 Research
 Open Access
 Published:
A short and sharpened way to approach fixed point results involving fuzzy \(\mathcal{H}\)contractive mappings
Fixed Point Theory and Applications volume 2020, Article number: 15 (2020)
Abstract
In the present paper, we adopt a short and sharpened approach to prove fixed point results involving fuzzy \(\mathcal{H}\)contractive mappings utilized in (Wardowski, Fuzzy Sets Syst. 125:245–252, 2013) and other related articles. In this process, we are able to relax some conditions utilized by earlier authors which in turn yields affirmative answers to some open questions raised by earlier authors.
Introduction
The existing literature on fuzzy sets and systems contains several definitions of fuzzy metric spaces [2–4]. The most popular definition of fuzzy metric space is essentially due to Kramosil and Michalek [5]. With a view to having a Hausdorff topology, George and Veeramani [6] modified the concept of fuzzy metric spaces initiated by Kramosil and Michalek [5]. Like other areas in mathematics, fuzzy metric fixed point theory is also flourishing and by now there exists a considerable body of literature on fuzzy metric fixed point theory. Gregori and Sapena [1] introduced the idea of fuzzy contractive mappings and proved a fuzzy version of the Banach contraction principle for such mappings in fuzzy metric spaces. Motivated by Samet et al. [7], Salimi et al. [8] introduced some classes of fuzzy contractive mappings and gave fixed point results which generalize and extend some comparable results in the existing literature.
In 2013, Wardowski [9] generalized the concept of fuzzy contractive mapping by introducing the concept of fuzzy \(\mathcal{H}\)contractive mapping and proved a fixed point result in Mcomplete fuzzy metric space. Thereafter, Shukla [10] defined fuzzy \(\mathcal{H}\)weak contractive mapping and utilized the same to extend the fixed point results due to Wardowski [9]. Later, Beg et al. [11] defined the notion of αfuzzy\(\mathcal {H}\)contractive mapping and established some existence and uniqueness of fixed point results in fuzzy Mcomplete metric spaces. For more results in this direction, we refer the reader to [12–24].
Inspired by Wardowski [9], Shukla [10], and Beg et al. [11], in this paper, we extend and improve some existing results involving fuzzy \(\mathcal {H}\)contractive, fuzzy \(\mathcal{H}\)weak contractive, and αfuzzy\(\mathcal{H}\)contractive mappings besides answering two open questions raised by Wardowski [9] and Beg et al. [11].
Preliminaries
In this section, we recall some known definitions, properties, and results about fuzzy metric spaces.
Definition 2.1
([25])
A binary operation \(*:[0,1]\times[0,1]\to[0,1]\) is said to be a continuous triangular norm (or continuous tnorm) if it satisfies the following conditions:
 \((T1)\):

∗ is associative and commutative;
 \((T2)\):

\(a*b\le c*d\) whenever \(a\le c\) and \(b\le d\) for all \(a,b,c,d\in[0,1]\);
 \((T3)\):

\(a*1=a\) for all \(a\in[0,1]\);
 \((T4)\):

∗ is continuous.
For all \(a, b \in[0, 1]\), the most commonly used tnorms are:

\(a*_{p} b=a\cdot b\) (product tnorm),

\(a*_{m} b=\min\{a,b\}\) (minimum tnorm),

\(a*_{L} b=\max\{a+b1,0\}\) (Lukasiewicz tnorm).
A positive tnorm ∗ is a tnorm satisfying \(a*b>0\) for \(a, b \in(0, 1]\). If ∗ is a tnorm and \(a*b\) is continuous such that for any \(a\in (0, 1)\) there exists \(n\in\mathbb{N}\) with \(\prod_{i=1}^{n} {a_{i}}=0\), then ∗ is called a nilpotent tnorm.
The concept of fuzzy metric space in the sense of George and Veeramani [6] is defined as follows.
Definition 2.2
([6])
An ordered triple \((X,M,*)\) is said to be a fuzzy metric space if X is a nonempty set, ∗ is a continuous tnorm, and \(M:X^{2}\times (0,\infty)\to[0,1]\) is a fuzzy set satisfying the following conditions:
 \((G1)\):

\(M(x,y,t)>0\),
 \((G2)\):

\(M(x,y,t)=1\) if and only if \(x=y\),
 \((G3)\):

\(M(x,y,t)=M(y,x,t)\),
 \((G4)\):

\(M(x,y,t+s)\ge M(x,z,t)*M(z,y,s)\),
 \((G5)\):

\(M(x,y,\cdot):(0,\infty)\to(0,1]\) is continuous
for all \(x,y,z\in X\) and \(t,s>0\).
A fuzzy metric space \((X,M,*)\) is called strong if condition \((G4)\) in Definition 2.2 is replaced by the following condition:
 \((G4)^{\prime}\):

\(M(x,y,t)\ge M(x,z,t)*M(z,y,t)\) for all \(x,y,z\in X\) and \(t>0\).
Definition 2.3
([6])
Let \((X,M,*)\) be a fuzzy metric space. For \(t>0\), the open ball \(\mathfrak{B}(x,r,t)\) with a center \(x\in X\) and radius \(r\in(0,1)\) is defined by
A subset \(A\subset X\) is called open if, for each \(x\in A\), there exist \(t>0\) and \(r\in(0,1)\) such that \(\mathfrak{B}(x,r,t)\subset A\). The family of all open subsets of X is a topology on X, called the topology induced by the fuzzy metric M.
Example 2.1
([6])
Let \((X,d)\) be a metric space. Define \(M:X\times X\times(0,\infty)\to [0,1]\) as follows:
Then \((X,M,*)\) is a fuzzy metric space with respect to the product tnorm (or minimum tnorm) for all \(x,y\in[0,1]\). M is known as the standard fuzzy metric.
Definition 2.4
([6])
A sequence \(\{x_{n}\}_{n\in\mathbb{N}}\) in a fuzzy metric space \((X,M,*)\) is called convergent and converges to \(x\in X\) if \(\lim_{n \to\infty}\)\(M(x_{n},x,t)=1\) for all \(t>0\), that is, for each \(r\in (0,1)\) and \(t>0\), there exists \(n_{0}\in\mathbb{N}\) such that \(M(x_{n},x,t)>1r\) for all \(n\ge n_{0}\).
Definition 2.5
([6])
A sequence \(\{x_{n}\}_{n\in\mathbb{N}}\) in a fuzzy metric space \((X,M,*)\) is called MCauchy if, for each \(\epsilon\in(0, 1)\) and \(t>0\), there exists \(n_{0}\in\mathbb{N}\) such that \(M(x_{m},x_{n},t)>1\epsilon\) for all \(m,n\ge n_{0}\).
The fuzzy metric space \((X,M,*)\) is called Mcomplete if every MCauchy sequence in X converges to a point of X.
Remark 2.1

(a)
The limit of a convergent sequence in the setting of fuzzy metric spaces is unique.

(b)
The mapping \(M(x,y,\cdot)\) is nondecreasing on \((0,\infty)\) for all \(x,y\in X\).

(c)
In a fuzzy metric space \((X,M,*)\), the mapping M is continuous on \(X\times X\times(0,\infty)\).
Definition 2.6
([1])
Let \((X,M,*)\) be a fuzzy metric space. A mapping \(T:X\to X\) is said to be fuzzy contractive if there exists \(k\in(0,1)\) such that
for all \(x,y\in X\) and \(t>0\).
Let \(\mathcal{H}\) be the class of all functions \(\eta:(0,1]\to [0,\infty)\) which satisfy the following:
 \((\mathcal{H}1)\):

η transforms \((0,1]\) onto \([0,\infty)\);
 \((\mathcal{H}2)\):

η is strictly decreasing, that is, for all \(a,b\in(0,1], a< b \Longrightarrow\eta(a)>\eta(b)\).
Definition 2.7
([9])
Let \((X,M,*)\) be a fuzzy metric space. A mapping \(T:X\to X\) is called fuzzy \(\mathcal{H}\)contractive w.r.t. some \(\eta\in\mathcal{H}\) if there exists \(\lambda\in(0,1)\) such that
In [9], Wardowski proved the following fixed point theorem in Mcomplete fuzzy metric spaces.
Theorem 2.1
([9])
Let \((X,M,*)\)be an Mcomplete fuzzy metric space. Assume that \(T:X\to X\)is a fuzzy \(\mathcal{H}\)contractive mapping w.r.t some \(\eta\in\mathcal{H}\)such that

(a)
\(\prod_{i=1}^{k}M(x,Tx,t_{i})\neq0\), \(\forall x\in X\), \(k\in \mathbb{N}\)and \((t_{i})\subset(0,\infty)\), \(t_{i}\searrow0\);

(b)
\(r*s>0 \Rightarrow\eta(r*s)<\eta(r)*\eta(s)\), \(\forall r,s\in \{M(x,Tx,t): x\in X, t>0\}\);

(c)
\(\{\eta(M(x,Tx,t_{i})):i\in\mathbb{N}\}\)is bounded \(\forall x\in X\)and \((t_{i})\subset(0,\infty)\), \(t_{i}\searrow0\).
Then T possesses a unique fixed point.
Definition 2.8
([10])
Let \((X,M,*)\) be a fuzzy metric space. A mapping \(T:X\to X\) is called fuzzy \(\mathcal{H}\)weak contractive w.r.t. some \(\eta\in\mathcal{H}\) if there exists \(\lambda\in(0,1)\) such that
where \(\mathcal{N}(x,y,t)=\max\{\eta(M(x,y,t)),\eta(M(x,Tx,t)),\eta (M(y,Ty,t))\}\) for all \(x,y\in X\) and \(t>0\).
The following theorem by Shukla comes as a generalization of Theorem 2.1.
Theorem 2.2
([10])
Let \((X,M,*)\)be an Mcomplete fuzzy metric space. Assume that \(T:X\to X\)is a fuzzy \(\mathcal{H}\)weak contractive mapping w.r.t. some \(\eta\in\mathcal{H}\)such that

(a)
\(\prod_{i=1}^{k}M(x,Tx,t_{i})\neq0\), \(\forall x\in X\), \(k\in \mathbb{N}\)and \((t_{i})\subset(0,\infty)\), \(t_{i}\searrow0\);

(b)
\(r*s>0 \Rightarrow\eta(r*s)<\eta(r)*\eta(s)\), \(\forall r,s\in \{M(x,Tx,t): x\in X, t>0\}\);

(c)
\(\{\eta(M(x,Tx,t)): i\in\mathbb{N}\}\)is bounded \(\forall x\in X\)and any sequence \((t_{i})\subset(0,\infty)\), \(t_{i}\searrow0\).
Then T possesses a unique fixed point.
Definition 2.9
([11])
Let \((X,M,*)\) be a fuzzy metric space. A mapping \(T:X\to X\) is said to be αfuzzy \(\mathcal {H}\)contractive w.r.t. some \(\eta\in\mathcal{H}\) if there exist \(\lambda\in(0,1)\) and \(\alpha:X\times X\times(0,\infty)\to [0,\infty)\) such that
Definition 2.10
([28])
Let \((X,M,*)\) be a fuzzy metric space. A mapping \(T:X\to X\) is said to be αadmissible if there exists a function \(\alpha:X\times X\times(0,\infty)\to[0,\infty)\) such that
for all \(x,y\in X\) and \(t>0\).
Based on the above definitions, Beg et al. [11] proved the following fixed point theorem.
Theorem 2.3
([11])
Let \((X,M,*_{L})\)be an Mcomplete strong fuzzy metric space such that \(*_{L}\)is nilpotent. Assume that \(T:X\to X\)is αfuzzy \(\mathcal {H}\)contractive w.r.t. some \(\eta\in\mathcal{H}\)such that

(i)
there exists \(x_{0}\in X\)with \(\alpha(x_{0},Tx_{0}, t)\ge1\), \(t > 0\);

(ii)
T is αadmissible;

(iii)
\(\eta(r*s)<\eta(r)*\eta(s)\)for all \(r,s\in\{M(x,Tx,t): x\in X, t>0\}\);

(iv)
each subsequence \(\{x_{n_{k}}\}\)of a sequence \(\{x_{n} = T^{n}{x_{0}}\}\)has the following property: \(\alpha(x_{n_{k}}, x_{n_{l}}, t)\ge1\), \(k, l\in\mathbb{N}\), \(k>l\), \(t > 0\);

(v)
if \({x_{n}}\)is a sequence in X such that \(\alpha(x_{n}, x_{n+1}, t)\ge1\), \(n\in\mathbb{N}\), \(t > 0\), and \(\lim_{n\to\infty}x_{n}=x\), then \(\alpha(x_{n}, x, t)\ge1\), \(n\in\mathbb{N}\), \(t >0\).
Then T admits a fixed point.
Main results
We begin this section with some observations which play a significant role in proving our results which led to withdrawal of certain conditions utilized by earlier authors in their corresponding results. In this course, we are also able to obtain affirmative answers to certain questions raised by the authors of the corresponding results.
The following remark is clear.
Remark 3.1
For any \(\eta\in\mathcal{H}\), we have the following (in view of \(\mathcal{H}_{1}\) and \(\mathcal{H}_{2}\)):

(a)
η is continuous and bijective;

(b)
\(\eta(t)=0\) if and only if \(t=1\).
Now, we have the following proposition.
Proposition 3.1
If the mapping T is fuzzy \(\mathcal{H}\)contractive, then it is continuous.
To accomplish this, let \(\{x_{n}\}\)be a sequence in X such that
for some \(x\in X\). Using (2.1), we obtain
Since η is strictly decreasing, we have
so that
which shows that T is continuous.
Our next result offers an affirmative answer to the open question posed by Wardowski [9], which runs as follows:
“Can condition (a) in Theorem 2.1be omitted for nilpotent tnorms?” Moreover, it can be pointed out that even conditions (b) and (c) of Theorem 2.1 (due to Wardowski [9]) can also be omitted. In fact, we prove the following.
Theorem 3.1
Let \((X,M,*)\)be an Mcomplete fuzzy metric space. Assume that \(T:X\to X\)is a fuzzy \(\mathcal{H}\)contractive mapping w.r.t. some \(\eta\in\mathcal{H}\). Then T possesses a unique fixed point.
Proof
Let \(x_{0}\in X\) and define \(\{x_{n}\}\) by
Using condition (2.1), we obtain
which on making \(n\to\infty\) in (3.1) gives rise to
Therefore, in view of Remark 3.1, we conclude that
Now, we show that \(\{x_{n}\}\) is an MCauchy sequence. On the contrary, let us assume that the sequence \(\{x_{n}\}\) is not Cauchy. Then there are \(\epsilon\in(0,1)\), \(t_{0}>0\) and two subsequences \(\{x_{n_{k}}\}\), \(\{ x_{m_{k}}\}\) of \(\{x_{n}\}\) such that \(m_{k}>n_{k}\ge k\) for all \(k\in\mathbb{N}\) and
In view of Remark 2.1(b), we infer
Suppose that \(n_{k}\) is the least integer exceeding \(m_{k}\) satisfying inequality (3.4). Then we have
Using the contractive inequality (2.1) with \(x=x_{m_{k}1}\), \(y=x_{n_{k}1}\), and \(t=t_{0}\), we get
Since η is strictly decreasing, therefore we have
Making use of (3.3) and (3.5) in (3.7) and using \((G4)\), we get
which on letting \(k\to\infty\) and making use of (3.2) and \((T3)\) yields
and
Taking the limit \(k\to\infty\) over both sides of inequality (3.6) and taking into account the continuity of η, we have
Making use of (3.8) and (3.9) in the above inequality, we obtain
which is a contradiction. Hence, \(\{x_{n}\}\) is an MCauchy sequence in X.
The completeness of \((X,M,*)\) ensures the existence of \(x\in X\) such that
As T is continuous (see Proposition 3.1), therefore \(\lim_{n\to\infty}M(x_{n+1},Tx,t)=1\). Owing to the uniqueness of the limit, we get \(Tx=x\).
Now, we show that the fixed point of T is unique. Suppose that \(x_{1}\) and \(x_{2}\) are two different fixed points of T, that is, \(Tx_{1}=x_{1}\neq x_{2}=Tx_{2}\). Then, using (2.1), we get
which is a contradiction. Thus, T has a unique fixed point which concludes the proof. □
Remark 3.2
Notice that Wardowski [9] used conditions (a), (b), and (c) in Theorem 2.1 to prove the Cauchyness of the sequence \(\{x_{n}\}\), but we prove the same in a different way wherein such conditions are useless.
To establish the genuineness of Theorem 3.1 over Theorem 2.1, we adopt the following example wherein conditions (b) and (c) of Theorem 2.1 are not satisfied but the conclusion of Theorem 2.1 continues to hold.
Example 3.1
Consider X to be the set of real numbers. Define a fuzzy set \(M:X^{2}\times(0,\infty)\to[0,1]\) by \(M(x,y,t)=e^{\frac{xy}{t}}\) for all \(x,y\in X\) and \(t>0\). Then \((X,M,*)\) is an Mcomplete fuzzy metric space where ∗ is a tnorm given by \(a*b=a\cdot b\) for all \(a,b\in[0,1]\).
Define a mapping \(T:X\to X\) as follows:
and let \(\eta(\alpha)=\ln(\frac{1}{\alpha})\) for all \(\alpha\in (0,1]\). Then, for all \(x,y\in X\), \(t>0\), and \(k=\frac{1}{3}\), we have
which shows that T is \(\mathcal{H}\)contractive. Hence, by Theorem 3.1, T has a unique fixed point (namely \(x=0\)). Observe that condition (b) of Theorem 2.1 does not hold (e.g. choose \(r=0.3\) and \(s=0.5\)). Moreover, for any \(x\in X\), we have
which confirms the failure of condition (c) of Theorem 2.1.
In a similar way, we refine and improve Theorem 2.2 due to Shukla [10] by relaxing conditions (a), (b), and (c).
Theorem 3.2
Let \((X,M,*)\)be an Mcomplete fuzzy metric space. Assume that \(T:X\to X\)is a fuzzy \(\mathcal{H}\)weak contractive mapping w.r.t. some \(\eta\in\mathcal{H}\). Then T admits a unique fixed point.
Proof
Let \(x_{0}\) be an arbitrary point in X. Define a sequence \(\{x_{n}\}\) as follows:
For all \(n\in\mathbb{N}\) and \(t>0\), using (2.2) we have
where
If for some \(n\in\mathbb{N}\), \(\mathcal{N}(x_{n1},x_{n},t)=\eta (M(x_{n},x_{n+1},t))\), then (3.10) turns into
a contradiction. Hence, we must have \(\mathcal{N}(x_{n1},x_{n},t)=\eta (M(x_{n1},x_{n},t))\) for all \(n\in\mathbb{N}\), and therefore (3.10) becomes
Inductively, from (3.11), we find that
By taking \(n\to\infty\) in (3.12), we get
and hence, it follows from Remark 2.1 that
Now, we show the Cauchyness of the sequence \(\{x_{n}\}\) by contradiction. We assume that the sequence \(\{x_{n}\}\) is not MCauchy. Then there are \(\epsilon\in(0,1)\), \(t_{0}>0\) and two subsequences \(\{x_{n_{k}}\}\), \(\{ x_{m_{k}}\}\) of \(\{x_{n}\}\) such that \(m_{k}>n_{k}\ge k\) for all \(k\in\mathbb{N}\) and
By Remark 2.1(b), we get
Suppose that \(n_{k}\) is the least integer exceeding \(m_{k}\) satisfying inequality (3.15). Then we have
Applying inequality (2.2), we get
where
If \(\mathcal{N}(x_{m_{k}1},x_{n_{k}1},t_{0})=\eta(M(x_{m_{k}1},x_{m_{k}},t_{0}))\), then (3.17) becomes
Letting \(k\to\infty\) in the above inequality and making use of (3.13), Remark 2.1 and taking into account the continuity of η yields
and hence \(\lim_{k\to\infty}M(x_{m_{k}},x_{n_{k}},t_{0})=1\), which contradicts Equation (3.14).
Similarly, if we consider \(\mathcal{N}(x_{m_{k}1},x_{n_{k}1},t_{0})=\eta (M(x_{n_{k}1},x_{n_{k}},t_{0}))\), then again we arrive at a contradiction. Therefore, we must have \(\mathcal{N}(x_{m_{k}1},x_{n_{k}1},t_{0})=\eta (M(x_{m_{k}1},x_{n_{k1}},t_{0}))\) and hence (3.17) gives rise to
Since η is strictly decreasing, then we have
Making use of (3.19), (3.14), and (3.16), we have
which on letting \(k\to\infty\) and using (3.13) along with \((T3)\) yields
Now, using (3.18), (3.20), and the continuity of η, we obtain
which is a contradiction. Hence, \(\{x_{n}\}\) is an MCauchy sequence in X. Due to the Mcompleteness of \((X,M,*)\), there exists \(x\in X\) such that
Next, we show that x is a fixed point of T. Suppose that there exists \(t_{1}>0\) such that \(M(x,Tx,t_{1})<1\), then \(\eta(M(x,Tx,t_{1}))>0\). Also, as T is a fuzzy \(\mathcal{H}\)weak contractive mapping, we have
where \(\mathcal{N}(x_{n},x,t_{1})=\max\{\eta(M(x_{n},x,t_{1})), \eta (M(x_{n},x_{n+1},t_{1})),\eta(M(x,Tx,t_{1}))\}\). As η is continuous, we have \(\lim_{n\to\infty}\eta (M(x_{n},x,t_{1}))=\lim_{n\to\infty}\eta(M(x_{n},x_{n+1},t_{1}))=0\) for all \(t>0\), and hence
Now, making \(n\to\infty\) in (3.22), we get
which is a contradiction. Therefore, we must have \(M(x,Tx,t)=1\), \(t>0\), which shows that x remains fixed under T.
To prove the uniqueness of the fixed point of T, let \(x_{1}\), \(x_{2}\) be two fixed points of T. Then using (2.2) we have
If \(M(x_{1},x_{2},t)<1\), then \(\eta(M(x_{1},x_{2},t))>0\) and hence (3.23) becomes
which is a contradiction. Therefore, \(M(x_{1},x_{2},t)=1\), yielding thereby \(x_{1}=x_{2}\), this concludes the proof. □
In what follows, we answer the open question raised by Beg et al. [11]:
Can the assumption of strong fuzzy metric in Theorem 2.3 be omitted/further relaxed?
The answer to this question is in the affirmative. To substantiate this claim, we prove the following theorem in which we have also withdrawn condition (iii) besides relaxing the requirement of nilpotent tnorm from Theorem 2.3.
Theorem 3.3
Let \((X,M,*)\)be an Mcomplete fuzzy metric space. Assume that \(T:X\to X\)is an αfuzzy \(\mathcal{H}\)contractive mapping w.r.t some \(\eta\in\mathcal{H}\)such that

(a)
there exists \(x_{0}\in X\)with \(\alpha(x_{0},Tx_{0}, t)\ge1\)and \(t > 0\);

(b)
T is αadmissible;

(c)
each subsequence \(\{x_{n_{k}}\}\subset\{x_{n}\}=\{T^{n}x_{0}\}\)has the following property:
$$\alpha(x_{n_{k}}, x_{n_{l}}, t)\ge1, \quad\textit{where } k, l\in \mathbb{N}, k>l \textit{ and } t > 0; $$ 
(d)
if \(\{x_{n}\}\)is a sequence in X such that \(\alpha(x_{n}, x_{n+1}, t)\ge1\), \(n\in\mathbb{N}\), \(t > 0\), and \(\lim_{n\to\infty }x_{n}=x\), then \(\alpha(x_{n}, x, t)\ge1\), \(n\in\mathbb{N}\), \(t >0\).
Then T has a fixed point.
Proof
In view of condition (a), there exists \(x_{0}\in X\) such that \(\alpha (x_{0},Tx_{0},t)\ge1\), \(t>0\). Define a sequence \(\{x_{n}\}\) in X by \(x_{n}=Tx_{n1}\), \(\forall n\in\mathbb{N}\).
Since T is αadmissible, then we have
Continuing this process, we get
Since T is αfuzzy\(\mathcal{H}\)contractive mapping and due to (3.24), we obtain
By taking \(n\to\infty\) in (3.25), we get
and hence \(\lim_{n\to\infty}M(x_{n},x_{n+1},t)=1\) for all \(t>0\).
Now, we show the Cauchyness of the sequence \(\{x_{n}\}\). On the contrary, we assume that the sequence \(\{x_{n}\}\) is not MCauchy. Then there are \(\epsilon\in(0,1)\), \(t_{0}>0\) and two subsequences \(\{x_{n_{k}}\}\), \(\{ x_{m_{k}}\}\) of \(\{x_{n}\}\) such that
By Remark 2.1(b), we get
Suppose that \(n_{k}\) is the least integer exceeding \(m_{k}\) satisfying the above inequality. Then we have
Applying inequality (2.3) and using condition (c), we get
The rest of the proof of Cauchyness can be shown as in Theorem 3.1. Now, since \((X,M,*)\) is Mcomplete, then there exists \(x\in X\) such that
Using condition (d) and (2.3), we obtain
Taking the limit as \(n\to\infty\) in the above inequality, using (3.26) and the continuity of η, we deduce
which implies that \(\lim_{n\to\infty}M(x_{n+1},Tx,t)=1\). By the uniqueness of the limit, we conclude that \(Tx=x\), that is, x is a fixed point of T. □
Finally, we conclude this section by proving a result which ensures the existence of fixed point besides unifying Theorems 3.1, 3.2, and 3.3. In doing so, first we introduce the notion of an αfuzzy\(\mathcal{H}\)weak contractive mapping as follows.
Definition 3.1
Let \((X,M,*)\) be a fuzzy metric space. A mapping \(T:X\to X\) is called αfuzzy \(\mathcal{H}\)weak contractive w.r.t. some \(\eta\in \mathcal{H}\) if there exist \(\lambda\in(0,1)\) and \(\alpha:X\times X\times(0,\infty)\to[0,\infty)\) such that
where \(\mathcal{N}(x,y,t)=\max\{\eta(M(x,y,t)),\eta(M(x,Tx,t)),\eta (M(y,Ty,t))\}\) for all \(x,y\in X\) and \(t>0\).
Theorem 3.4
Let \((X,M,*)\)be an Mcomplete fuzzy metric space. Assume that \(T:X\to X\)is an αfuzzy\(\mathcal{H}\) weak contractive mapping w.r.t. some \(\eta\in\mathcal{H}\)such that

(a)
there exists \(x_{0}\in X\)with \(\alpha(x_{0},Tx_{0}, t)\ge1\), \(t > 0\);

(b)
T is αadmissible;

(c)
each subsequence \(\{x_{n_{k}}\}\subset\{x_{n}=T^{n}x_{0}\}\)has the following property:
$$\alpha(x_{n_{k}}, x_{n_{l}}, t)\ge1, \quad\textit{where } k, l\in \mathbb{N}, k>l \textit{ and } t > 0; $$ 
(d)
if \(\{x_{n}\}\subset X\)such that \(\alpha(x_{n}, x_{n+1}, t)\ge1\)and \(\lim_{n\to\infty}x_{n}=x\), then \(\alpha(x_{n}, x, t)\ge1\), \(\forall n\in\mathbb{N}\), \(t >0\).
Then T admits a fixed point.
Proof
Condition (a) ensures the existence of a point \(x_{0}\in X\) such that \(\alpha(x_{0},Tx_{0},t)\ge1\), \(t>0\). Define a sequence \(\{x_{n}\}\) in X by
Since T is αadmissible, then we have
Continuing this process, we get
Applying (3.27) and using (3.28), we obtain
where
The rest of the proof can be completed in line with the proof of Theorem 3.2, wherein conditions (c) and (d) are also exploited, and hence the details of the proof are omitted. □
References
Gregori, V., Sapena, A.: On fixedpoint theorems in fuzzy metric spaces. Fuzzy Sets Syst. 125(2), 245–252 (2002)
Deng, Z.: Fuzzy pseudometric spaces. J. Math. Anal. Appl. 86(1), 74–95 (1982)
Erceg, M.A.: Metric spaces in fuzzy set theory. J. Math. Anal. Appl. 69(1), 205–230 (1979)
Kaleva, O., Seikkala, S.: On fuzzy metric spaces. Fuzzy Sets Syst. 12(3), 215–229 (1984)
Kramosil, I., Michálek, J.: Fuzzy metrics and statistical metric spaces. Kybernetika 11(5), 336–344 (1975)
George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64(3), 395–399 (1994)
Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for αψcontractive type mappings. Nonlinear Anal., Theory Methods Appl. 75(4), 2154–2165 (2012)
Salimi, P., Vetro, C., Vetro, P.: Some new fixed point results in nonArchimedean fuzzy metric spaces. Nonlinear Anal., Model. Control 18(3), 344–358 (2013)
Wardowski, D.: Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 222, 108–114 (2013)
Shukla, S.: Fuzzy Hweak contractions and fixed point theorems in fuzzy metric spaces. Gulf J. Math. 2, 67–75 (2013)
Beg, I., Gopal, D., Dosenovic, T., Rakic, D.: αType fuzzy Hcontractive mappings in fuzzy metric spaces. Fixed Point Theory 19(2), 463–474 (2018)
Sedghi, S., Shobkolaei, N., Altun, I.: A new approach to Caristi’s fixed point theorem on nonArchimedean fuzzy metric spaces. Iran. J. Fuzzy Syst. 12(2), 137–143 (2015)
Nashine, H.K., Vetro, C., Kumam, W., Kumam, P.: Fixed point theorems for fuzzy mappings and applications to ordinary fuzzy differential equations. Adv. Differ. Equ. 2014(1), Article ID 232 (2014)
Abbas, M., Ali, B., Vetro, C.: Fixed fuzzy points of fuzzy mappings in Hausdorff fuzzy metric spaces with application. Iran. J. Fuzzy Syst. 12(3), 31–45 (2015)
Sedghi, S., Shobkolaei, N., Došenović, T., Radenović, S.: Suzukitype of common fixed point theorems in fuzzy metric spaces. Math. Slovaca 68(2), 451–462 (2018)
Melliani, S., Moussaoui, A.: Fixed point theorem using a new class of fuzzy contractive mappings. J. Univers. Math. 1(2), 148–154 (2018)
Sangurlu, M., Turkoglu, D.: Fixed point theorems for (\(\psi\circ\phi\)) contractions in fuzzy metric spaces. J. Nonlinear Sci. Appl. 8(5), 687–694 (2015)
Saleh, H.N., Khan, I.A., Imdad, M., Alfaqih, W.M.: New fuzzy φfixed point results employing a new class of fuzzy contractive mappings. J. Intell. Fuzzy Syst. 37(4), 5391–5402 (2019)
Perveen, A., Imdad, M.: Proving new fixed point results in fuzzy metric spaces employing simulation function. J. Intell. Fuzzy Syst. 36(6), 6493–6501 (2019)
Abbas, M., Imdad, M., Gopal, D.: ψWeak contractions in fuzzy metric spaces. Iran. J. Fuzzy Syst. 8(5), 141–148 (2011)
Mihet, D.: On fuzzy epsiloncontractive mappings in fuzzy metric spaces. Fixed Point Theory Appl. 2007(1), Article ID 87471 (2007)
Vu, H.: Existence results for fuzzy Volterra integral equation. J. Intell. Fuzzy Syst. 33(1), 207–213 (2017)
Mishra, U., Vetro, C., Kumam, P.: On modified αϕfuzzy contractive mappings and an application to integral equations. J. Inequal. Appl. 2016(1), Article ID 67 (2016)
Tchier, F., Vetro, C., Vetro, F.: From fuzzy metric spaces to modular metric spaces: a fixed point approach. J. Nonlinear Sci. Appl. 10(2), 451–464 (2017)
Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10(1), 313–334 (1960)
Babu, G., Sarma, K., Aemro, Y.G.: Generalization of fixed point results for (α, η, β)contractive mappings in fuzzy metric spaces. Bangmod Int. J. Math. Comput. Sci. 3(1–2), 35–52 (2017)
Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27(3), 385–389 (1988)
Gopal, D., Vetro, C.: Some new fixed point theorems in fuzzy metric spaces. Iran. J. Fuzzy Syst. 11(3), 95–107 (2014)
Availability of data and materials
No data were used to support this study.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Saleh, H.N., Imdad, M. & Hasanuzzaman, M. A short and sharpened way to approach fixed point results involving fuzzy \(\mathcal{H}\)contractive mappings. Fixed Point Theory Appl 2020, 15 (2020). https://doi.org/10.1186/s13663020006820
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13663020006820
MSC
 54H25
 47H10
Keywords
 Fixed point
 Fuzzy \(\mathcal{H}\)contractive mappings
 Fuzzy \(\mathcal{H}\)weak contractive mappings
 αFuzzy\(\mathcal{H}\)contractive mappings
 Fuzzy metric space