Skip to main content

Common fixed point theorems for three pairs of self-mappings satisfying the common \((E.A)\) property in Menger probabilistic G-metric spaces

Abstract

In this paper, we generalize the algebraic sum of Fang. Based on this concept, we prove some common fixed point theorems for three pairs of self-mappings satisfying the common \((E.A)\) property in Menger \(PGM\)-spaces. Finally, an example is given to exemplify our main results.

1 Introduction

As a generalization of a metric space, the concept of a probabilistic metric space has been introduced by Menger [1, 2]. Fixed point theory in a probabilistic metric space is an important branch of probabilistic analysis, and many results on the existence of fixed points or solutions of nonlinear equations under various types of conditions in Menger PM-spaces have been extensively studied by many scholars (see e.g. [3, 4]). In 2006, Mustafa and Sims [5] introduced the concept of a generalized metric space, based on the notion of a generalized metric space, many authors obtained many fixed point theorems for mappings satisfying different contractive conditions in generalized metric spaces (see [612]). Moreover, Zhou et al. [13] defined the notion of a generalized probabilistic metric space or a \(PGM\)-space as a generalization of a PM-space and a G-metric space. After that, Zhu et al. [14] obtained some fixed point theorems.

In 2002, Aamri and Moutawakil [15] defined a property for a pair of mappings, i.e., the so-called property \((E.A)\), which is a generalization of the concept of noncompatibility. In 2009, Fang and Gang [16] defined the property \((E.A)\) for two mappings in Menger PM-spaces and studied the existence of and common fixed points in such spaces. Recently, Wu et al. [17] defined a property for two hybrid pairs of mappings satisfying the common property \((E.A)\) in Menger PM-spaces. Gu and Yin [18] introduced the concept of common \((E.A)\) property and obtained some common fixed point theorems for three pairs of self-mappings satisfying the common \((E.A)\) property in generalized metric spaces.

The aim of this paper is to introduce the common \((E.A)\) property in Menger \(PGM\)-spaces, generalize the algebraic sum in [16], and study the common fixed point theorems for three pairs of weakly compatible self-mappings under strict contractive conditions in Menger \(PGM\)-spaces. Our results do not rely on any commuting or continuity condition of the mappings.

2 Preliminaries

Throughout this paper, let \(\mathbb{R}=(-\infty,+\infty)\), \(\mathbb {R^{+}}=[0,+\infty)\), and \(\mathbb{Z^{+}}\) be the set of all positive integers.

A mapping \(F:\mathbb{R}\rightarrow\mathbb{R^{+}}\) is called a distribution function if it is nondecreasing left-continuous with \(\sup_{t\in\mathbb{R}}F(t)=1\) and \(\inf_{t\in\mathbb{R}}F(t)=0\).

We shall denote by \(\mathscr{D}\) the set of all distribution functions while H will always denote the specific distribution function defined by

$$H(t)= \left \{ \textstyle\begin{array}{@{}l@{\quad}l} 0, & t\leq0,\\ 1, & t>0. \end{array}\displaystyle \right . $$

A mapping \(\Delta:[0,1]\times[0,1]\rightarrow[0,1]\) is called a triangular norm (for short, a t-norm) if the following conditions are satisfied:

  1. (1)

    \(\Delta(a,1)=a\);

  2. (2)

    \(\Delta(a,b)= \Delta(b,a)\);

  3. (3)

    \(a\geq b,c\geq d\Rightarrow\Delta(a,c)\geq\Delta(b,d)\);

  4. (4)

    \(\Delta(a,\Delta(b,c))= \Delta(\Delta(a,b),c)\).

A typical example of a t-norm is \(\Delta_{m}\), where \(\Delta _{m}(a,b)=\min\{a,b\}\), for each \(a,b\in[0,1]\).

Definition 2.1

[13]

A Menger probabilistic G-metric space (for short, a \(PGM\)-space) is a triple \((X,G^{*},\Delta)\), where X is a nonempty set, Δ is a continuous t-norm, and \(G^{*}\) is a mapping from \(X\times X\times X\) into \(\mathscr{D}\) (\(G^{*}_{x,y,z}\) denotes the value of \(G^{*}\) at the point \((x,y,z)\)) satisfying the following conditions:

  1. (PGM-1)

    \(G^{*}_{x,y,z}(t)=1\) for all \(x,y,z\in X\) and \(t>0\) if and only if \(x=y=z\);

  2. (PGM-2)

    \(G^{*}_{x,x,y}(t)\geq G^{*}_{x,y,z}(t)\) for all \(x,y,z\in X\) with \(z\neq y\) and \(t>0\);

  3. (PGM-3)

    \(G^{*}_{x,y,z}(t)=G^{*}_{x,z,y}(t)=G^{*}_{y,x,z}(t)=\cdots\) (symmetry in all three variables);

  4. (PGM-4)

    \(G^{*}_{x,y,z}(t+s)\geq\Delta(G^{*}_{x,a,a}(s), G^{*}_{a,y,z}(t))\) for all \(x,y,z,a\in X\) and \(s,t\geq0\).

Example 2.1

[13]

Let \((X,G)\) be a G-metric space, where \(G(x,y,z)=|x-y|+|y-z|+|z-x|\). Define \(G^{*}_{x,y,z}(t)=\frac {t}{t+G(x,y,z)}\) for all \(x,y,z \in X\). Then \((X,G^{*},\Delta_{m})\) is a Menger \(PGM\)-space.

Definition 2.2

[13]

Let \((X,G^{*},\Delta)\) be a Menger \(PGM\)-space and \(x_{0}\) be any point in X. For any \(\epsilon>0\) and δ with \(0<\delta<1\), and \((\epsilon,\delta)\)-neighborhood of \(x_{0}\) is the set of all points y in X for which \(G^{*}_{x_{0},y,y}(\epsilon)>1-\delta\) and \(G^{*}_{y,x_{0},x_{0}}(\epsilon)>1-\delta\). We write

$$N_{x_{0}}(\epsilon,\delta)=\bigl\{ y\in X:G^{*}_{x_{0},y,y}( \epsilon)>1-\delta ,G^{*}_{y,x_{0},x_{0}}(\epsilon)>1-\delta\bigr\} , $$

which means that \(N_{x_{0}}(\epsilon,\delta)\) is the set of all points y in X for which the probability of the distance from \(x_{0}\) to y being less than ϵ is greater than \(1-\delta\).

Definition 2.3

[13]

Let \((X, G^{*}, \Delta)\) be a \(PGM\)-space, and \(\{x_{n}\}\) is a sequence in X.

  1. (1)

    \(\{x_{n}\}\) is said to be convergent to a point \(x\in X\) (write \(x_{n}\rightarrow x\)), if for any \(\epsilon>0\) and \(0<\delta<1\), there exists a positive integer \(M_{\epsilon,\delta}\) such that \(x_{n}\in N_{x_{0}}(\epsilon,\delta)\) whenever \(n>M_{\epsilon,\delta}\);

  2. (2)

    \(\{x_{n}\}\) is called a \(Cauchy\) sequence, if for any \(\epsilon>0\) and \(0<\delta<1\), there exists a positive integer \(M_{\epsilon,\delta}\) such that \(G^{*}_{x_{n},x_{m},x_{l}}(\epsilon )>1-\delta\) whenever \(n,m,l>M_{\epsilon,\delta}\);

  3. (3)

    \((X, G^{*}, \Delta)\) is said to be complete, if every \(Cauchy\) sequence in X converges to a point in X.

Remark 2.1

Let \((X,G^{*},\Delta)\) be a Menger \(PGM\)-space, \(\{x_{n}\}\) is a sequence in X. Then the following are equivalent:

  1. (1)

    \(\{x_{n}\}\) is convergent to a point \(x\in X\);

  2. (2)

    \(G^{*}_{x_{n},x_{n},x}(t)\rightarrow1\) as \(n\rightarrow\infty \), for all \(t>0\);

  3. (3)

    \(G^{*}_{x_{n},x,x}(t)\rightarrow1\) as \(n\rightarrow\infty\), for all \(t>0\).

We can analogously prove the following lemma as in Menger PM-spaces.

Lemma 2.1

Let \((X,G^{*},\Delta)\) be a Menger \(PGM\)-space with Δ a continuous t-norm, \(\{x_{n}\}\), \(\{y_{n}\}\), and \(\{z_{n}\}\) be sequences in X and \(x, y, z\in X\), if \(\{x_{n}\} \rightarrow x\), \(\{ y_{n}\} \rightarrow y\), and \(\{z_{n}\} \rightarrow z\) as \(n \rightarrow \infty\). Then

  1. (1)

    \(\liminf_{n\rightarrow\infty }G^{*}_{x_{n},y_{n},z_{n}}(t)\geq G^{*}_{x,y,z}(t)\) for all \(t>0\);

  2. (2)

    \(G^{*}_{x,y,z}(t+o)\geq\limsup_{n\rightarrow\infty }G^{*}_{x_{n},y_{n},z_{n}}(t)\) for all \(t>0\).

Particularly, if \(t_{0}\) is a continuous point of \(G_{x,y,z}(\cdot )\), then \(\lim_{n\rightarrow\infty }G_{x_{n},y_{n},z_{n}}(t_{0})=G_{x,y,z}(t_{0})\).

Lemma 2.2

[14]

Let \((X,G^{*},\Delta)\) be a Menger \(PGM\)-space. For each \(\lambda\in(0,1]\), define a function \(G^{*}_{\lambda}\) by

$$G^{*}_{\lambda}(x,y,z)=\inf_{t} \bigl\{ t \geq0:G^{*}_{x,y,z}(t)>1-\lambda\bigr\} , $$

for \(x,y,z\in X\), then

  1. (1)

    \(G^{*}_{\lambda}(x,y,z)< t\) if and only if \(G^{*}_{x,y,z}(t)>1-\lambda\);

  2. (2)

    \(G^{*}_{\lambda}(x,y,z)=0\) for all \(\lambda\in(0,1]\) if and only if \(x=y=z\);

  3. (3)

    \(G^{*}_{\lambda}(x,y,z)=G^{*}_{\lambda}(y,x,z)=G^{*}_{\lambda }(y,z,x)=\cdots\);

  4. (4)

    if \(\Delta=\Delta_{m}\), then for every \(\lambda\in(0,1]\), \(G^{*}_{\lambda}(x,y,z)\leq G^{*}_{\lambda}(x,a,a)+G^{*}_{\lambda}(a,y,z)\).

Definition 2.4

[19]

Let f and g be self-mappings of a set X. If \(w=fx=gx\) for some x in X, then x is called a coincidence point of f and g, and w is called point of coincidence of f and g.

Definition 2.5

Let S and T be two self-mappings of a Menger \(PGM\)-space \((X,G^{*},\Delta)\). S and T are said to be weakly compatible (or coincidentally commuting) if they commute at their coincidence points, i.e., if \(Tu=Su\) for some \(u\in X\) implies that \(TSu=STu\).

Definition 2.6

[18]

Let \((X,d)\) be a G-metric space and A, B, S, and T four self-mappings on X. The pairs \((A,S)\) and \((B,T)\) are said to satisfy the common \((E.A)\) property if there exist two sequences \(\{ x_{n}\}\) and \(\{y_{n}\}\) in X such that \(\lim_{n\rightarrow \infty}Ax_{n}=\lim_{n\rightarrow\infty}Sx_{n}=\lim_{n\rightarrow\infty}By_{n}=\lim_{n\rightarrow\infty}Ty_{n}=t\) for some \(t\in X\).

Definition 2.7

Let \((X,G^{*},\Delta)\) be a Menger \(PGM\)-space and A, B, S, and T four self-mappings on X. The pairs \((A,S)\) and \((B,T)\) are said to satisfy the common \((E.A)\) property if there exist two sequences \(x_{n}\) and \(y_{n}\) in X such that \(\lim_{n\rightarrow\infty}Ax_{n}=\lim_{n\rightarrow\infty}Sx_{n}=\lim_{n\rightarrow\infty}By_{n}=\lim_{n\rightarrow\infty }Ty_{n}=t\) for some \(t\in X\).

Definition 2.8

[16]

Let \(F_{1},F_{2}\in\mathscr{D}\). The algebraic sum \(F_{1}\oplus F_{2}\) of \(F_{1}\) and \(F_{2}\) is defined by

$$\begin{aligned} (F_{1}\oplus F_{2}) (t)=\sup _{t_{1}+t_{2}=t}\min\bigl\{ F_{1}(t_{1}), F_{2}(t_{2})\bigr\} \end{aligned}$$
(2.1)

for all \(t\in\mathbb{R}\).

As a generalization, we give the following definition.

Definition 2.9

Let \(F_{1},F_{2},F_{3}\in\mathscr{D}\). The algebraic sum \(F_{1}\oplus F_{2}\oplus F_{3}\) of \(F_{1}\), \(F_{2}\), and \(F_{3}\) is defined by

$$\begin{aligned} (F_{1}\oplus F_{2}\oplus F_{3}) (t)=\sup_{t_{1}+t_{2}+t_{3}=t}\min\bigl\{ F_{1}(t_{1}), F_{2}(t_{2}), F_{3}(t_{3})\bigr\} \end{aligned}$$
(2.2)

for all \(t\in\mathbb{R}\).

Remark 2.2

Let \(F_{3}(t)=H(t)\), then (2.1) and (2.2) are equivalent.

Definition 2.10

[20]

Let \(\phi:\mathbb{R^{+}}\rightarrow\mathbb{R^{+}}\) be a function and \(\phi^{n}(t)\) be the nth iteration of \(\phi(t)\),

  1. (i)

    ϕ is nondecreasing;

  2. (ii)

    ϕ is upper semi-continuous from the right;

  3. (iii)

    \(\sum_{n=0}^{\infty}\phi^{n}(t)<+\infty\) for all \(t>0\).

We define Φ the class of functions \(\phi: \mathbb {R^{+}}\rightarrow\mathbb{R^{+}}\) satisfying conditions (i), (ii), and (iii).

Lemma 2.3

Let \((X,G^{*},\Delta)\) be a Menger \(PGM\)-space and \(x,y,z\in X\). If there exists \(\phi\in\Phi\), such that

$$ G^{*}_{x,y,z}\bigl(\phi(t)+o\bigr)\geq G^{*}_{x,y,z}(t), $$
(2.3)

for all \(t>0\). Then \(x=y=z\).

Proof

Let \(\lambda\in(0,1]\) and we put \(a=G^{*}_{\lambda }(x,y,z)\). Since \(\phi(\cdot)\) is upper semi-continuous from the right at the point a, for given \(\epsilon>0\), there exists \(s>a\) such that \(\phi(s)<\phi (a)+\varepsilon\). By Lemma 2.2, \(s>G^{*}_{\lambda}(x,y,y)\) implies that \(G^{*}_{x,y,z}(s)>1-\lambda\). So, it follows from (2.3) that

$$G^{*}_{x,y,z}\bigl(\phi(s)+\epsilon\bigr)\geq G^{*}_{x,y,z}\bigl(\phi(s)+o\bigr)\geq G^{*}_{x,y,z}(s)>1- \lambda, $$

which implies that \(G^{*}_{\lambda}(x,y,z)<\phi(s)+\epsilon<\phi (a)+2\epsilon\). By the arbitrariness of ϵ, we get \(a=G^{*}_{\lambda}(x,y,z)\leq\phi(a)\), thus \(a=0\), i.e., \(G^{*}_{\lambda}(x,y,z)=0\). By (2) of Lemma 2.2, we conclude that \(x=y=z\). □

3 Main results

In this section, we will establish some new common fixed point theorems in Menger \(PGM\)-spaces.

Theorem 3.1

Let \((X, G^{*}, \Delta)\) be a Menger \(PGM\)-space. Suppose the self-mappings f, g, h, R, S, and \(T: X\rightarrow X\) satisfy the following conditions:

$$\begin{aligned} G^{*}_{fx,gy,hz}\bigl(\phi(t)\bigr) \geq& \min\bigl\{ G^{*}_{Rx,Sy,Tz}(t), G^{*}_{fx,Rx,Rx}(t), G^{*}_{gy,Sy,Sy}(t), G^{*}_{hz,Tz,Tz}(t), \\ &{} \bigl[G^{*}_{fx,Sy,Tz}\oplus G^{*}_{Rx,gy,Tz} \oplus G^{*}_{Rx,Sy,hz}\bigr](3t), \\ &{} \bigl[G^{*}_{fx,gy,Tz} \oplus G^{*}_{fx,Sy,hz}\oplus G^{*}_{Rx,gy,hz} \bigr](3t)\bigr\} \end{aligned}$$
(3.1)

for all x, y, and \(z\in X\), \(t>0\), where \(\phi\in\Phi\). If one of the following conditions is satisfied, then the pairs \((f,R)\), \((g,S)\), and \((h,T)\) have a common fixed point of coincidence in X:

  1. (i)

    the subspace Rx is closed in X, \(fx\subseteq Sx\), \(gx\subseteq Tx\), and the two pairs of \((f,R)\) and \((g,S)\) satisfy the common \((E.A)\) property;

  2. (ii)

    the subspace Sx is closed in X, \(gx\subseteq Tx\), \(hx\subseteq Rx\), and the two pairs of \((g,S)\) and \((h,T)\) satisfy the common \((E.A)\) property;

  3. (iii)

    the subspace Tx is closed in X, \(fx\subseteq Sx\), \(hx\subseteq Rx\), and the two pairs of \((f,R)\) and \((h,T)\) satisfy the common \((E.A)\) property.

Moreover, if the pairs \((f,R)\), \((g,S)\), and \((h,T)\) are weakly compatible, then f, g, h, R, S, and T have a unique common fixed point in X.

Proof

First, we suppose that the subspace Rx is closed in X, \(fx\subseteq Sx\), \(gx\subseteq Tx\), and the two pairs of \((f,R)\) and \((g,S)\) satisfy the common \((E.A)\) property. Then by Definition 2.6 we know that there exist two sequences \(\{x_{n}\}\) and \(\{y_{n}\}\) in X such that

$$\lim_{n\rightarrow\infty}fx_{n}=\lim_{n\rightarrow\infty }Rx_{n}= \lim_{n\rightarrow\infty}gy_{n}=\lim_{n\rightarrow \infty}Sy_{n}=t, $$

for some \(t\in X\). Since \(gx\subseteq Tx\), there exists a sequence \(\{z_{n}\}\) in X such that \(gy_{n}=Tz_{n}\). Hence \(\lim_{n\rightarrow\infty }Tz_{n}=a\). Next, we will show \(\lim_{n\rightarrow\infty }hz_{n}=a\). In fact, if \(\lim_{n\rightarrow\infty}hz_{n}=z\neq a\), then from (3.1) we can get

$$\begin{aligned} G^{*}_{fx_{n},gy_{n},hz_{n}}\bigl(\phi(t)\bigr) \geq& \min\bigl\{ G^{*}_{Rx_{n},Sy_{n},Tz_{n}}(t), G^{*}_{fx_{n},Rx_{n},Rx_{n}}(t), G^{*}_{gy_{n},Sy_{n},Sy_{n}}(t), G^{*}_{hz_{n},Tz_{n},Tz_{n}}(t), \\ &{} \bigl[G^{*}_{fx_{n},Sy_{n},Tz_{n}}\oplus G^{*}_{Rx_{n},gy_{n},Tz_{n}} \oplus G^{*}_{Rx_{n},Sy_{n},hz_{n}}\bigr](3t), \\ &{} \bigl[G^{*}_{fx_{n},gy_{n},Tz_{n}}\oplus G^{*}_{fx_{n},Sy_{n},hz_{n}} \oplus G^{*}_{Rx_{n},gy_{n},hz_{n}}\bigr](3t)\bigr\} . \end{aligned}$$

On letting \(n\rightarrow\infty\), and by (2) of Lemma 2.1, we can obtain

$$\begin{aligned} G^{*}_{a,a,z}\bigl(\phi(t)+o\bigr) \geq& \limsup _{n\rightarrow\infty }G^{*}_{fx_{n},gy_{n},hz_{n}}\bigl(\phi(t)\bigr) \\ \geq& \min\Bigl\{ 1,1,1 ,G^{*}_{z,a,a}(t), \\ &{}\lim _{n\rightarrow\infty }\bigl[G^{*}_{fx_{n},Sy_{n},Tz_{n}}\oplus G^{*}_{Rx_{n},gy_{n},Tz_{n}}\oplus G^{*}_{Rx_{n},Sy_{n},hz_{n}}\bigr](3t), \\ &{}\lim_{n\rightarrow\infty}\bigl[G^{*}_{fx_{n},gy_{n},Tz_{n}}\oplus G^{*}_{fx_{n},Sy_{n},hz_{n}}\oplus G^{*}_{Rx_{n},gy_{n},hz_{n}}\bigr](3t) \Bigr\} . \end{aligned}$$
(3.2)

In addition, by Definition 2.7, it is easy to verify that

$$\begin{aligned} &\lim_{n\rightarrow\infty}\bigl[G^{*}_{fx_{n},Sy_{n},Tz_{n}} \oplus G^{*}_{Rx_{n},gy_{n},Tz_{n}}\oplus G^{*}_{Rx_{n},Sy_{n},hz_{n}} \bigr](3t) \\ &\quad\geq \lim_{n\rightarrow\infty}\min\bigl\{ G^{*}_{fx_{n},Sy_{n},Tz_{n}}(t),G^{*}_{Rx_{n},gy_{n},Tz_{n}}(t), G^{*}_{Rx_{n},Sy_{n},hz_{n}}(t)\bigr\} \\ &\quad\geq \min\bigl\{ G^{*}_{a,a,a}(t),G^{*}_{a,a,a}(t),G^{*}_{a,a,z}(t) \bigr\} =G^{*}_{a,a,z}(t). \end{aligned}$$
(3.3)

Similarly, we also have

$$\lim_{n\rightarrow\infty}\bigl[G^{*}_{fx_{n},gy_{n},Tz_{n}}\oplus G^{*}_{fx_{n},Sy_{n},hz_{n}}\oplus G^{*}_{Rx_{n},gy_{n},hz_{n}}\bigr](3t)\geq G^{*}_{a,a,z}(t). $$

Then (3.2) is

$$G^{*}_{a,a,z}\bigl(\phi(t)+o\bigr) \geq G^{*}_{a,a,z}(t) $$

for all \(t>0\). By Lemma 2.3, we have \(a=z\). So, \(\lim_{n\rightarrow\infty}hz_{n}=a\).

Since Rx is a closed subset of X and \(\lim_{n\rightarrow\infty}Rx_{n}= a\), there exists \(p\in X\) such that \(a=Rp\), we claim that \(fp=a\). Suppose not, then by using (3.1), we obtain

$$\begin{aligned} G^{*}_{fp,gy_{n},hz_{n}}\bigl(\phi(t)\bigr) \geq&\min\bigl\{ G^{*}_{Rp,Sy_{n},Tz_{n}}(t), G^{*}_{fp,Rp,Rp}(t), G^{*}_{gy_{n},Sy_{n},Sy_{n}}(t), G^{*}_{hz_{n},Tz_{n},Tz_{n}}(t), \\ &{} \bigl[G^{*}_{fp,Sy_{n},Tz_{n}}\oplus G^{*}_{Rp,gy_{n},Tz_{n}} \oplus G^{*}_{Rp,Sy_{n},hz_{n}}\bigr](3t), \\ &{} \bigl[G^{*}_{fp,gy_{n},Tz_{n}}\oplus G^{*}_{fp,Sy_{n},hz_{n}} \oplus G^{*}_{Rp,gy_{n},hz_{n}}\bigr](3t)\bigr\} . \end{aligned}$$

Taking \(n\rightarrow\infty\) on the two sides of the above inequality, similar to (3.3), we get

$$\begin{aligned} G^{*}_{fp,a,a}\bigl(\phi(t)+o\bigr) \geq& \min\Bigl\{ 1,G^{*}_{fp,a,a}(t),1,1,\lim_{n\rightarrow\infty} \bigl[G^{*}_{fp,Sy_{n},Tz_{n}}\oplus G^{*}_{Rp,gy_{n},Tz_{n}}\oplus G^{*}_{Rp,Sy_{n},hz_{n}}\bigr](3t), \\ &{}\lim_{n\rightarrow\infty} \bigl[G^{*}_{fp,gy_{n},Tz_{n}}\oplus G^{*}_{fp,Sy_{n},hz_{n}}\oplus G^{*}_{Rp,gy_{n},hz_{n}}\bigr](3t) \Bigr\} \\ \geq&\min\bigl\{ 1,G^{*}_{fp,a,a}(t),1,1,G^{*}_{fp,a,a}(t),G^{*}_{fp,a,a}(t) \bigr\} = G^{*}_{fp,a,a}(t). \end{aligned}$$

By Lemma 2.3, we have \(fp=a=Rp\). Hence, p is the coincidence point of the pair \((f,R)\).

By condition \(fx\subseteq Sx\) and \(fp=a\), there exists \(u \in X\) such that \(a=Su\). Now we claim that \(gu=a\). In fact, if \(gu\neq a\), then from (3.1), we have

$$\begin{aligned} G^{*}_{fp,gu,hz_{n}}\bigl(\phi(t)\bigr) \geq& \min\bigl\{ G^{*}_{Rp,Su,Tz_{n}}(t), G^{*}_{fp,Rp,Rp}(t), G^{*}_{gu,Su,Su}(t), G^{*}_{hz_{n},Tz_{n},Tz_{n}}(t), \\ &{} \bigl[G^{*}_{fp,Su,Tz_{n}}\oplus G^{*}_{Rp,gu,Tz_{n}} \oplus G^{*}_{Rp,Su,hz_{n}}\bigr](3t), \\ &{}\bigl[G^{*}_{fp,gu,Tz_{n}}\oplus G^{*}_{fp,Su,hz_{n}} \oplus G^{*}_{Rp,gu,hz_{n}}\bigr](3t)\bigr\} . \end{aligned}$$

Letting \(n\rightarrow\infty\) on the two sides of the above inequality, we get

$$\begin{aligned} G^{*}_{a,gu,a}\bigl(\phi(t)+o\bigr) \geq&\min\Bigl\{ 1,1, G^{*}_{gu,a,a}(t),1,\lim_{n\rightarrow\infty } \bigl[G^{*}_{fp,Su,Tz_{n}}\oplus G^{*}_{Rp,gu,Tz_{n}}\oplus G^{*}_{Rp,Su,hz_{n}}\bigr](3t), \\ &\lim_{n\rightarrow\infty}\bigl[G^{*}_{fp,gu,Tz_{n}}\oplus G^{*}_{fp,Su,hz_{n}}\oplus G^{*}_{Rp,gu,hz_{n}}\bigr](3t) \Bigr\} \\ \geq& \min\bigl\{ 1,1,G^{*}_{gu,a,a}(t),1,G^{*}_{a,gu,a}(t),G^{*}_{a,gu,a}(t) \bigr\} = G^{*}_{a,gu,a}(t). \end{aligned}$$

By Lemma 2.3, we can also obtain \(gu=a\), and so u is the coincidence point of the pair \((g,S)\).

Since \(gX\subseteq TX\), there exists \(v\in X\) such that \(a=Tv\). We claim that \(hv=a\). If not, from (3.1), we have

$$\begin{aligned} G^{*}_{fp,gu,hv}\bigl(\phi(t)+o\bigr) \geq&G^{*}_{fp,gu,hv} \bigl(\phi(t)\bigr) \\ \geq&\min\bigl\{ G^{*}_{Rp,Su,Tv}(t), G^{*}_{fp,Rp,Rp}(t), G^{*}_{gu,Su,Su}(t), G^{*}_{hv,Tv,Tv}(t), \\ &{} \bigl[G^{*}_{fp,Su,Tv}\oplus G^{*}_{Rp,gu,Tv} \oplus G^{*}_{Rp,Su,hv}\bigr](3t),\\ &{} \bigl[G^{*}_{fp,gu,Tv} \oplus G^{*}_{fp,Su,hv}\oplus G^{*}_{Rp,gu,hv} \bigr](3t)\bigr\} \\ \geq& \min\bigl\{ 1,1,1,G^{*}_{hv,a,a}(t),\bigl[G^{*}_{a,a,a} \oplus G^{*}_{a,a,a}\oplus G^{*}_{a,a,hv} \bigr](3t),\\ &{}\bigl[G^{*}_{a,a,a}\oplus G^{*}_{a,a,hv} \oplus G^{*}_{a,a,hv}\bigr](3t)\bigr\} \\ \geq& \min\bigl\{ 1,1,1,G^{*}_{hv,a,a}(t),G^{*}_{a,a,hv}(t),G^{*}_{a,a,hv}(t) \bigr\} =G^{*}_{a,a,hv}(t). \end{aligned}$$

By Lemma 2.3, we have \(hv=a=Tv\), so v is the coincidence point of the pair \((h,T)\).

Therefore, in all the above cases, we obtain \(fp=Rp=a\), \(gu=Su=hv=Tv=a\). Now, weak compatibility of the pairs \((f,R)\), \((g,S)\), and \((h,T)\) give \(fa=Ra\), \(ga=Sa\), and \(ha=Ta\).

Next, we show that \(fa=a\). In fact, if \(fa\neq a\), then from (3.1) we have

$$\begin{aligned} G^{*}_{fa,a,a}\bigl(\phi(t)+o\bigr) \geq& \min\bigl\{ G^{*}_{Ra,Su,Tv}(t), G^{*}_{fa,Ra,Ra}(t), G^{*}_{gu,Su,Su}(t), G^{*}_{hv,Tv,Tv}(t), \\ &{} \bigl[G^{*}_{fa,Su,Tv}\oplus G^{*}_{Ra,gu,Tv} \oplus G^{*}_{Ra,Su,hv}\bigr](3t),\\ &{} \bigl[G^{*}_{fa,gu,Tv} \oplus G^{*}_{fa,Su,hv}\oplus G^{*}_{Ra,gu,hv} \bigr](3t)\bigr\} \\ \geq& \min\bigl\{ G^{*}_{Ra,a,a}(t),1,1,1,\bigl[G^{*}_{fa,a,a} \oplus G^{*}_{Ra,a,a}\oplus G^{*}_{Ra,a,a} \bigr](3t),\\ &{}\bigl[G^{*}_{fa,a,a}\oplus G^{*}_{fa,a,hv} \oplus G^{*}_{Ra,a,a}\bigr](3t)\bigr\} \\ \geq& \min\bigl\{ 1,1,1,G^{*}_{fa,a,a}(t),G^{*}_{fa,a,a}(t),G^{*}_{fa,a,a}(t) \bigr\} =G^{*}_{fa,a,a}(t). \end{aligned}$$

From Lemma 2.3 we know \(fa=a\) and so \(fa=Ra=a\). Similarly, it can be show that \(ga=Sa=a\) and \(ha=Ta=a\), so we get \(fa=ga=ha=Ra=Sa=Ta=a\), which means that a is a common fixed point of f, g, h, R, S, and T.

Next, we will show the uniqueness. Actually, suppose that \(w\in X\), \(w\neq a\) is another common fixed point of f, g, h, R, S, and T. Then by (3.1), we have

$$\begin{aligned} G^{*}_{w,a,a}\bigl(\phi(t)+o\bigr) \geq& \min\bigl\{ G^{*}_{Rw,Sa,Ta}(t), G^{*}_{fw,Rw,Rw}(t), G^{*}_{ga,Sa,Sa}(t), G^{*}_{ha,Ta,Ta}(t), \\ &{} \bigl[G^{*}_{fw,Sa,Ta}\oplus G^{*}_{Rw,ga,Ta} \oplus G^{*}_{Rw,Sa,ha}\bigr](3t),\\ &{} \bigl[G^{*}_{fw,ga,Ta} \oplus G^{*}_{fw,Sa,ha}\oplus G^{*}_{Rw,ga,ha} \bigr](3t)\bigr\} \\ \geq& \min\bigl\{ G^{*}_{w,a,a}(t),1,1,1,\bigl[G^{*}_{fa,a,a} \oplus G^{*}_{w,a,a}\oplus G^{*}_{w,a,a} \bigr](3t),\\ &{}\bigl[G^{*}_{w,a,a}\oplus G^{*}_{w,a,hv} \oplus G^{*}_{w,a,a}\bigr](3t)\bigr\} \\ \geq& \min\bigl\{ 1,1,1,G^{*}_{w,a,a}(t),G^{*}_{w,a,a}(t),G^{*}_{w,a,a}(t) \bigr\} =G^{*}_{w,a,a}(t). \end{aligned}$$

By Lemma 2.3 we have \(a=w\), a contradiction, so, f, g, h, R, S, and T have a unique common fixed point.

Finally, if condition (ii) or (iii) holds, then the argument is similar to the above, so we omit it. This completes the proof of Theorem 3.1. □

Taking \(\phi(t)=\lambda t\), \(\lambda\in(0,1)\), then we can obtain the following results.

Corollary 3.1

Let \((X, G^{*}, \Delta)\) be a Menger \(PGM\)-space. Suppose the self-mappings f, g, h, R, S, and \(T: X\rightarrow X\) satisfy the following conditions:

$$\begin{aligned} G^{*}_{fx,gy,hz}(\lambda t) \geq& \min\bigl\{ G^{*}_{Rx,Sy,Tz}(t), G^{*}_{fx,Rx,Rx}(t), G^{*}_{gy,Sy,Sy}(t), G^{*}_{hz,Tz,Tz}(t),\\ &{}\bigl[G^{*}_{fx,Sy,Tz}\oplus G^{*}_{Rx,gy,Tz} \oplus G^{*}_{Rx,Sy,hz}\bigr](3t),\\ &{} \bigl[G^{*}_{fx,gy,Tz} \oplus G^{*}_{fx,Sy,hz}\oplus G^{*}_{Rx,gy,hz} \bigr](3t)\bigr\} \end{aligned}$$

for all x, y, and \(z\in X\), where \(\lambda\in(0,1)\). If one of the following conditions is satisfied, then the pairs \((f,R)\), \((g,S)\), and \((h,T)\) have a common fixed point of coincidence in X:

  1. (i)

    the subspace Rx is closed in X, \(fx\subseteq Sx\), \(gx\subseteq Tx\), and the two pairs of \((f,R)\) and \((g,S)\) satisfy the common \((E.A)\) property;

  2. (ii)

    the subspace Sx is closed in X, \(gx\subseteq Tx\), \(hx\subseteq Rx\), and the two pairs of \((g,S)\) and \((h,T)\) satisfy the common \((E.A)\) property;

  3. (iii)

    the subspace Tx is closed in X, \(fx\subseteq Sx\), \(hx\subseteq Rx\), and the two pairs of \((f,R)\) and \((h,T)\) satisfy the common \((E.A)\) property.

Moreover, if the pairs \((f,R)\), \((g,S)\), and \((h,T)\) are weakly compatible, the f, g, h, R, S, and T have a unique common fixed point in X.

Theorem 3.2

Let \((X, G^{*}, \Delta)\) be a Menger \(PGM\)-space. Suppose self-mappings f, g, h, R, S, and \(T: X\rightarrow X\) satisfying the following conditions:

$$\begin{aligned} G^{*}_{fx,gy,hz}(t) \geq& \psi\bigl\{ m(x,y,z,t)\bigr\} \end{aligned}$$
(3.4)

for all x, y, and \(z\in X\), where

$$\begin{aligned} m(x,y,z,t) =&\min\bigl\{ G^{*}_{Rx,Sy,Tz}(t), G^{*}_{fx,Rx,Rx}(t), G^{*}_{gy,Sy,Sy}(t), G^{*}_{hz,Tz,Tz}(t),\\ &{}\bigl[G^{*}_{fx,Sy,Tz}\oplus G^{*}_{Rx,gy,Tz} \oplus G^{*}_{Rx,Sy,hz}\bigr](3t),\\ &{} \bigl[G^{*}_{fx,gy,Tz} \oplus G^{*}_{fx,Sy,hz}\oplus G^{*}_{Rx,gy,hz} \bigr](3t)\bigr\} , \end{aligned}$$

ψ is continuous and \(\psi(t)>t\) for all \(t>0\). If one of the following conditions is satisfied, then the pairs \((f,R)\), \((g,S)\), and \((h,T)\) have a common fixed point of coincidence in X:

  1. (i)

    the subspace Rx is closed in X, \(fx\subseteq Sx\), \(gx\subseteq Tx\), and the two pairs of \((f,R)\) and \((g,S)\) satisfy the common \((E.A)\) property;

  2. (ii)

    the subspace Sx is closed in X, \(gx\subseteq Tx\), \(hx\subseteq Rx\), and the two pairs of \((g,S)\) and \((h,T)\) satisfy the common \((E.A)\) property;

  3. (iii)

    the subspace Tx is closed in X, \(fx\subseteq Sx\), \(hx\subseteq Rx\), and the two pairs of \((f,R)\) and \((h,T)\) satisfy the common \((E.A)\) property.

Moreover, if the pairs \((f,R)\), \((g,S)\), and \((h,T)\) are weakly compatible, the f, g, h, R, S, and T have a unique common fixed point in X.

Proof

First, we suppose that condition (i) is satisfied. Then there exist two sequences \(\{x_{n}\}\) and \(\{y_{n}\}\) in X such that

$$\lim_{n\rightarrow\infty}fx_{n}=\lim_{n\rightarrow\infty }Rx_{n}= \lim_{n\rightarrow\infty}gy_{n}=\lim_{n\rightarrow \infty}Sy_{n}=t, $$

for some \(t\in X\).

Since \(gx\subseteq Tx\), there exists a sequence \(\{z_{n}\}\) in X such that \(gy_{n}=Tz_{n}\). Hence \(\lim_{n\rightarrow\infty }Tz_{n}=a\). We claim that \(\lim_{n\rightarrow\infty}hz_{n}=a\). In fact, if \(\lim_{n\rightarrow\infty}hz_{n}=z\neq a\), it is not difficult to prove that there exists \(t_{0}>0\) such that

$$ \psi\bigl(G^{*}_{a,a,z}(t_{0}) \bigr)>G^{*}_{a,a,z}(t_{0}). $$
(3.5)

If not, we have \(G^{*}_{a,a,z}(t)\geq\psi (G^{*}_{a,a,z}(t))>G^{*}_{a,a,z}(t)\) for all \(t>0\), which is a contradiction. Then by (3.4), there exists \(t_{0}>0\) such that

$$\begin{aligned} G^{*}_{fx_{n},gy_{n},hz_{n}}(t_{0})\geq\psi\bigl\{ m(x_{n},y_{n},z_{n},t_{0})\bigr\} , \end{aligned}$$
(3.6)

where

$$\begin{aligned} &\psi\bigl\{ m(x_{n},y_{n},z_{n},t_{0}) \bigr\} \\ &\quad=\psi\bigl\{ \min\bigl\{ G^{*}_{Rx_{n},Sy_{n},Tz_{n}}(t_{0}), G^{*}_{fx_{n},Rx_{n},Rx_{n}}(t_{0}), G^{*}_{gy_{n},Sy_{n},Sy_{n}}(t_{0}),G^{*}_{hz_{n},Tz_{n},Tz_{n}}(t_{0}), \\ &\qquad{} \bigl[G^{*}_{fx_{n},Sy_{n},Tz_{n}}\oplus G^{*}_{Rx_{n},gy_{n},Tz_{n}} \oplus G^{*}_{Rx_{n},Sy_{n},hz_{n}}\bigr](3t_{0}), \\ &\qquad{} \bigl[G^{*}_{fx_{n},gy_{n},Tz_{n}}\oplus G^{*}_{fx_{n},Sy_{n},hz_{n}} \oplus G^{*}_{Rx_{n},gy_{n},hz_{n}}\bigr](3t_{0})\bigr\} \bigr\} . \end{aligned}$$
(3.7)

Letting \(n\rightarrow\infty\) in (3.7) and by the property of ψ, we can obtain

$$\begin{aligned} &\lim_{n\rightarrow\infty}\psi\bigl\{ m(x_{n},y_{n},z_{n},t_{0}) \bigr\} \\ &\quad=\psi\Bigl\{ \lim_{n\rightarrow\infty}\min\bigl\{ G^{*}_{Rx_{n},Sy_{n},Tz_{n}}(t_{0}), G^{*}_{fx_{n},Rx_{n},Rx_{n}}(t_{0}), G^{*}_{gy_{n},Sy_{n},Sy_{n}}(t_{0}), G^{*}_{hz_{n},Tz_{n},Tz_{n}}(t_{0}), \\ &\qquad{} \bigl[G^{*}_{fx_{n},Sy_{n},Tz_{n}}\oplus G^{*}_{Rx_{n},gy_{n},Tz_{n}} \oplus G^{*}_{Rx_{n},Sy_{n},hz_{n}}\bigr](3t_{0}), \\ &\qquad{} \bigl[G^{*}_{fx_{n},gy_{n},Tz_{n}}\oplus G^{*}_{fx_{n},Sy_{n},hz_{n}} \oplus G^{*}_{Rx_{n},gy_{n},hz_{n}}\bigr](3t_{0})\bigr\} \Bigr\} . \end{aligned}$$
(3.8)

As the proof of Theorem 3.1, we know

$$\begin{aligned}& \lim_{n\rightarrow\infty}\bigl[G^{*}_{fx_{n},Sy_{n},Tz_{n}}\oplus G^{*}_{Rx_{n},gy_{n},Tz_{n}}\oplus G^{*}_{Rx_{n},Sy_{n},hz_{n}} \bigr](3t_{0})\geq G^{*}_{a,a,z}(t_{0}), \\& \lim_{n\rightarrow\infty }\bigl[G^{*}_{fx_{n},gy_{n},Tz_{n}}\oplus G^{*}_{fx_{n},Sy_{n},hz_{n}}\oplus G^{*}_{Rx_{n},gy_{n},hz_{n}} \bigr](3t_{0})\geq G^{*}_{a,a,z}(t_{0}). \end{aligned}$$

Then (3.8) is

$$\begin{aligned} \lim_{n\rightarrow\infty}\psi\bigl\{ m(x_{n},y_{n},z_{n},t_{0}) \bigr\} \geq&\psi\bigl\{ \min\bigl\{ 1,1,1 ,G^{*}_{z,a,a}(t_{0}),G^{*}_{z,a,a}(t_{0}),G^{*}_{z,a,a}(t_{0}) \bigr\} \bigr\} \\ =&\psi\bigl\{ G^{*}_{z,a,a}(t_{0})\bigr\} . \end{aligned}$$
(3.9)

Without loss of generality, we assume that \(t_{0}\) in (3.5) is a continuous point of \(G_{a,a,z}(\cdot)\). By the left-continuity of the distribution function and the continuity of ψ, there exists \(\delta >0\) such that

$$\psi\bigl(G^{*}_{a,a,z}(t)\bigr)>G^{*}_{a,a,z}(t), $$

for all \(t\in(t_{0}-\delta,t_{0}]\). Since \(G_{a,a,z}(\cdot)\) is nondecreasing, the set of all discontinuous points of \(G_{a,a,z}(\cdot )\) is a countable set at most. Thus, when \(t_{0}\) is a discontinuous point of \(G_{Ta,Ta,Sa}(\cdot)\), we can choose a continuous point \(t_{1}\) of \(G_{Ta,Ta,Sa}(\cdot)\) in \((t_{0}-\delta,t_{0}]\) to replace \(t_{0}\).

Let \(n\rightarrow\infty\) in (3.6), then we have \(G^{*}_{a,a,z}(t_{0})\geq\psi\{G^{*}_{a,a,z}(t_{0})\}\), which contradicts (3.5). Then \(a=z\), \(\lim_{n\rightarrow\infty}hz_{n}=a\).

Since Rx is a closed subset of X and \(\lim_{n\rightarrow\infty}Rx_{n}= a\), there exists p in X such that \(a=Rp\), we claim that \(fp=a\). Suppose not, then by using (3.4), we obtain

$$\begin{aligned} G^{*}_{fp,gy_{n},hz_{n}}(t) \geq&\psi\bigl\{ \min\bigl\{ G^{*}_{Rp,Sy_{n},Tz_{n}}(t), G^{*}_{fp,Rp,Rp}(t), G^{*}_{gy_{n},Sy_{n},Sy_{n}}(t), G^{*}_{hz_{n},Tz_{n},Tz_{n}}(t), \\ &{} \bigl[G^{*}_{fp,Sy_{n},Tz_{n}}\oplus G^{*}_{Rp,gy_{n},Tz_{n}} \oplus G^{*}_{Rp,Sy_{n},hz_{n}}\bigr](3t), \\ &{} \bigl[G^{*}_{fp,gy_{n},Tz_{n}}\oplus G^{*}_{fp,Sy_{n},hz_{n}} \oplus G^{*}_{Rp,gy_{n},hz_{n}}\bigr](3t)\bigr\} \bigr\} . \end{aligned}$$

Similarly, we can get \(fp=Rp=a\). Hence, p is the coincidence point of the pair \((f,R)\).

By the condition \(fx\subseteq Sx\) and \(fp=a\), there exists \(u \in X\) such that \(a=Su\). Now we claim that \(gu=a\). In fact, if \(gu\neq a\), then from (3.4), we have

$$\begin{aligned} G^{*}_{fp,gu,hz_{n}}(t) \geq& \psi\bigl\{ \min\bigl\{ G^{*}_{Rp,Su,Tz_{n}}(t), G^{*}_{fp,Rp,Rp}(t), G^{*}_{gu,Su,Su}(t), G^{*}_{hz_{n},Tz_{n},Tz_{n}}(t), \\ &{} \bigl[G^{*}_{fp,Su,Tz_{n}}\oplus G^{*}_{Rp,gu,Tz_{n}} \oplus G^{*}_{Rp,Su,hz_{n}}\bigr](3t), \\ &{} \bigl[G^{*}_{fp,gu,Tz_{n}}\oplus G^{*}_{fp,Su,hz_{n}} \oplus G^{*}_{Rp,gu,hz_{n}}\bigr](3t)\bigr\} \bigr\} ; \end{aligned}$$

in the same way, we can also obtain \(gu=a\), and so u is the coincidence point of the pair \((g,S)\).

Since \(gX\subset TX\), there exists \(v\in X\) such that \(a=Tv\). We claim that \(hv=a\). If not, from (3.4) and the property of ψ, we have

$$\begin{aligned} G^{*}_{fp,gu,hv}(t) \geq&\psi\bigl\{ \min\bigl\{ G^{*}_{Rp,Su,Tv}(t), G^{*}_{fp,Rp,Rp}(t), G^{*}_{gu,Su,Su}(t), G^{*}_{hv,Tv,Tv}(t), \\ &{} \bigl[G^{*}_{fp,Su,Tv}\oplus G^{*}_{Rp,gu,Tv} \oplus G^{*}_{Rp,Su,hv}\bigr](3t),\\ &{}\bigl[G^{*}_{fp,gu,Tv} \oplus G^{*}_{fp,Su,hv}\oplus G^{*}_{Rp,gu,hv} \bigr](3t)\bigr\} \bigr\} \\ =& \psi\bigl\{ \min\bigl\{ 1,1,1,G^{*}_{hv,a,a}(t), \bigl[G^{*}_{a,a,a}\oplus G^{*}_{a,a,a}\oplus G^{*}_{a,a,hv}\bigr](3t),\\ &{}\bigl[G^{*}_{a,a,a} \oplus G^{*}_{a,a,hv}\oplus G^{*}_{a,a,hv} \bigr](3t)\bigr\} \bigr\} \\ \geq&\psi\bigl\{ \min\bigl\{ 1,1,1,G^{*}_{hv,a,a}(t),G^{*}_{a,a,hv}(t), G^{*}_{a,a,hv}(t) \bigr\} \bigr\} \\ =&\psi\bigl\{ G^{*}_{a,a,hv}(t)\bigr\} > G^{*}_{a,a,hv}(t), \end{aligned}$$

a contradiction. Hence \(hv=Tv=a\), and so v is the coincidence point of the pair \((h,T)\).

Therefore, in all the above cases, we obtain \(fp=Rp=a\), \(gu=Su=a\), and \(hv=Tv=a\). Now, the weak compatibility of the pairs \((f,R)\), \((g,S)\), and \((h,T)\) give \(fa=Ra\), \(ga=Sa\), and \(ha=Ta\).

Next, we show that \(fa=a\). In fact, if \(fa\neq a\), then from (3.4) we have

$$\begin{aligned} G^{*}_{fa,a,a}(t) \geq& \psi\bigl\{ \min\bigl\{ G^{*}_{Ra,Su,Tv}(t), G^{*}_{fa,Ra,Ra}(t), G^{*}_{gu,Su,Su}(t), G^{*}_{hv,Tv,Tv}(t), \\ & \bigl[G^{*}_{fa,Su,Tv}\oplus G^{*}_{Ra,gu,Tv} \oplus G^{*}_{Ra,Su,hv}\bigr](3t),\bigl[G^{*}_{fa,gu,Tv} \oplus G^{*}_{fa,Su,hv}\oplus G^{*}_{Ra,gu,hv} \bigr](3t)\bigr\} \bigr\} \\ =& \psi\bigl\{ \min\bigl\{ G^{*}_{Ra,a,a}(t),1,1,1, \bigl[G^{*}_{fa,a,a}\oplus G^{*}_{Ra,a,a}\oplus G^{*}_{Ra,a,a}\bigr](3t),\\ &{}\bigl[G^{*}_{fa,a,a} \oplus G^{*}_{fa,a,hv}\oplus G^{*}_{Ra,a,a} \bigr](3t)\bigr\} \bigr\} \\ \geq&\psi\bigl\{ \min\bigl\{ 1,1,1,G^{*}_{fa,a,a}(t),G^{*}_{fa,a,a}(t),G^{*}_{fa,a,a}(t) \bigr\} \bigr\} \\ =&\psi\bigl\{ G^{*}_{fa,a,a}(t)\bigr\} >G^{*}_{fa,a,a}(t), \end{aligned}$$

which is a contradiction, hence \(fa=a\) and so \(fa=Ra=a\). Similarly, it can be shown that \(ga=Sa=a\) and \(ha=Ta=a\), so we get \(fa=ga=ha=Ra=Sa=Ta=a\), which means that a is a common fixed point of f, g, h, R, S, and T.

Next, we will show the uniqueness. Actually, suppose that \(w\in X\), \(w\neq a\) is another common fixed point of f, g, h, R, S, and T. Then by (3.4), we have

$$\begin{aligned} G^{*}_{w,a,a}(t) \geq&\psi\bigl\{ \min\bigl\{ G^{*}_{Rw,Sa,Ta}(t), G^{*}_{fw,Rw,Rw}(t), G^{*}_{ga,Sa,Sa}(t), G^{*}_{ha,Ta,Ta}(t), \\ &{} \bigl[G^{*}_{fw,Sa,Ta}\oplus G^{*}_{Rw,ga,Ta} \oplus G^{*}_{Rw,Sa,ha}\bigr](3t),\\ &{}\bigl[G^{*}_{fw,ga,Ta} \oplus G^{*}_{fw,Sa,ha}\oplus G^{*}_{Rw,ga,ha} \bigr](3t)\bigr\} \bigr\} \\ \geq& \psi\bigl\{ \min\bigl\{ G^{*}_{w,a,a}(t),1,1,1, \bigl[G^{*}_{fa,a,a}\oplus G^{*}_{w,a,a}\oplus G^{*}_{w,a,a}\bigr](3t),\\ &{}\bigl[G^{*}_{w,a,a} \oplus G^{*}_{w,a,hv}\oplus G^{*}_{w,a,a} \bigr](3t)\bigr\} \bigr\} \\ \geq& \psi\bigl\{ \min\bigl\{ 1,1,1,G^{*}_{w,a,a}(t),G^{*}_{w,a,a}(t),G^{*}_{w,a,a}(t) \bigr\} \bigr\} \\ =&\psi\bigl\{ G^{*}_{w,a,a}(t)\bigr\} >G^{*}_{w,a,a}(t), \end{aligned}$$

which is a contradiction, so f, g, h, R, S, and T have a unique common fixed point.

Finally, if condition (ii) or (iii) holds, then the argument is similar to the above, so we omit it. This completes the proof of Theorem 3.2. □

Taking \(\psi(t)=\rho t\), \(\rho\in(1,+\infty)\), then we can obtain the following results.

Corollary 3.2

Let \((X, G^{*}, \Delta)\) be a Menger \(PGM\)-space. Suppose the self-mappings f, g, h, R, S, and \(T: X\rightarrow X\) satisfy the following conditions:

$$\begin{aligned} G^{*}_{fx,gy,hz}(t) \geq& \rho\min\bigl\{ G^{*}_{Rx,Sy,Tz}(t), G^{*}_{fx,Rx,Rx}(t), G^{*}_{gy,Sy,Sy}(t), G^{*}_{hz,Tz,Tz}(t),\\ &{}\bigl[G^{*}_{fx,Sy,Tz}\oplus G^{*}_{Rx,gy,Tz} \oplus G^{*}_{Rx,Sy,hz}\bigr](3t),\\ &{} \bigl[G^{*}_{fx,gy,Tz} \oplus G^{*}_{fx,Sy,hz}\oplus G^{*}_{Rx,gy,hz} \bigr](3t)\bigr\} , \end{aligned}$$

for all x, y, and \(z\in X\), where \(\rho\in(1,+\infty)\). If one of the following conditions is satisfied, then the pairs \((f,R)\), \((g,S)\), and \((h,T)\) have a common fixed point of coincidence in X:

  1. (i)

    the subspace Rx is closed in X, \(fx\subseteq Sx\), \(gx\subseteq Tx\), and the two pairs of \((f,R)\) and \((g,S)\) satisfy the common \((E.A)\) property;

  2. (ii)

    the subspace Sx is closed in X, \(gx\subseteq Tx\), \(hx\subseteq Rx\), and the two pairs of \((g,S)\) and \((h,T)\) satisfy the common \((E.A)\) property;

  3. (iii)

    the subspace Tx is closed in X, \(fx\subseteq Sx\), \(hx\subseteq Rx\), and the two pairs of \((f,R)\) and \((h,T)\) satisfy the common \((E.A)\) property.

Moreover, if the pairs \((f,R)\), \((g,S)\), and \((h,T)\) are weakly compatible, the f, g, h, R, S, and T have a unique common fixed point in X.

4 An application

In this section, we will provide an example to exemplify the validity of the main result.

Example 4.1

Let \(X=[0,1]\), \(G^{*}_{x,y,z}(t)=\frac{t}{t+|x-y|+|y-z|+|z-x|}\), from Example 2.1, we know \((X,G^{*},\Delta)\) is a \(PGM\)-space. We define the mappings f, g, h, R, S, and T by

$$\begin{aligned}& fx=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} 0, & x\in[0,\frac{1}{2}],\\ \frac{1}{7}, & x\in(\frac{1}{2},1], \end{array}\displaystyle \right . \qquad gx=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} 0, & x\in[0,\frac{1}{2}],\\ \frac{1}{8}, & x\in(\frac{1}{2},1], \end{array}\displaystyle \right . \\& hx=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} 0, & x\in[0,\frac{1}{2}],\\ \frac{1}{6}, & x\in(\frac{1}{2},1], \end{array}\displaystyle \right .\qquad Rx=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} 0, & x\in[0,\frac{1}{2}],\\ \frac{2}{3}, & x\in(\frac{1}{2},1], \end{array}\displaystyle \right . \\& Sx= \left \{ \textstyle\begin{array}{@{}l@{\quad}l} 0, & x\in[0,\frac{1}{2}),\\ \frac{1}{7}, & x=\frac{1}{2}, \\ \frac{3}{4},& x\in(\frac{1}{2},1], \end{array}\displaystyle \right .\qquad Tx=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} 0, & x\in[0,\frac{1}{2}],\\ \frac{1}{8}, & x=\frac{1}{2}, \\ \frac{2}{5},& x\in(\frac {1}{2},1]. \end{array}\displaystyle \right . \end{aligned}$$

Noting that f, g, h, R, S, and T are discontinuous mappings, RX is closed in X. From the definition of f, g, h, R, S, and T, we have \(fx\subseteq Sx\), \(gx\subseteq Tx\); let \(x_{n}=\frac{1}{n}+\frac {1}{3}\), \(y_{n}=\frac{1}{n}+\frac{1}{4}\), then the pairs \((f,R)\) and \((g,S)\) satisfy the common \((E.A)\) property. Thus, the condition (i) in Theorem 3.1 is satisfied. It is not difficult to find that \((f,R)\), \((g,S)\), and \((h,T)\) are weakly compatible. Let \(\phi(t)=\frac {5}{12}(t)\). Next we will show that (3.1) is also satisfied.

To prove (3.1), we just need to show \(G^{*}_{fx,gy,hz}(\phi (t))\geq G^{*}_{Rx,Sy,Tz}(t)\); we discuss the following cases.

Case (1). For \(x,y,z\in[0,\frac{1}{2}]\), we have \(G^{*}_{fx,gy,hz}(\phi(t))=1\), then (3.1) is obviously satisfied.

Case (2). For \(x,y,z\in(\frac{1}{2},1]\), we have

$$G^{*}_{fx,gy,hz}\bigl(\phi(t)\bigr)=\frac{t}{t+\frac{1}{5}}\geq \frac{t}{t+\frac {7}{10}}=G^{*}_{Rx,Sy,Tz}(t). $$

Case (3). For \(x,y\in[0,\frac{1}{2}]\), \(z\in(\frac{1}{2},1]\), it is not difficult to find that \(G^{*}_{Rx,Sy,Tz}(t)=\frac{t}{t+\frac {4}{5}}\), neither \(y\in[0,\frac{1}{2})\) nor \(y=\frac{1}{2}\). On the other hand, \(G^{*}_{fx,gy,hz}(\phi(t))=\frac{t}{t+\frac{4}{5}}\), we have

$$G^{*}_{fx,gy,hz}\bigl(\phi(t)\bigr)\geq G^{*}_{Rx,Sy,Tz}(t). $$

Case (4). For \(x,z\in[0,\frac{1}{2}]\), \(y\in(\frac{1}{2},1]\), similar to Case (3), we have

$$G^{*}_{fx,gy,hz}\bigl(\phi(t)\bigr)=\frac{t}{t+\frac{3}{5}}\geq \frac{t}{t+\frac {3}{2}}=G^{*}_{Rx,Sy,Tz}(t). $$

Case (5). For \(y,z\in[0,\frac{1}{2}]\), \(x\in(\frac{1}{2},1]\), we have \(G^{*}_{fx,gy,hz}(\phi(t))=\frac{t}{t+\frac{4}{5}}\). Next we divide the study into two subcases.

  1. (a)

    If \(y=z=\frac{1}{2}\), \(x\in(\frac{1}{2},1]\), we have \(G^{*}_{Rx,Sy,Tz}(t)=\frac{t}{t+\frac{22}{21}}\), then

    $$G^{*}_{fx,gy,hz}\bigl(\phi(t)\bigr)\geq G^{*}_{Rx,Sy,Tz}(t). $$
  2. (b)

    If \(y\neq\frac{1}{2}\) or \(z\neq\frac{1}{2}\), \(x\in(\frac {1}{2},1]\), we have \(G^{*}_{Rx,Sy,Tz}(t)=\frac{t}{t+\frac{4}{3}}\), then

    $$G^{*}_{fx,gy,hz}\bigl(\phi(t)\bigr)\geq G^{*}_{Rx,Sy,Tz}(t) $$

    is also satisfied.

Case (6). For \(x\in[0,\frac{1}{2}]\), \(y,z\in(\frac{1}{2},1]\), we have

$$G^{*}_{fx,gy,hz}\bigl(\phi(t)\bigr)=\frac{t}{t+\frac{4}{5}}\geq \frac{t}{t+\frac {3}{2}}=G^{*}_{Rx,Sy,Tz}(t). $$

Case (7). For \(y\in[0,\frac{1}{2}]\), \(x,z\in(\frac{1}{2},1]\), we have \(G^{*}_{fx,gy,hz}(\phi(t))=\frac{t}{t+\frac{4}{5}}\). Next we divide the study into two subcases.

  1. (a)

    If \(y\in[0,\frac{1}{2})\), \(x,z\in(\frac{1}{2},1]\), we have \(G^{*}_{Rx,Sy,Tz}(t)=\frac{t}{t+\frac{4}{3}}\), then

    $$G^{*}_{fx,gy,hz}\bigl(\phi(t)\bigr)\geq G^{*}_{Rx,Sy,Tz}(t). $$
  2. (b)

    If \(y=\frac{1}{2}\), \(x,z\in(\frac{1}{2},1]\), we have \(G^{*}_{Rx,Sy,Tz}(t)=\frac{t}{t+\frac{22}{21}}\), then

    $$G^{*}_{fx,gy,hz}\bigl(\phi(t)\bigr)\geq G^{*}_{Rx,Sy,Tz}(t). $$

Case (8). For \(z\in[0,\frac{1}{2}]\), \(x,y\in(\frac{1}{2},1]\), we have \(G^{*}_{fx,gy,hz}(\phi(t))=\frac{t}{t+\frac{24}{35}}\). Next we divide the study into two subcases.

  1. (a)

    If \(z\in[0,\frac{1}{2})\), \(x,y\in(\frac{1}{2},1]\), we have \(G^{*}_{Rx,Sy,Tz}(t)=\frac{t}{t+\frac{3}{2}}\), then

    $$G^{*}_{fx,gy,hz}\bigl(\phi(t)\bigr)\geq G^{*}_{Rx,Sy,Tz}(t). $$
  2. (b)

    If \(z=\frac{1}{2}\), \(x,y\in(\frac{1}{2},1]\), we have \(G^{*}_{Rx,Sy,Tz}(t)=\frac{t}{t+\frac{5}{4}}\), then

    $$G^{*}_{fx,gy,hz}\bigl(\phi(t)\bigr)\geq G^{*}_{Rx,Sy,Tz}(t). $$

Then in all the above cases, f, g, h, R, S, and T satisfy the conditions (3.1) and (i) of Theorem 3.1. So, f, g, h, R, S, and T have a unique common fixed point in \([0,1]\). In fact, 0 is the unique common fixed point of f, g, h, R, S, and T.

References

  1. Menger, K: Statistical metrics. Proc. Natl. Acad. Sci. USA 28, 535-537 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  2. Schweizer, B, Sklar, A: Statistical metric spaces. Pac. J. Math. 10, 313-334 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhu, CX: Several nonlinear operator problems in the Menger PN space. Nonlinear Anal. 65(7), 1281-1284 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhu, CX: Research on some problems for nonlinear operators. Nonlinear Anal. 71(10), 4568-4571 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mustafa, Z, Sims, B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7(2), 289-297 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Abbas, M, Nazir, T, Radenović, S: Some periodic point results in generalized metric spaces. Appl. Math. Comput. 217(8), 4094-4099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abbas, M, Nazir, T, Radenović, S: Common fixed point of power contraction mappings satisfying \((E.A)\) property in generalized metric spaces. Appl. Math. Comput. 219(14), 7663-7670 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gu, F: Common fixed point theorems for six mappings in generalized metric spaces. Abstr. Appl. Anal. 2012, 379212 (2012)

    Google Scholar 

  9. Gu, F, Yin, Y: A new common coupled fixed point theorem in generalized metric space and applications to integral equations. Fixed Point Theory Appl. 2013, 266 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gu, F, Yang, Z: Some new common fixed point results for three pairs of mappings in generalized metric spaces. Fixed Point Theory Appl. 2013, 174 (2013)

    Article  MathSciNet  Google Scholar 

  11. Agarwal, RP, Kadelburg, Z, Radenović, S: On coupled fixed point results in asymmetric G-metric spaces. J. Inequal. Appl. 2013, 528 (2013)

    Article  Google Scholar 

  12. Agarwal, RP, Karapınar, E: Remarks on some coupled fixed point theorems in G-metric spaces. Fixed Point Theory Appl. 2013, 2 (2013)

    Article  Google Scholar 

  13. Zhou, C, Wang, S, Ćirić, L, Alsulami, SM: Generalized probabilistic metric spaces and fixed point theorems. Fixed Point Theory Appl. 2014, 91 (2014)

    Article  Google Scholar 

  14. Zhu, CX, Xu, WQ, Wu, ZQ: Some fixed point theorems in generalized probabilistic metric spaces. Abstr. Appl. Anal. 2014, 103764 (2014)

    MathSciNet  Google Scholar 

  15. Aamri, M, Moutawakil, DE: Some new common fixed point theorems under strict contractive conditions. J. Math. Anal. Appl. 270(1), 181-188 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fang, JX, Gang, Y: Common fixed point theorems under strict contractive conditions in Menger spaces. Nonlinear Anal. 70(1), 184-193 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, ZQ, Zhu, CX, Li, J: Common fixed point theorems for two hybrid pairs of mappings satisfying the common property \((E.A)\) in Menger PM-spaces. Fixed Point Theory Appl. 2013, 25 (2013)

    Article  MathSciNet  Google Scholar 

  18. Gu, F, Yin, Y: Common fixed point for three pairs of self-maps satisfying common \((E.A)\) property in generalized metric spaces. Abstr. Appl. Anal. 2013, 808092 (2013)

    MathSciNet  Google Scholar 

  19. Jungck, G, Rhoades, BE: Fixed points for set valued functions without continuity. Indian J. Pure Appl. Math. 29(3), 227-238 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Fang, JX: Common fixed point theorems of compatible and weakly compatible maps in Menger spaces. Nonlinear Anal. 71(5), 1833-1843 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the referees for their constructive comments and suggestions. The research was supported by the National Natural Science Foundation of China (11361042, 11326099, 11461045, 11071108) and the Provincial Natural Science Foundation of Jiangxi, China (20132BAB201001, 20142BAB211016, 2010GZS0147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Tu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Tu, Q. & Wu, Z. Common fixed point theorems for three pairs of self-mappings satisfying the common \((E.A)\) property in Menger probabilistic G-metric spaces. Fixed Point Theory Appl 2015, 131 (2015). https://doi.org/10.1186/s13663-015-0384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13663-015-0384-4

MSC

Keywords