We’d like to understand how you use our websites in order to improve them. Register your interest.

# An intermixed algorithm for strict pseudo-contractions in Hilbert spaces

## Abstract

An intermixed algorithm for two strict pseudo-contractions in Hilbert spaces have been presented. It is shown that the suggested algorithms converge strongly to the fixed points of two strict pseudo-contractions, independently. As a special case, we can find the common fixed points of two strict pseudo-contractions in Hilbert spaces.

## Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H with its inner product $$\langle\cdot, \cdot\rangle$$ and norm $$\| \cdot\|$$.

### Definition 1.1

A mapping $$T:C\to C$$ is said to be nonexpansive if

$$\|Tx-Ty\|\leq\|x-y\|$$

for all $$x,y\in C$$.

We use $$\operatorname{Fix}(T)$$ to denote the set of fixed points of T.

### Definition 1.2

A mapping $$T:C\to C$$ is said to be strictly pseudo-contractive if there exists a constant $$0\leq\lambda<1$$ such that

$$\|Tx-Ty\|^{2}\leq\|x-y\|^{2}+\lambda\bigl\Vert (I-T)x-(I-T)y\bigr\Vert ^{2},\quad \forall x,y\in C.$$

### Remark 1.3

It is well known that the class of strictly pseudo-contractive mappings properly includes the class of nonexpansive mappings.

Iterative construction of fixed points of nonlinear mappings has a long history and is still an active field in the nonlinear functional analysis. Let C be a nonempty closed convex subset of a real Hilbert space. Let $$T:C\to C$$ be a nonlinear mapping. Let $$\{\alpha _{n}\}$$ be a real number sequence in $$(0,1)$$. For arbitrarily fixed $$x_{0}\in C$$, define a sequence $$\{x_{n}\}$$ in the following manner:

$$x_{n+1}=\alpha_{n}x_{n}+(1- \alpha_{n})Tx_{n},\quad n\ge0.$$
(1.1)

Iteration (1.1) is said to be a Mann iteration [1]; it has been studied extensively in the literature. If T is a nonexpansive mapping with $$\operatorname{Fix}(T)\ne\emptyset$$ and $$\{\alpha_{n}\}$$ satisfies the condition $$\sum_{n=0}^{\infty}\alpha_{n}(1-\alpha_{n})=\infty$$, then the sequence $$\{x_{n}\}$$ generated by Mann’s algorithm converges weakly to a fixed point of T [2]. Now, it is well known that Mann’s algorithm fails, in general, to converge strongly in the setting of infinite-dimensional Hilbert spaces [3]. Iterative methods for nonexpansive mappings have been investigated extensively in the literature; see [227] and the references therein. However, iterative methods for strictly pseudo-contractive mappings are far less developed than those for nonexpansive mappings though Browder and Petryshyn [4] initiated their work in 1967. However, strictly pseudo-contractive mappings have more powerful applications than nonexpansive mappings, for example, to solve inverse problems (see Scherzer [21]). Therefore it is interesting to develop the algorithms for finding the fixed points of strictly pseudo-contractive mappings. Now, we know that Mann’s algorithm is not good enough for approximating fixed points of (even if Lipschitz continuous) pseudo-contractions. Thus, we have to find other type of iterative algorithms; see [2835]. The first such an attempt was done by Ishikawa [7] who introduced the following Ishikawa algorithm:

\begin{aligned} &y_{n}=(1-\beta_{n})x_{n}+ \beta_{n}Tx_{n}, \\ &x_{n+1}=(1-\alpha_{n})x_{n}+\alpha_{n}Ty_{n}, \end{aligned} \quad n\ge0,

where $$\{\alpha_{n}\}$$ and $$\{\beta_{n}\}$$ are sequences in the interval $$[0,1]$$, T is a (nonlinear) self-mapping of C, and the initial guess $$x_{0}\in C$$ is selected arbitrarily. (Ishikawa’s algorithm can be viewed as a double-step (or two-level) Mann’s algorithm.) Ishikawa proved that his algorithm converges in norm to a fixed point of a Lipschitz pseudo-contraction T if $$\{\alpha_{n}\}$$ and $$\{\beta_{n}\}$$ satisfy certain conditions and if T is compact.

On the other hand, iterative methods for approximating the common fixed points of a finite (or an infinite) family of nonlinear mappings have been considered by many authors. For the related work, we refer the reader to [2226, 32, 33]. Above discussion suggests the following question.

### Question 1.4

Could we construct an iterative algorithm such that it converges strongly to the fixed points of a finite family of strict pseudo-contractions?

It is our purpose in this paper to construct redundant intermixed algorithms for two strict pseudo-contractions. It is shown that the suggested algorithms converge strongly to the fixed points of two strict pseudo-contractions, independently. As a special case, we can find the common fixed points of two strict pseudo-contractions in Hilbert spaces.

## Preliminaries

Let C be a nonempty closed convex subset of H. The (nearest point or metric) projection from H onto C is defined as follows: for each point $$x\in H$$, $$P_{C}x$$ is the unique point in C with the property:

$$\|x-P_{C}x\|\leq\|x-y\|, \quad y\in C.$$

Note that $$P_{C}$$ is characterized by the inequality:

$$P_{C}x\in C,\quad \langle x-P_{C}x, y-P_{C}x \rangle\leq0,\quad y\in C.$$

Consequently, $$P_{C}$$ is nonexpansive.

In order to prove our main results, we need the following well-known lemmas.

### Lemma 2.1

([28])

Let C be a nonempty closed convex subset of a real Hilbert space H. Let $$T:C\to C$$ be a λ-strictly pseudo-contractive mapping. Then $$I-T$$ is demi-closed at 0, i.e., if $$x_{n} \rightharpoonup x\in C$$ and $$x_{n}-Tx_{n}\to0$$, then $$x=Tx$$.

### Lemma 2.2

([18])

Let $$\{x_{n}\}$$ and $$\{y_{n}\}$$ be bounded sequences in a Banach space E and $$\{\beta_{n}\}$$ be a sequence in $$[0,1]$$ with $$0<\liminf_{n\rightarrow\infty}\beta_{n}\leq \limsup_{n\rightarrow \infty}\beta_{n}<1$$. Suppose that $$x_{n+1}=(1-\beta_{n})x_{n}+\beta_{n}z_{n}$$ for all $$n\geq0$$ and $$\limsup_{n\rightarrow \infty}(\|z_{n+1}-z_{n}\|-\|x_{n+1}-x_{n}\|)\leq0$$. Then $$\lim_{n\rightarrow\infty}\|z_{n}-x_{n}\|=0$$.

### Lemma 2.3

([17])

Assume $$\{ a_{n}\}$$ is a sequence of nonnegative real numbers such that $$a_{n+1}\leq (1-\gamma_{n})a_{n}+\gamma_{n}\delta_{n}$$, $$n\geq0$$ where $$\{\gamma_{n}\}$$ is a sequence in $$(0,1)$$ and $$\{\delta_{n}\}$$ is a sequence in R such that

1. (i)

$$\sum_{n=0}^{\infty}\gamma_{n}=\infty$$;

2. (ii)

$$\limsup_{n\rightarrow\infty}\delta_{n}\leq0$$ or $$\sum_{n=0}^{\infty}|\delta_{n}\gamma_{n}|<\infty$$.

Then $$\lim_{n\rightarrow\infty}a_{n}=0$$.

## Main results

Let C be a nonempty closed convex subset of a real Hilbert space H. Let $$T:C\to C$$ be a λ-strict pseudo-contraction. Let $$f:C\to H$$ be a $$\rho_{1}$$-contraction and $$g:C\to H$$ be a $$\rho _{2}$$-contraction. (A mapping $$f:C\to H$$ is said to be contractive if $$\| f(x)-f(y)\|\le\rho\|x-y\|$$ for some $$\rho\in[0,1)$$ and for all $$x, y\in C$$.) Let $$k\in(0,1-\lambda)$$ be a constant.

Now we propose the following redundant intermixed algorithm for two strict pseudo-contractions S and T.

### Algorithm 3.1

For arbitrarily given $$x_{0}\in C$$, $$y_{0}\in C$$, let the sequences $$\{x_{n}\}$$ and $$\{y_{n}\}$$ be generated iteratively by

$$\left \{ \textstyle\begin{array}{l} x_{n+1} =(1-\beta_{n})x_{n}+\beta_{n}P_{C}[\alpha_{n}f(y_{n})+(1-k-\alpha _{n})x_{n}+kTx_{n}], \quad n\geq0, \\ y_{n+1} =(1-\beta_{n})y_{n}+\beta_{n}P_{C}[\alpha_{n}g(x_{n})+(1-k-\alpha _{n})y_{n}+kSy_{n}], \quad n\geq0, \end{array}\displaystyle \right .$$
(3.1)

where $$\{\alpha_{n}\}$$ and $$\{\beta_{n}\}$$ are two real number sequences in $$(0,1)$$.

### Remark 3.2

Note that the definition of the sequence $$\{x_{n}\}$$ is involved in the sequence $$\{y_{n}\}$$ and the definition of the sequence $$\{y_{n}\}$$ is also involved in the sequence $$\{x_{n}\}$$. So, this algorithm is said to be the redundant intermixed algorithm. We can use this algorithm to find the fixed points of S and T, independently.

### Theorem 3.3

Suppose that $$\operatorname{Fix}(S)\ne\emptyset$$ and $$\operatorname{Fix}(T)\neq \emptyset$$. Assume the following conditions are satisfied:

1. (C1)

$$\lim_{n\to\infty}\alpha_{n}=0$$ and $$\sum_{n=0}^{\infty}\alpha_{n}=\infty$$;

2. (C2)

$$\beta_{n}\in[\xi_{1}, \xi_{2}]\subset(0,1)$$ for all $$n\ge0$$.

Then the sequences $$\{x_{n}\}$$ and $$\{y_{n}\}$$ generated by (3.1) converge strongly to the fixed points $$P_{\operatorname{Fix}(T)} f(y^{*})$$ and $$P_{\operatorname{Fix}(S)} g(x^{*})$$ of T and S, respectively, where $$x^{*}\in \operatorname{Fix}(T)$$ and $$y^{*}\in \operatorname{Fix}(S)$$.

### Proof

First, we give the following propositions.

### Proposition 3.4

The sequences $$\{x_{n}\}$$ and $$\{y_{n}\}$$ are bounded.

In order to prove this proposition, we need the following result.

### Proposition 3.5

The mapping $$P_{C}[\alpha f +(1-k-\alpha)I+kT]$$ is contractive for small enough α.

### Proof

Let $$x,y\in C$$. Then we have

\begin{aligned}& \bigl\Vert P_{C}\bigl[\alpha f(x) +(1-k-\alpha)x+kTx \bigr]-P_{C}\bigl[\alpha f(y) +(1-k-\alpha )y+kTy\bigr]\bigr\Vert ^{2} \\& \quad \leq \bigl\Vert \alpha\bigl(f(x)-f(y)\bigr)+(1-k-\alpha) (x-y)+k(Tx-Ty) \bigr\Vert ^{2} \\& \quad = \biggl\Vert \alpha\bigl(f(x)-f(y)\bigr)+(1-\alpha) \biggl[ \frac{1-k-\alpha}{1-\alpha }(x-y)+\frac{k}{1-\alpha}(Tx-Ty) \biggr]\biggr\Vert ^{2} \\& \quad \le \alpha\bigl\Vert f(x)-f(y)\bigr\Vert ^{2}+(1-\alpha) \biggl\Vert \frac{1-k-\alpha}{1-\alpha }(x-y)+\frac{k}{1-\alpha}(Tx-Ty)\biggr\Vert ^{2} \\& \quad \le \alpha\rho_{1}\Vert x-y\Vert ^{2}+ \frac{(1-k-\alpha)^{2}}{1-\alpha} \Vert x-y\Vert ^{2}+\frac{k^{2}}{1-\alpha} \Vert Tx-Ty \Vert ^{2} \\& \qquad {} +\frac{2(1-k-\alpha)k}{1-\alpha}\langle Tx-Ty, x-y\rangle \\& \quad \leq \alpha\rho_{1}\Vert x-y\Vert ^{2}+ \frac{(1-k-\alpha)^{2}}{1-\alpha} \Vert x-y\Vert ^{2}+\frac{k^{2}}{1-\alpha}\bigl[\Vert x-y\Vert ^{2}+\lambda\bigl\Vert (I-T)x-(I-T)y\bigr\Vert ^{2}\bigr] \\& \qquad {} +\frac{2(1-k-\alpha)k}{1-\alpha} \biggl[\Vert x-y\Vert ^{2}- \frac{1-\lambda}{2}\bigl\Vert (I-T)x-(I-T)y\bigr\Vert ^{2} \biggr] \\& \quad = \alpha\rho_{1}\Vert x-y\Vert ^{2}+ \frac{1}{1-\alpha}\bigl[\lambda k^{2}-(1-\lambda ) (1-k-\alpha)k\bigr] \bigl\Vert (I-T)x-(I-T)y\bigr\Vert ^{2} \\& \qquad {} +(1-\alpha)\Vert x-y\Vert ^{2} \\& \quad = \frac{k}{1-\alpha}\bigl[k-(1-\alpha) (1-\lambda)\bigr]\bigl\Vert (I-T)x-(I-T)y\bigr\Vert ^{2}+\bigl[1-(1-\rho_{1})\alpha \bigr]\Vert x-y\Vert ^{2}. \end{aligned}

Thus, we get

\begin{aligned}& \bigl\Vert P_{C}\bigl[\alpha f(x) +(1-k-\alpha)x+kTx \bigr]-P_{C}\bigl[\alpha f(y) +(1-k-\alpha )y+kTy\bigr]\bigr\Vert \\& \quad \leq \biggl[1-\frac{(1-\rho_{1})\alpha}{2} \biggr]\|x-y\| \end{aligned}

for all $$x,y\in C$$ as $$k\leq(1-\alpha)(1-\lambda)$$ (that is, $$\alpha \le1-\frac{k}{1-\lambda}$$). □

Next, we prove Proposition 3.4.

### Proof

Since $$\operatorname{Fix}(S)\ne\emptyset$$ and $$\operatorname{Fix}(T)\neq \emptyset$$, we can choose $$x^{*}\in \operatorname{Fix}(T)$$ and $$y^{*}\in \operatorname{Fix}(S)$$. From (3.1), we have

\begin{aligned} \bigl\Vert x_{n+1}-x^{*}\bigr\Vert =&\bigl\Vert (1- \beta_{n})x_{n}+\beta_{n}P_{C}\bigl[ \alpha_{n}f(y_{n})+(1-k-\alpha _{n})x_{n}+kTx_{n} \bigr]-x^{*}\bigr\Vert \\ \leq& \beta_{n}\bigl\Vert P_{C}\bigl[ \alpha_{n}f(y_{n})+(1-k-\alpha_{n})x_{n}+kTx_{n} \bigr]-x^{*}\bigr\Vert \\ &{}+(1-\beta_{n})\bigl\Vert x_{n}-x^{*}\bigr\Vert \\ \le&\beta_{n}\alpha_{n}\bigl\Vert f(y_{n})-x^{*} \bigr\Vert +\beta_{n}\bigl\Vert (1-k-\alpha _{n}) \bigl(x_{n}-x^{*}\bigr)+k\bigl(Tx_{n}-Tx^{*}\bigr)\bigr\Vert \\ &{}+(1-\beta_{n})\bigl\Vert x_{n}-x^{*}\bigr\Vert \\ \le&\beta_{n}\alpha_{n}\bigl\Vert f(y_{n})-f \bigl(y^{*}\bigr)\bigr\Vert +\beta_{n}\alpha_{n}\bigl\Vert f \bigl(y^{*}\bigr)-x^{*}\bigr\Vert +(1-\beta_{n})\bigl\Vert x_{n}-x^{*}\bigr\Vert \\ &{}+\beta_{n}(1-\alpha_{n})\bigl\Vert x_{n}-x^{*} \bigr\Vert \\ \le&\rho_{1}\beta_{n}\alpha_{n}\bigl\Vert y_{n}-y^{*}\bigr\Vert +\beta_{n}\alpha_{n}\bigl\Vert f\bigl(y^{*}\bigr)-x^{*}\bigr\Vert +(1-\alpha_{n} \beta_{n})\bigl\Vert x_{n}-x^{*}\bigr\Vert \\ \le&\rho\beta_{n}\alpha_{n}\bigl\Vert y_{n}-y^{*} \bigr\Vert +\beta_{n}\alpha_{n}\bigl\Vert f\bigl(y^{*} \bigr)-x^{*}\bigr\Vert +(1-\alpha_{n}\beta_{n})\bigl\Vert x_{n}-x^{*}\bigr\Vert , \end{aligned}

where $$\rho=\max\{\rho_{1},\rho_{2}\}$$. Similarly, we have

\begin{aligned} \bigl\Vert y_{n+1}-y^{*}\bigr\Vert \le&\rho_{2} \beta_{n}\alpha_{n}\bigl\Vert x_{n}-x^{*}\bigr\Vert +\beta_{n}\alpha_{n}\bigl\Vert g\bigl(x^{*}\bigr)-y^{*} \bigr\Vert +(1-\alpha_{n}\beta_{n})\bigl\Vert y_{n}-y^{*}\bigr\Vert \\ \le&\rho\beta_{n}\alpha_{n}\bigl\Vert x_{n}-x^{*} \bigr\Vert +\beta_{n}\alpha_{n}\bigl\Vert g\bigl(x^{*} \bigr)-y^{*}\bigr\Vert +(1-\alpha_{n}\beta_{n})\bigl\Vert y_{n}-y^{*}\bigr\Vert . \end{aligned}

Hence, we obtain

\begin{aligned}& \bigl\Vert x_{n+1}-x^{*}\bigr\Vert +\bigl\Vert y_{n+1}-y^{*} \bigr\Vert \\& \quad \le \bigl[1-(1-\rho)\alpha_{n}\beta_{n}\bigr]\bigl( \bigl\Vert x_{n}-x^{*}\bigr\Vert +\bigl\Vert y_{n}-y^{*} \bigr\Vert \bigr) +\alpha_{n}\beta_{n}\bigl(\bigl\Vert f \bigl(y^{*}\bigr)-x^{*}\bigr\Vert +\bigl\Vert g\bigl(x^{*}\bigr)-y^{*}\bigr\Vert \bigr) \\& \quad \le \max \biggl\{ \bigl\Vert x_{n}-x^{*}\bigr\Vert +\bigl\Vert y_{n}-y^{*}\bigr\Vert ,\frac{\Vert f(y^{*})-x^{*}\Vert +\Vert g(x^{*})-y^{*}\Vert }{1-\rho} \biggr\} . \end{aligned}

By induction, we have

\begin{aligned}& \bigl\Vert x_{n}-x^{*}\bigr\Vert +\bigl\Vert y_{n}-y^{*} \bigr\Vert \\& \quad \le \max \biggl\{ \bigl\Vert x_{0}-x^{*}\bigr\Vert +\bigl\Vert y_{0}-y^{*}\bigr\Vert ,\frac{\Vert f(y^{*})-x^{*}\Vert +\Vert g(x^{*})-y^{*}\Vert }{1-\alpha} \biggr\} . \end{aligned}

So, $$\{x_{n}\}$$ and $$\{y_{n}\}$$ are bounded. □

### Proposition 3.6

$$\|x_{n}-Tx_{n}\|\to0$$ and $$\|y_{n}-Sy_{n}\|\to0$$.

### Proof

We first estimate $$\|x_{n+1}-x_{n}\|$$. Set $$u_{n}=P_{C}[\alpha _{n}f(y_{n})+(1-k-\alpha_{n})x_{n}+kTx_{n}]$$, $$n\ge0$$. It follows that

\begin{aligned} \Vert u_{n+1}-u_{n}\Vert \le&\bigl\Vert \alpha_{n+1}f(y_{n+1})+(1-k-\alpha _{n+1})x_{n+1}+kTx_{n+1} \\ &{}-\alpha_{n}f(y_{n})-(1-k-\alpha_{n})x_{n}+kTx_{n} \bigr\Vert \\ \le&\bigl\Vert (1-k-\alpha_{n+1}) (x_{n+1}-x_{n})+k(Tx_{n+1}-Tx_{n}) \bigr\Vert \\ &{}+\alpha_{n+1}\bigl(\bigl\Vert f(y_{n+1})\bigr\Vert + \Vert x_{n}\Vert \bigr)+\alpha_{n}\bigl(\bigl\Vert f(y_{n})\bigr\Vert +\Vert x_{n}\Vert \bigr) \\ \le&(1-\alpha_{n+1})\Vert x_{n+1}-x_{n}\Vert + \alpha_{n+1}\bigl(\bigl\Vert f(y_{n+1})\bigr\Vert +\Vert x_{n}\Vert \bigr) \\ &{}+\alpha_{n}\bigl(\bigl\Vert f(y_{n})\bigr\Vert + \Vert x_{n}\Vert \bigr). \end{aligned}

Since $$\alpha_{n}\to0$$, we deduce that

$$\limsup_{n\to\infty}\bigl(\Vert u_{n+1}-u_{n} \Vert -\Vert x_{n+1}-x_{n}\Vert \bigr)\le0.$$

From Lemma 2.2, we get

$$\lim_{n\to\infty}\|u_{n}-x_{n}\|=0 \quad \mbox{and} \quad \lim_{n\to\infty}\| x_{n+1}-x_{n} \|=0 .$$

From (3.1), we derive

\begin{aligned} \Vert x_{n+1}-Tx_{n}\Vert \le&(1-\beta_{n}) \Vert x_{n}-Tx_{n}\Vert +\beta_{n} \alpha_{n}\bigl\Vert f(y_{n})-Tx_{n}\bigr\Vert \\ &{}+\beta_{n}(1-k-\alpha_{n})\Vert x_{n}-Tx_{n} \Vert \\ =&\bigl[1-(k+\alpha_{n})\beta_{n}\bigr]\Vert x_{n}-Tx_{n}\Vert +\beta_{n}\alpha_{n} \bigl\Vert f(y_{n})-Tx_{n}\bigr\Vert . \end{aligned}

Thus,

\begin{aligned} \Vert x_{n}-Tx_{n}\Vert \le&\Vert x_{n}-x_{n+1}\Vert +\Vert x_{n+1}-Tx_{n} \Vert \\ \le&\bigl[1-(k+\alpha_{n})\beta_{n}\bigr]\Vert x_{n}-Tx_{n}\Vert +\beta_{n}\alpha_{n} \bigl\Vert f(y_{n})-Tx_{n}\bigr\Vert \\ &{}+\Vert x_{n}-x_{n+1}\Vert . \end{aligned}

It follows that

\begin{aligned} \Vert x_{n}-Tx_{n}\Vert \le&\frac{1}{(k+\alpha_{n})\beta_{n}}\bigl( \Vert x_{n}-x_{n+1}\Vert +\beta _{n} \alpha_{n}\bigl\Vert f(y_{n})-Tx_{n}\bigr\Vert \bigr) \\ \to& 0. \end{aligned}

Similarly, we can obtain

$$\lim_{n\to\infty}\|y_{n}-Sy_{n}\|=0.$$

□

By Proposition 3.5, we know that the mapping $$P_{C}[\alpha f +(1-k-\alpha )I+kT]$$ is contractive for small enough α. Thus, the equation $$x=P_{C}[tf(x) +(1-k-t)x+kTx]$$ has a unique fixed point, denoted by $$x_{t}$$, that is,

$$x_{t}=P_{C}\bigl[tf(x_{t}) +(1-k-t)x_{t}+kTx_{t}\bigr]$$
(3.2)

for small enough t. In order to prove Theorem 3.3, we need the following lemma.

### Lemma 3.7

Suppose $$\operatorname{Fix}(T)\neq\emptyset$$. Then, as $$t\to0$$, the net $$\{x_{t}\}$$ defined by (3.2) converges strongly to a fixed point of T.

### Proof

Let $$x^{*}\in \operatorname{Fix}(T)$$. From (3.2), we have

\begin{aligned} \bigl\Vert x_{t}-x^{*}\bigr\Vert =&\bigl\Vert P_{C} \bigl[tf(x_{t})+(1-k-t)x_{t}+kTx_{t}\bigr]-x^{*}\bigr\Vert \\ \leq& t\bigl\Vert f(x_{t})-x^{*}\bigr\Vert +\bigl\Vert (1-k-t) \bigl(x_{t}-x^{*}\bigr)+k\bigl(Tx_{t}-x^{*}\bigr)\bigr\Vert \\ \leq& t\rho_{1}\bigl\Vert x_{t}-x^{*}\bigr\Vert +t\bigl\Vert f\bigl(x^{*}\bigr)-x^{*}\bigr\Vert +(1-t)\bigl\Vert x_{t}-x^{*} \bigr\Vert , \end{aligned}

hence,

$$\bigl\Vert x_{t}-x^{*}\bigr\Vert \le\frac{1}{1-\rho_{1}}\bigl\Vert f \bigl(x^{*}\bigr)-x^{*}\bigr\Vert .$$

Thus, $$\{x_{t}\}$$ is bounded. Again, from (3.2), we get

$$\Vert x_{t}-Tx_{t}\Vert \leq t\bigl\Vert f(x_{t})-Tx_{t}\bigr\Vert +(1-k-t)\Vert x_{t}-Tx_{t}\Vert .$$

It follows that

$$\Vert x_{t}-Tx_{t}\Vert \leq\frac{t}{k+t}\bigl\Vert f(x_{t})-Tx_{t}\bigr\Vert \to0.$$

Let $$\{t_{n}\}\subset(0,1)$$. Assume that $$t_{n}\to0$$ as $$n\to\infty$$. Put $$x_{n}:=x_{t_{n}}$$. We have $$\lim_{n\to\infty}\| x_{n}-Tx_{n}\|=0$$. Set $$y_{t}=tf(x_{t})+(1-k-t)x_{t}+kTx_{t}$$, for all t. Then we have $$x_{t}=P_{C}y_{t}$$, and for any $$x^{*}\in \operatorname{Fix}(T)$$,

\begin{aligned} x_{t}-x^{*} =&x_{t}-y_{t}+y_{t}-x^{*} \\ =&x_{t}-y_{t}+t\bigl(f(x_{t})-x^{*}\bigr)+(1-k-t) \bigl(x_{t}-x^{*}\bigr)+k\bigl(Tx_{t}-x^{*}\bigr). \end{aligned}

From the property of the metric projection, we deduce

$$\bigl\langle x_{t}-y_{t},x_{t}-x^{*}\bigr\rangle \leq0.$$

So,

\begin{aligned} \bigl\Vert x_{t}-x^{*}\bigr\Vert ^{2} =&\bigl\langle x_{t}-y_{t}, x_{t}-x^{*}\bigr\rangle +\bigl\langle (1-k-t) \bigl(x_{t}-x^{*}\bigr)+k\bigl(Tx_{t}-x^{*} \bigr),x_{t}-x^{*}\bigr\rangle \\ &{}+t\bigl\langle f(x_{t})-x^{*}, x_{t}-x^{*}\bigr\rangle \\ \leq& \bigl\Vert (1-k-t) \bigl(x_{t}-x^{*}\bigr)+k \bigl(Tx_{t}-x^{*}\bigr)\bigr\Vert \bigl\Vert x_{t}-x^{*}\bigr\Vert \\ &{}+t\bigl\langle f(x_{t})-f\bigl(x^{*}\bigr), x_{t}-x^{*}\bigr\rangle +t\bigl\langle f\bigl(x^{*}\bigr)-x^{*}, x_{t}-x^{*}\bigr\rangle \\ \leq& \bigl[1-(1-\rho_{1})t\bigr]\bigl\Vert x_{t}-x^{*} \bigr\Vert ^{2}+t\bigl\langle f\bigl(x^{*}\bigr)-x^{*}, x_{t}-x^{*}\bigr\rangle . \end{aligned}

Hence,

$$\bigl\Vert x_{t}-x^{*}\bigr\Vert ^{2}\le\frac{1}{(1-\rho_{1})} \bigl\langle f\bigl(x^{*}\bigr)-x^{*}, x_{t}-x^{*}\bigr\rangle , \quad \forall x^{*} \in \operatorname{Fix}(T).$$

By similar arguments to [28], we find that the net $$\{x_{t}\}$$ converges strongly to $$x^{*}\in \operatorname{Fix}(T)$$. This completes the proof. □

### Remark 3.8

From Lemma 3.7, we know that the net $$\{x_{t}\}$$ defined by $$x_{t}=P_{C}[tu +(1-k-t)x_{t}+kTx_{t}]$$ where $$u\in H$$, converges to $$P_{\operatorname{Fix}(T)} u$$. Let $$x^{*}\in \operatorname{Fix}(T)$$ and $$y^{*}\in \operatorname{Fix}(S)$$. If we take $$u=f(y^{*})$$, then the net $$\{x_{t}\}$$ defined by $$x_{t}=P_{C}[tf(y^{*}) +(1-k-t)x_{t}+kTx_{t}]$$, converges to $$P_{\operatorname{Fix}(T)} f(y^{*})$$.

Finally, we prove that $$x_{n}\to P_{\operatorname{Fix}(T)} f(y^{*})$$ and $$y_{n}\to P_{\operatorname{Fix}(S)}g(x^{*})$$, where $$x^{*}\in \operatorname{Fix}(T)$$ and $$y^{*}\in \operatorname{Fix}(S)$$. We note the following fact. If the sequence $$\{w_{n}\}$$ is bounded and $$\| w_{n}-Tw_{n}\|\to0$$, we easily deduce that

$$\limsup_{n\to\infty}\bigl\langle f\bigl(P_{\operatorname{Fix}(S)} g\bigl(x^{*} \bigr)\bigr)-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr), w_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\rangle \le0.$$

Set $$v_{n}=P_{C}[\alpha_{n}g(x_{n})+(1-k-\alpha_{n})y_{n}+kSy_{n}]$$ for all $$n\ge0$$. Thus, we deduce that the sequences $$\{u_{n}\}$$ and $$\{v_{n}\}$$ satisfy: (1) $$\{u_{n}\}$$ and $$\{ v_{n}\}$$ are bounded; (2) $$\|u_{n}-Tu_{n}\|\to0$$ and $$\|v_{n}-Sv_{n}\|\to0$$. Therefore,

$$\limsup_{n\to\infty}\bigl\langle f\bigl(P_{\operatorname{Fix}(S)} g\bigl(x^{*} \bigr)\bigr)-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr), u_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\rangle \le0$$

and

$$\limsup_{n\to\infty}\bigl\langle g\bigl(P_{\operatorname{Fix}(T)} f\bigl(y^{*} \bigr)\bigr)-P_{\operatorname{Fix}(S)} g\bigl(x^{*}\bigr), v_{n}-P_{\operatorname{Fix}(S)} g \bigl(x^{*}\bigr)\bigr\rangle \le0.$$

Next, we estimate $$\|u_{n}-P_{\operatorname{Fix}(T)} f(y^{*})\|$$. Set $$\tilde{u}_{n}=\alpha _{n}f(y_{n})+(1-k-\alpha_{n})x_{n}+kTx_{n}$$ and $$\tilde{v}_{n}=\alpha _{n}g(x_{n})+(1-k-\alpha_{n})y_{n}+kSy_{n}$$ for all n. We have

\begin{aligned} \begin{aligned} &\bigl\Vert u_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\Vert ^{2} \\ &\quad = \bigl\Vert P_{C}[\tilde{u}_{n}]-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\Vert ^{2} \\ &\quad \le \bigl\langle \tilde{u}_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr), u_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\rangle \\ &\quad = \bigl\langle \alpha_{n} f(y_{n})+(1-k- \alpha_{n})x_{n}+kTx_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*} \bigr), u_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\rangle \\ &\quad \le \alpha_{n}\bigl\langle f(y_{n})-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr), u_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\rangle \\ &\qquad {} +(1-\alpha_{n})\bigl\Vert x_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\Vert \bigl\Vert u_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\Vert \\ &\quad \le \frac{1-\alpha_{n}}{2}\bigl\Vert x_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\Vert ^{2}+\frac{1}{2}\bigl\Vert u_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\Vert ^{2} \\ &\qquad {} +\alpha_{n}\bigl\langle f(y_{n})-f \bigl(P_{\operatorname{Fix}(S)} g\bigl(x^{*}\bigr)\bigr), u_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\rangle \\ &\qquad {} +\alpha_{n}\bigl\langle f\bigl(P_{\operatorname{Fix}(S)} g\bigl(x^{*} \bigr)\bigr)-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr), u_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\rangle \\ &\quad \le \frac{1-\alpha_{n}}{2}\bigl\Vert x_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\Vert ^{2}+\frac{1}{2}\bigl\Vert u_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\Vert ^{2} \\ &\qquad {} +\alpha_{n}\rho\bigl\Vert y_{n}-P_{\operatorname{Fix}(S)} g\bigl(x^{*}\bigr)\bigr\Vert \bigl\Vert u_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\Vert \\ &\qquad {} +\alpha_{n}\bigl\langle f\bigl(P_{\operatorname{Fix}(S)} g\bigl(x^{*} \bigr)\bigr)-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr), u_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\rangle \\ &\quad \le \frac{1-\alpha_{n}}{2}\bigl\Vert x_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\Vert ^{2}+\frac{1}{2}\bigl\Vert u_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\Vert ^{2} \\ &\qquad {} +\frac{\alpha_{n}\rho}{2}\bigl(\bigl\Vert y_{n}-P_{\operatorname{Fix}(S)} g\bigl(x^{*}\bigr)\bigr\Vert ^{2}+\bigl\Vert u_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\Vert ^{2}\bigr) \\ &\qquad {} +\alpha_{n}\bigl\langle f\bigl(P_{\operatorname{Fix}(S)} g\bigl(x^{*} \bigr)\bigr)-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr), u_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\rangle . \end{aligned} \end{aligned}

It follows that

\begin{aligned}& \bigl\Vert u_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\Vert ^{2} \\& \quad \le \frac{1-\alpha_{n}}{1-\alpha_{n}\rho}\bigl\Vert x_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\Vert ^{2}+\frac {\alpha_{n}\rho}{1-\alpha_{n}\rho}\bigl\Vert y_{n}-P_{\operatorname{Fix}(S)} g\bigl(x^{*}\bigr)\bigr\Vert ^{2} \\& \qquad {} +\frac{2\alpha_{n}}{1-\alpha_{n}\rho}\bigl\langle f\bigl(P_{\operatorname{Fix}(S)} g\bigl(x^{*} \bigr)\bigr)-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr), u_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\rangle . \end{aligned}

Thus,

\begin{aligned}& \bigl\Vert x_{n+1}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\Vert ^{2} \\& \quad \le (1-\beta_{n})\bigl\Vert x_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\Vert ^{2}+\beta_{n}\bigl\Vert u_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\Vert ^{2} \\& \quad \le \biggl(1-\frac{1-\rho}{1-\alpha_{n}\rho}\alpha_{n}\beta_{n} \biggr)\bigl\Vert x_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\Vert ^{2}+\frac{\alpha_{n}\beta_{n}\rho}{1-\alpha_{n}\rho}\bigl\Vert y_{n}-P_{\operatorname{Fix}(S)} g \bigl(x^{*}\bigr)\bigr\Vert ^{2} \\& \qquad {} +\frac{2\alpha_{n}\beta_{n}}{1-\alpha_{n}\rho}\bigl\langle f\bigl(P_{\operatorname{Fix}(S)} g\bigl(x^{*} \bigr)\bigr)-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr), u_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\rangle . \end{aligned}

Similarly, we also have

\begin{aligned}& \bigl\Vert y_{n+1}-P_{\operatorname{Fix}(S)} g\bigl(x^{*}\bigr)\bigr\Vert ^{2} \\& \quad \le \biggl(1-\frac{1-\rho}{1-\alpha_{n}\rho}\alpha_{n}\beta_{n} \biggr)\bigl\Vert y_{n}-P_{\operatorname{Fix}(S)} g\bigl(x^{*}\bigr)\bigr\Vert ^{2}+\frac{\alpha_{n}\beta_{n}\rho}{1-\alpha_{n}\rho}\bigl\Vert x_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\Vert ^{2} \\& \qquad {} +\frac{2\alpha_{n}\beta_{n}}{1-\alpha_{n}\rho}\bigl\langle g\bigl(P_{\operatorname{Fix}(T)} f\bigl(y^{*} \bigr)\bigr)-P_{\operatorname{Fix}(S)} g\bigl(x^{*}\bigr), v_{n}-P_{\operatorname{Fix}(S)} g \bigl(x^{*}\bigr)\bigr\rangle . \end{aligned}

Therefore,

\begin{aligned}& \bigl\Vert x_{n+1}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\Vert ^{2}+\bigl\Vert y_{n+1}-P_{\operatorname{Fix}(S)} g\bigl(x^{*}\bigr) \bigr\Vert ^{2} \\& \quad \le \biggl(1-\frac{1-2\rho}{1-\alpha_{n}\rho}\alpha_{n}\beta_{n} \biggr) \bigl(\bigl\Vert x_{n}-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr)\bigr\Vert ^{2}+\bigl\Vert y_{n}-P_{\operatorname{Fix}(S)} g\bigl(x^{*} \bigr)\bigr\Vert ^{2}\bigr) \\& \qquad {} +\frac{2\alpha_{n}\beta_{n}}{1-\alpha_{n}\rho}\bigl\langle f\bigl(P_{\operatorname{Fix}(S)} g\bigl(x^{*} \bigr)\bigr)-P_{\operatorname{Fix}(T)} f\bigl(y^{*}\bigr), u_{n}-P_{\operatorname{Fix}(T)} f \bigl(y^{*}\bigr)\bigr\rangle \\& \qquad {} +\frac{2\alpha_{n}\beta_{n}}{1-\alpha_{n}\rho}\bigl\langle g\bigl(P_{\operatorname{Fix}(T)} f\bigl(y^{*} \bigr)\bigr)-P_{\operatorname{Fix}(S)} g\bigl(x^{*}\bigr), v_{n}-P_{\operatorname{Fix}(S)} g \bigl(x^{*}\bigr)\bigr\rangle . \end{aligned}

We can check that all assumptions of Lemma 2.3 are satisfied. Therefore, $$x_{n}\to P_{\operatorname{Fix}(T)} f(y^{*})$$ and $$y_{n}\to P_{\operatorname{Fix}(S)} g(x^{*})$$. This completes the proof. □

### Algorithm 3.9

For arbitrarily given $$x_{0}\in C$$, let the sequence $$\{x_{n}\}$$ be generated iteratively by

$$x_{n+1}=(1-\beta_{n})x_{n}+ \beta_{n}P_{C}\bigl[(1-k-\alpha_{n})x_{n}+kTx_{n} \bigr],\quad n\geq0,$$
(3.3)

where $$\{\alpha_{n}\}$$ and $$\{\beta_{n}\}$$ are two real number sequences in $$(0,1)$$.

### Theorem 3.10

Suppose $$\operatorname{Fix}(T)\neq \emptyset$$. Assume the following conditions are satisfied:

1. (C1)

$$\lim_{n\to\infty}\alpha_{n}=0$$ and $$\sum_{n=0}^{\infty}\alpha_{n}=\infty$$;

2. (C2)

$$\beta_{n}\in[\xi_{1}, \xi_{2}]\subset(0,1)$$ for all $$n\ge0$$.

Then the sequence $$\{x_{n}\}$$ generated by (3.3) converge strongly to the fixed points $$P_{\operatorname{Fix}(T)}(0)$$, which is the minimum norm element in $$\operatorname{Fix}(T)$$.

## References

1. 1.

Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510 (1953)

2. 2.

Reich, S: Weak convergence theorems for non-expansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274-276 (1979)

3. 3.

Genel, A, Lindenstrauss, J: An example concerning fixed points. Isr. J. Math. 22, 81-86 (1975)

4. 4.

Browder, FE, Petryshyn, WV: Construction of fixed points of nonlinear mappings. J. Math. Anal. Appl. 20, 197-228 (1967)

5. 5.

Browder, FE: Convergence of approximation to fixed points of nonexpansive nonlinear mappings in Hilbert spaces. Arch. Ration. Mech. Anal. 24, 82-90 (1967)

6. 6.

Halpern, B: Fixed points of nonexpansive maps. Bull. Am. Math. Soc. 73, 957-961 (1967)

7. 7.

Ishikawa, S: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147-150 (1974)

8. 8.

Lions, PL: Approximation de points fixes de contractions. C. R. Acad. Sci., Sér. A-B Paris 284, 1357-1359 (1977)

9. 9.

Opial, Z: Weak convergence of the sequence of successive approximations of nonexpansive mappings. Bull. Am. Math. Soc. 73, 595-597 (1967)

10. 10.

Wittmann, R: Approximation of fixed points of non-expansive mappings. Arch. Math. 58, 486-491 (1992)

11. 11.

Moudafi, A: Viscosity approximation methods for fixed-point problems. J. Math. Anal. Appl. 241, 46-55 (2000)

12. 12.

Shioji, N, Takahashi, W: Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces. Proc. Am. Math. Soc. 125, 3641-3645 (1997)

13. 13.

Suzuki, T: A sufficient and necessary condition for Halpern-type strong convergence to fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 135, 99-106 (2007)

14. 14.

Reich, S, Zaslavski, AJ: Convergence of Krasnoselskii-Mann iterations of nonexpansive operators. Math. Comput. Model. 32, 1423-1431 (2000)

15. 15.

Xu, HK: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004)

16. 16.

Geobel, K, Kirk, WA: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)

17. 17.

Xu, HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240-256 (2002)

18. 18.

Suzuki, T: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory Appl. 2005, 103-123 (2005)

19. 19.

Mainge, PE: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 325, 469-479 (2007)

20. 20.

Chidume, CE, Chidume, CO: Iterative approximation of fixed points of nonexpansive mappings. J. Math. Anal. Appl. 318, 288-295 (2006)

21. 21.

Scherzer, O: Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems. J. Math. Anal. Appl. 194, 911-933 (1991)

22. 22.

Atsushiba, S, Takahashi, W: Strong convergence theorems for a finite family of nonexpansive mappings and applications. Indian J. Math. 41, 435-453 (1999)

23. 23.

Bauschke, HH: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 202, 150-159 (1996)

24. 24.

Ceng, LC, Cubiotti, P, Yao, JC: Strong convergence theorems for finitely many nonexpansive mappings and applications. Nonlinear Anal. 67, 1464-1473 (2007)

25. 25.

Chang, SS: Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 323, 1402-1416 (2006)

26. 26.

Jung, JS: Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 302, 509-520 (2005)

27. 27.

Yao, Y, Shahzad, N, Liou, YC: Modified semi-implicit midpoint rule for nonexpansive mappings. Fixed Point Theory Appl. 2015, 166 (2015)

28. 28.

Marino, G, Xu, HK: Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces. J. Math. Anal. Appl. 329, 336-349 (2007)

29. 29.

Chidume, CE, Mutangadura, SA: An example on the Mann iteration method for Lipschitz pseudo-contractions. Proc. Am. Math. Soc. 129, 2359-2363 (2001)

30. 30.

Yao, Y, Liou, YC, Marino, G: A hybrid algorithm for pseudo-contractive mappings. Nonlinear Anal. 71, 997-5002 (2009)

31. 31.

Zhou, H: Strong convergence of an explicit iterative algorithm for continuous pseudo-contractions in Banach spaces. Nonlinear Anal. 70, 4039-4046 (2009)

32. 32.

Guo, W, Choi, M, Cho, YJ: Convergence theorems for continuous pseudocontractive mappings in Banach spaces. J. Inequal. Appl. 2014, 384 (2014)

33. 33.

Hussain, N, Ćirić, LB, Cho, YJ, Rafiq, A: On Mann-type iteration method for a family of hemicontractive mappings in Hilbert spaces. J. Inequal. Appl. 2013, 41 (2013)

34. 34.

Yao, Y, Liou, YC, Yao, JC: Split common fixed point problem for two quasi-pseudo-contractive operators and its algorithm construction. Fixed Point Theory Appl. 2015, 127 (2015)

35. 35.

Yao, Y, Postolache, M, Liou, YC, Yao, Z: Construction algorithms for a class of monotone variational inequalities. Optim. Lett. (2015). doi:10.1007/s11590-015-0954-8

## Acknowledgements

The authors are grateful to the three reviewers for their valuable comments and suggestions. Zhangsong Yao was supported by the Scientific Research Project of Nanjing Xiaozhuang University (2015NXY46).

## Author information

Authors

### Corresponding author

Correspondence to Shin Min Kang.

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

All authors read and approved the final manuscript.

## Rights and permissions

Reprints and Permissions

Yao, Z., Kang, S.M. & Li, H. An intermixed algorithm for strict pseudo-contractions in Hilbert spaces. Fixed Point Theory Appl 2015, 206 (2015). https://doi.org/10.1186/s13663-015-0454-7

• Accepted:

• Published:

• 47H09
• 47H10

### Keywords

• intermixed algorithm
• strict pseudo-contraction
• fixed point
• strong convergence