤
∫ t

0

eλ(T+s)

eλT − 1
[
f(s, α(s)) + λα(s)

]
ds +

∫T

t

eλs

eλT − 1
[
f(s, α(s)) + λα(s)

]
ds, (3.27)

and, consequently,

α(t) ≤
∫ t

0

eλ(T+s−t)

eλT − 1
[
f(s, α(s)) + λα(s)

]
ds +

∫T

t

eλ(s−t)

eλT − 1
[
f(s, α(s)) + λα(s)

]
ds

=
∫T

0
G(t, s)

[
f(s, α(s)) + λα(s)

]
ds

= (Fα)(t), for t ∈ I.

(3.28)

Finally, Theorem 2.4 gives that F has a unique fixed point.

Remark 3.3. Notice that if φ ∈ A, then ϕ(x) =
√
xφ(x) ∈ A. In fact, as φ ∈ A, then φ is

nondecreasing and, consequently, ϕ is also nondecreasing.
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Moreover, as φ(x) < x, then xφ(x) < x2, and, thus,
√
xφ(x) < x.

Finally, as ϕ(x)/x =
√
xφ(x)/x =

√
φ(x)/x, and as β(x) = φ(x)/x ∈ S, then it is easily

seen that ϕ(x)/x ∈ S.

Example 3.4. Consider φ0 : [0,∞) → [0,∞) given by

φ0(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, 0 ≤ t ≤ 2,

1
2
t − 1, 2 < t ≤ 4,

1
4
t, 4 < t.

(3.29)

It is easily seen that φ0 ∈ A. Taking into account Remark 3.3, φ(x) =
√
xφ0(x) ∈ A.

Now, we consider problem (3.1) with f : I × R → R continuous and suppose that
there exist λ, α > 0 with

α ≤
(

2λ
(
eλT − 1

)

T
(
eλT + 1

)

)1/2

(3.30)

such that for x, y ∈ R with y ≥ x

0 ≤ f
(
t, y

)
+ λy − [

f(t, x) + λx
] ≤ α

√(
y − x

)
φ0

(
y − x

)
= αφ

(
y − x

)
, (3.31)

where φ0 is the function above mentioned.
This example can be treated by our Theorem 3.2 but it cannot be covered by the results

of [6] because ψ(x) = x − φ(x) is not increasing.
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[4] L. Ćirić, N. Cakić, M. Rajović, and J. S. Ume, “Monotone generalized nonlinear contractions in
partially ordered metric spaces,” Fixed Point Theory and Applications, vol. 2008, Article ID 131294, 11
pages, 2008.



14 Fixed Point Theory and Applications

[5] T. Gnana Bhaskar and V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces
and applications,” Nonlinear Analysis: Theory, Methods & Applications, vol. 65, no. 7, pp. 1379–1393,
2006.

[6] J. Harjani and K. Sadarangani, “Fixed point theorems for weakly contractive mappings in partially
ordered sets,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 7-8, pp. 3403–3410, 2009.

[7] J. Harjani and K. Sadarangani, “Fixed point theorems for weakly contractive mappings in partially
ordered sets,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 7-8, pp. 3403–3410, 2009.
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[13] J. J. Nieto and R. Rodrı́guez-López, “Existence and uniqueness of fixed point in partially ordered
sets and applications to ordinary differential equations,” Acta Mathematica Sinica, vol. 23, no. 12, pp.
2205–2212, 2007.
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