# Generalized probabilistic metric spaces and fixed point theorems

## Abstract

In this paper, we introduce a new concept of probabilistic metric space, which is a generalization of the Menger probabilistic metric space, and we investigate some topological properties of this space and related examples. Also, we prove some fixed point theorems, which are the probabilistic versions of Banach’s contraction principle. Finally, we present an example to illustrate the main theorems.

MSC:54E70, 47H25.

## 1 Introduction and preliminaries

Let be the set of all real numbers, $R +$ be the set of all nonnegative real numbers, Δ denote the set of all probability distribution functions, i.e., Δ = {$F:R∪{−∞,+∞}→[0,1]:F$ is left continuous and nondecreasing on , $F(−∞)=0$ and $F(+∞)=1$}.

Definition 1.1 ()

A mapping $T:[0,1]×[0,1]→[0,1]$ is called a continuous t-norm if T satisfies the following conditions:

1. (1)

T is commutative and associative, i.e., $T(a,b)=T(b,a)$ and $T(a,T(b,c))=T(T(a,b),c)$, for all $a,b,c∈[0,1]$;

2. (2)

T is continuous;

3. (3)

$T(a,1)=a$ for all $a∈[0,1]$;

4. (4)

$T(a,b)≤T(c,d)$ whenever $a≤c$ and $b≤d$ for all $a,b,c,d∈[0,1]$.

From the definition of T it follows that $T(a,b)≤min{a,b}$ for all $a,b∈[0,1]$.

Two simple examples of continuous t-norm are $T M (a,b)=min{a,b}$ and $T p (a,b)=ab$ for all $a,b∈[0,1]$.

In 1942, Menger  developed the theory of metric spaces and proposed a generalization of metric spaces called Menger probabilistic metric spaces (briefly, Menger PM-space).

Definition 1.2 A Menger PM-space is a triple $(X,F,T)$, where X is a nonempty set, T is a continuous t-norm and F is a mapping from $X×X→D$ ($F x , y$ denotes the value of F at the pair $(x,y)$) satisfying the following conditions:

(PM-1) $F x , y (t)=1$ for all $x,y∈X$ and $t>0$ if and only $x=y$;

(PM-2) $F x , y (t)= F y , x (t)$ for all $x,y∈X$ and $t>0$;

(PM-3) $F x , z (t+s)≥T( F x , y (t), F y , z (s))$ for all $x,y,z∈X$ and $t,s≥0$.

The idea of Menger was to use distribution functions instead of nonnegative real numbers as values of the metric. Since Menger, many authors have considered fixed point theory in PM-spaces and its applications as a part of probabilistic analysis (see [1, 314]).

In 1963, Gähler  investigated the concept of 2-metric spaces and he claimed that a 2-metric is a natural generalization of an ordinary metric space (for more detailed results, see the books [16, 17]). But some authors pointed out that there are no relations between 2-metric spaces and ordinary metric spaces . Later, Dhage  introduced a new class of generalized metrics called D-metric spaces. However, as pointed out in , the D-metric is also not satisfactory.

Recently, Mustafa and Sims  introduced a new class of metric spaces called generalized metric spaces or G-metric spaces as follows.

Definition 1.3 ()

Let X be a nonempty set and $G:X×X×X:→ R +$ be a function satisfying the following conditions:

(G1) $G(x,y,z)=0$ if $x=y=z$ for all $x,y,z∈X$;

(G2) $0 for all $x,y∈X$ with $x≠y$;

(G3) $G(x,x,y)≤G(x,y,z)$ for all $x,y,z∈X$ with $z≠y$;

(G4) $G(x,y,z)=G(x,z,y)=G(y,z,x)=⋯$ for all $x,y,z∈X$;

(G5) $G(x,y,z)≤G(x,a,a)+G(a,y,z)$ for all $x,y,z,a∈X$.

Then G is called a generalized metric or a G-metric on X and the pair $(X,G)$ is a G-metric space.

It was proved that the G-metric is a generalization of ordinary metric (see ). Recently, some authors studied G-metric spaces and obtained fixed point theorems on G-metric spaces . Similar work can be found in .

It is well known that the notion of a PM-space corresponds to the situation that we may know probabilities of possible values of the distance although we do not know exactly the distance between two points. This idea leads us to seek a probabilistic version of G-metric spaces defined by Mustafa and Sims .

Definition 1.4 A Menger probabilistic G-metric space (shortly, PGM-space) is a triple $(X, G ∗ ,T)$, where X is a nonempty set, T is a continuous t-norm and $G ∗$ is a mapping from $X×X×X$ into ($G x , y , z ∗$ denotes the value of $G ∗$ at the point $(x,y,z)$) satisfying the following conditions:

(PGM-1) $G x , y , z ∗ (t)=1$ for all $x,y,z∈X$ and $t>0$ if and only if $x=y=z$;

(PGM-2) $G x , x , y ∗ (t)≥ G x , y , z ∗ (t)$ for all $x,y∈X$ with $z≠y$ and $t>0$;

(PGM-3) $G x , y , z ∗ (t)= G x , z , y ∗ (t)= G y , x , z ∗ (t)=⋯$ (symmetry in all three variables);

(PGM-4) $G x , y , z ∗ (t+s)≥T( G x , a , a ∗ (s), G a , y , z ∗ (t))$ for all $x,y,z,a∈X$ and $s,t≥0$.

Remark 1.5 Golet introduced a concept of probabilistic 2-metric (or 2-Menger space)  based on 2-metric  defined by Gähler. In the concept of probabilistic 2-metric, a 2-t-norm is used. Our definition of a Menger probabilistic G-metric space is different from the one of Golet. The metric of Golet is not continuous in two arguments although it is continuous in any one of its three arguments. But $G ∗$ is continuous in any two arguments as shown in Theorem 2.5.

Example 1.6 Let H denote the specific distribution function defined by

$H(t)={ 0 , t ≤ 0 , 1 , t > 0 ,$

and D be a distribution function defined by

$D(t)={ 0 , t ≤ 0 , 1 − e − t , t > 0 .$

For any $t>0$, define a function $G ∗ :X×X×X→ R +$ by

$G x , y , z ∗ (t)={ H ( t ) , x = y = z , D ( t G ( x , y , z ) ) , otherwise ,$

where G is a G-metric as in Definition 1.3. Set $T=min$. Then $G ∗$ is a probabilistic G-metric.

Proof It is easy to see that $G ∗$ satisfies (PGM-1)-(PGM-3). Next we show $G ∗ (x,y,z)(s+t)≥T( G ∗ (x,a,a)(s), G ∗ (a,y,y)(t))$ for all $x,y,z,a∈X$ and all $s,t>0$. In fact, we only need show that D satisfies

$D ( t + s G ( x , y , z ) ) ≥min { D ( s G ( x , a , a ) ) , D ( t D ( a , y , z ) ) } .$
(1.1)

Since $G(x,y,z)≤G(x,a,a)+G(a,y,z)$, we have

$s + t G ( x , y , z ) ≥ s + t G ( x , a , a ) + G ( a , y , z ) .$
(1.2)

Furthermore, we have

$max { s G ( x , a , a ) , t G ( a , y , z ) } ≥ s + t G ( x , a , a ) + G ( a , y , z ) ≥ min { s G ( x , a , a ) , t G ( a , y , z ) } ,$
(1.3)

which, from (1.2) and (1.3), shows that

$s + t G ( x , y , z ) ≥min { s G ( x , a , a ) , t G ( a , y , z ) } .$

This implies (1.1) since D is nondecreasing. □

Example 1.7 Let $(X,F,T)$ be a PM-space. Define a function $G ∗ :X×X×X→ R +$ by

$G x , y , z ∗ (t)=min { F x , y ( t ) , F y , z ( t ) , F x , z ( t ) }$

for all $x,y,z,∈X$ and $t>0$. Then $G ∗$ is a probabilistic G-metric.

Proof It is obvious that $G ∗$ satisfies (PGM-1), (PGM-2), and (PGM-3). To prove that $G ∗$ satisfies (PGM-4), we need to show that, for all $x,y,z,a∈X$ and all $s,t≥0$,

$G x , y , z ∗ (s+t)≥T ( G x , a , a ∗ ( s ) , G a , y , z ∗ ( t ) ) ,$
(1.4)

i.e.,

$min { F x , y ( s + t ) , F y , z ( s + t ) , F x , z ( s + t ) } ≥ T ( F x , a ( s ) , min { F a , y ( t ) , F a , z ( t ) , F y , z ( t ) } ) .$
(1.5)

Now, from

$F x , y ( s + t ) ≥ T ( F x , a ( s ) , F a , y ( t ) ) ≥ T ( F x , a ( s ) , min { F a , y ( t ) , F a , z ( t ) , F y , z ( t ) } ) , F x , z ( s + t ) ≥ T ( F x , a ( s ) , F a , z ( t ) ) ≥ T ( F x , a ( s ) , min { F a , y ( t ) , F a , z ( t ) , F y , z ( t ) } )$

and

$F y , z ( s + t ) ≥ F y , z ( t ) ≥ min { F a , y ( t ) , F a , z ( t ) , F y , z ( t ) } ≥ T ( F x , a ( s ) , min { F a , y ( t ) , F a , z ( t ) , F y , z ( t ) } ) ,$

we conclude that (1.5), i.e., (1.4) holds. Therefore, $G ∗$ satisfies (PGM-4) and hence $G ∗$ is a probabilistic G-metric. □

Example 1.8 Let $(X,F, T M )$ be a PM-space. Define a function $G ∗ :X×X×X→ R +$ by

$G x , y , z ∗ (t)=min { F x , y ( t / 3 ) , F y , z ( t / 3 ) , F x , z ( t / 3 ) }$

for all $x,y,z,∈X$ and $t>0$. Then $(X, G ∗ , T M )$ is a PGM-space.

Proof In fact, the proofs of (PGM-1)-(PGM-3) are immediate. Now, we show that $G ∗$ satisfies (PGM-4). It follows that

$G x , y , z ∗ ( t + s ) = min { F x , y ( t + s 3 ) , F y , z ( t + s 3 ) , F x , z ( t + s 3 ) } ≥ min { min { F x , a ( t 3 ) , F a , y ( s 3 ) } , F y , z ( s 3 ) , min { F x , a ( t 3 ) , F a , z ( s 3 ) } } = min { min { F x , a ( t 3 ) , F a , a ( t 3 ) , F x , a ( t 3 ) } , min { F a , y ( s 3 ) , F y , z ( s 3 ) , F a , z ( s 3 ) } } = min { G x , a , a ∗ ( t ) , G a , y , z ∗ ( s ) } .$

Thus $(X,G, T M )$ is a PGM-space. □

The following remark shows that the PGM-space is a generalization of the Menger PM-space.

Remark 1.9 For any function $G ∗ :X×X×X→ R +$, the function $F:X×X→ R +$ defined by

$F x , y (t)=min { G x , y , y ∗ ( t ) , G y , x , x ∗ ( t ) }$

is a probabilistic metric. It is easy to see that F satisfies the conditions (PM-1) and (PM-2).

Next, we show F satisfies (PM-3). Indeed, for any $s,t≥0$ and $x,y,z∈X$, we have

$F x , y ( s + t ) = min { G x , y , y ∗ ( s + t ) , G y , x , x ∗ ( s + t ) } , T ( F x , z ( s ) , F z , y ( t ) ) = T ( min { G x , z , z ∗ ( s ) , G z , x , x ∗ ( s ) } , min { G z , y , y ∗ ( t ) , G y , z , z ∗ ( t ) } ) .$

It follows from (PGM-4) that

$min { G x , y , y ∗ ( s + t ) , G y , x , x ∗ ( s + t ) } ≥ min { T ( G x , z , z ∗ ( s ) , G z , y , y ∗ ( t ) ) , T ( G y , z , z ∗ ( t ) , G z , x , x ∗ ( s ) ) } .$

Since

$G x , z , z ∗ (s)≥min { G x , z , z ∗ ( s ) , G z , x , x ∗ ( s ) } , G z , y , y ∗ (t)≥min { G z , y , y ∗ ( t ) , G y , z , z ∗ ( t ) }$

and

$G y , z , z ∗ (t)≥min { G z , y , y ∗ ( t ) , G y , z , z ∗ ( t ) } , G z , x , x ∗ (s)≥min { G x , z , z ∗ ( s ) , G z , x , x ∗ ( s ) } ,$

it follows from (PGM-4) that

$G x , y , y ∗ ( s + t ) ≥ T ( G x , z , z ∗ ( s ) , G z , y , y ∗ ( t ) ) ≥ T ( min { G x , z , z ∗ ( s ) , G z , x , x ∗ ( s ) } , min { G z , y , y ∗ ( t ) , G y , z , z ∗ ( t ) } ) = T ( F z , x ( s ) , F z , y ( t ) )$

and

$G y , x , x ∗ ( s + t ) ≥ T ( G y , z , z ∗ ( t ) , G z , x , x ∗ ( s ) ) ≥ T ( min { G z , y , y ∗ ( t ) , G y , z , z ∗ ( t ) } , min { G x , z , z ∗ ( s ) , G z , x , x ∗ ( s ) } ) = T ( F z , y ( t ) , F z , x ( s ) ) .$

Therefore, we have

$F x , y (s+t)=min { G x , y , y ∗ ( s + t ) , G y , x , x ∗ ( s + t ) } ≥T ( F x , z ( s ) , F z , y ( t ) ) .$

This shows that F satisfies (PM-3).

## 2 Topology, convergence, and completeness

In this section, we first introduce the concept of neighborhoods in the PGM-spaces. For the concept of neighborhoods in PM-spaces, we refer the readers to [1, 3].

Definition 2.1 Let $(X, G ∗ ,T)$ be a PGM-space and $x 0$ be any point in X. For any $ϵ>0$ and δ with $0<δ<1$, an $(ϵ,δ)$-neighborhood of $x 0$ is the set of all points y in X for which $G x 0 , y , y ∗ (ϵ)>1−δ$ and $G y , x 0 , x 0 ∗ (ϵ)>1−δ$. We write

$N x 0 (ϵ,δ)= { y ∈ X : G x 0 , y , y ∗ ( ϵ ) > 1 − δ , G y , x 0 , x 0 ∗ ( ϵ ) > 1 − δ } .$

This means that $N x 0 (ϵ,δ)$ is the set of all points y in X for which the probability of the distance from $x 0$ to y being less than ϵ is greater than $1−δ$.

Lemma 2.2 If $ϵ 1 ≤ ϵ 2$ and $δ 1 ≤ δ 2$, then $N x 0 ( ϵ 1 , δ 1 )⊂ N x 0 ( ϵ 2 , δ 2 )$.

Proof Suppose that $z∈ N x 0 ( ϵ 1 , δ 1 )$, so $G x 0 , z , z ∗ ( ϵ 1 )>1− δ 1$ and $G z , x 0 , x 0 ∗ ( ϵ 1 )>1− δ 1$. Since F is monotone, we have

$G x 0 , z , z ∗ ( ϵ 2 )≥ G x 0 , z , z ∗ ( ϵ 1 )≥1− δ 1 ≥1− δ 2$

and

$G z , x 0 , x 0 ∗ ( ϵ 2 )≥ G z , x 0 , x 0 ∗ ( ϵ 1 )≥1− δ 1 ≥1− δ 2 .$

Therefore, by the definition, $z∈ N x 0 ( ϵ 2 , δ 2 )$. This completes the proof. □

Theorem 2.3 Let $(X, G ∗ ,T)$ be a Menger PGM-space. Then $(X, G ∗ ,T)$ is a Hausdorff space in the topology induced by the family ${ N x 0 (ϵ,δ)}$ of $(ϵ,δ)$-neighborhoods.

Proof We show that the following four properties are satisfied:

1. (A)

For any $x 0 ∈X$, there exists at least one neighborhood, $N x 0$, of $x 0$ and every neighborhood of $x 0$ contains $x 0$.

2. (B)

If $N x 0 1$ and $N x 0 2$ are neighborhoods of $x 0$, then there exists a neighborhood of $x 0$, $N x 0 3$, such that $N x 0 3 ⊂ N x 0 1 ∩ N x 0 2$.

3. (C)

If $N x 0$ is a neighborhood of $x 0$ and $y∈ N x 0$, then there exists a neighborhood of y, $N y$, such that $N y ⊂ N x 0$.

4. (D)

If $x 0 ≠y$, then there exist disjoint neighborhoods, $N x 0$ and $N y$, such that $x 0 ∈ N x 0$ and $y∈ N y$.

Now, we prove that (A)-(D) hold.

1. (A)

For any $ϵ>0$ and $0<δ<1$, $x 0 ∈ N x 0 (ϵ,δ)$ since $G x 0 , x 0 , x 0 ∗ (ϵ)=1$ for any $ϵ>0$.

2. (B)

For any $ϵ 1 , ϵ 2 >0$ and $0< δ 1 , δ 2 <1$, let

$N x 0 1 ( ϵ 1 , δ 1 )= { y ∈ X : G x 0 , y , y ∗ ( ϵ 1 ) > 1 − δ 1 , G y , x 0 , x 0 ∗ ( ϵ 1 ) > 1 − δ 1 }$

and

$N x 0 2 ( ϵ 2 , δ 2 )= { y ∈ X : G x 0 , y , y ∗ ( ϵ 2 ) > 1 − δ 2 , G y , x 0 , x 0 ∗ ( ϵ 2 ) > 1 − δ 2 }$

be the neighborhoods of $x 0$. Consider

Clearly, $x 0 ∈ N x 0 3$ and, since $min{ ϵ 1 , ϵ 2 }≤ ϵ 1$ and $min{ δ 1 , δ 2 }≤ δ 1$, by Lemma 2.2, $N x 0 3 ⊂ N x 0 1 ( ϵ 1 , δ 1 )$ and $N x 0 3 ⊂ N x 0 2 ( ϵ 2 , δ 2 )$, so

$N x 0 3 ⊂ N x 0 1 ( ϵ 1 , δ 1 )∩ N x 0 2 ( ϵ 2 , δ 2 ).$
1. (C)

Let $N x 0 ={z∈X: G x 0 , z , z ∗ ( ϵ 1 )>1− δ 1 , G z , x 0 , x 0 ∗ ( ϵ 1 )>1− δ 1 }$ be the neighborhood of $x 0$. Since $y∈ N x 0$,

$G x 0 , y , y ∗ ( ϵ 1 )>1− δ 1 , G y , x 0 , x 0 ∗ ( ϵ 1 )>1− δ 1 .$

Now, $G x 0 , y , y ∗$ is left-continuous at $ϵ 1$, so there exist $ϵ 0 < ϵ 1$ and $δ 0 < δ 1$ such that

$G x 0 , y , y ∗ ( ϵ 0 )>1− δ 0 >1− δ 1 , G y , x 0 , x 0 ∗ ( ϵ 0 )>1− δ 0 >1− δ 1 .$

Let $N y ={z∈X: G y , z , z ∗ ( ϵ 2 )>1− δ 2 , G z , y , y ∗ ( ϵ 2 )>1− δ 2 }$, where $0< ϵ 2 < ϵ 1 − ϵ 0$ and $δ 2$ is chosen such that

$T(1− δ 0 ,1− δ 2 )>1− δ 1 .$

Such a $δ 2$ exists since T is continuous, $T(a,1)=a$ for all $a∈[0,1]$ and $1− δ 0 >1− δ 1$.

Now, suppose that $s∈ N y$, so that

$G y , s , s ∗ ( ϵ 2 )>1− δ 2 , G s , y , y ∗ ( ϵ 2 )>1− δ 2 .$

Then, since $G ∗$ is monotone, it follows from (PGM-4) that

$G x 0 , s , s ∗ ( ϵ 1 ) ≥ T ( G x 0 , y , y ∗ ( ϵ 0 ) , G y , s , s ∗ ( ϵ 1 − ϵ 0 ) ) ≥ T ( G x 0 , y , y ∗ ( ϵ 0 ) , G y , s , s ∗ ( ϵ 2 ) ) ≥ T ( 1 − δ 0 , 1 − δ 2 ) > 1 − δ 1 .$

Similarly, we also have $G s , x 0 , x 0 ∗ ( ϵ 1 )>1− δ 1$. This shows $s∈ N x 0$ and hence $N y ⊂ N x 0$.

1. (D)

Let $y≠ x 0$. Then there exist $ϵ>0$ and $a 1$, $a 2$ with $0≤ a 1 , a 2 <1$ such that $G x 0 , y , y ∗ (ϵ)= a 1$ and $G y , x 0 , x 0 ∗ (ϵ)= a 2$. Let

$N x 0 = { z : G x 0 , z , z ∗ ( ϵ / 2 ) > b 1 , G z , x 0 , x 0 ∗ ( ϵ / 2 ) > b 1 }$

and

$N y = { z : G y , z , z ∗ ( ϵ / 2 ) > b 2 , G z , y , y ∗ ( ϵ / 2 ) > b 2 } ,$

where $b 1$ and $b 2$ are chosen such that $0< b 1 , b 2 <1$, $T( b 1 , b 2 )>a$, where $a=max{ a 1 , a 2 }$. Such $b 1$ and $b 2$ exist since T is continuous, monotone, and $T(1,1)=1$.

Now, suppose that there exists a point $s∈ N x 0 ∩ N y$ such that

$G x 0 , s , s ∗ (ϵ/2)> b 1 , G s , x 0 , x 0 ∗ (ϵ/2)> b 1 , G y , s , s ∗ (ϵ/2)> b 2 , G s , y , y ∗ (ϵ/2)> b 2 .$

Then, by (PGM-4), we have

$a 1 = G x 0 , y , y ∗ (ϵ)≥T ( G x 0 , s , s ∗ ( ϵ / 2 ) , G s , y , y ∗ ( ϵ / 2 ) ) ≥T( b 1 , b 2 )>a≥ a 1$

and

$a 2 = G y , x 0 , x 0 ∗ (ϵ)≥T ( G y , s , s ∗ ( ϵ / 2 ) , G s , x 0 , x 0 ∗ ( ϵ / 2 ) ) ≥T( b 2 , b 1 )>a≥ a 2 ,$

which are contradictions. Therefore, $N x 0$ and $N y$ are disjoint. This completes the proof. □

Next, we give the definition of convergence of sequences in PGM-spaces.

Definition 2.4

1. (1)

A sequence ${ x n }$ in a PGM-space $(X, G ∗ ,T)$ is said to be convergent to a point $x∈X$ (write $x n →x$) if, for any $ϵ>0$ and $0<δ<1$, there exists a positive integer $M ϵ , δ$ such that $x n ∈ N x (ϵ,δ)$ whenever $n> M ϵ , δ$.

2. (2)

A sequence ${ x n }$ in a PGM-space $(X, G ∗ ,T)$ is called a Cauchy sequence if, for any $ϵ>0$ and $0<δ<1$, there exists a positive integer $M ϵ , δ$ such that $G x n , x m , x l ∗ (ϵ)>1−δ$ whenever $m,n,l> M ϵ , δ$.

3. (3)

A PGM-space $(X, G ∗ ,T)$ is said to be complete if every Cauchy sequence in X converges to a point in X.

Theorem 2.5 Let $(X, G ∗ ,T)$ be a PGM-space. Let ${ x n }$, ${ y n }$ and ${ z n }$ be sequences in X and $x,y,z∈X$. If $x n →x$, $y n →y$ and $z n →z$ as $n→∞$, then, for any $t>0$, $G x n , y n , z n ∗ (t)→ G x , y , z ∗ (t)$ as $n→∞$.

Proof For any $t>0$, there exists $δ>0$ such that $t>2δ$. Then, by (PGM-4), we have

$G x n , y n , z n ∗ ( t ) ≥ G x n , y n , z n ∗ ( t − δ ) ≥ T ( G x n , x , x ∗ ( δ / 3 ) , G x , y n , z n ∗ ( t − 4 δ / 3 ) ) ≥ T ( G x n , x , x ∗ ( δ / 3 ) , T ( G y n , y , y ∗ ( δ / 3 ) , G y , x , z n ∗ ( t − 5 δ / 3 ) ) ) ≥ T ( G x n , x , x ∗ ( δ / 3 ) , T ( G y n , y , y ∗ ( δ / 3 ) , T ( G z , z , z n ∗ ( δ / 3 ) , G x , y , z ∗ ( t − 2 δ ) ) ) )$

and

$G x , y , z ∗ ( t ) ≥ G x , y , z ∗ ( t − δ ) ≥ T ( G x , x n , x n ∗ ( δ / 3 ) , G x n , y , z ∗ ( t − 4 δ / 3 ) ) ≥ T ( G x , x n , x n ∗ ( δ / 3 ) , T ( G y , y n , y n ∗ ( δ / 3 ) , G y n , x n , z ∗ ( t − 5 δ / 3 ) ) ) ≥ T ( G x , x n , x n ∗ ( δ / 3 ) , T ( G y , y n , y n ∗ ( δ / 3 ) , T ( G z , z n , z n ∗ ( δ / 3 ) , G x n , y n , z n ∗ ( t − 2 δ ) ) ) ) .$

Letting $n→∞$ in the above two inequalities and noting that T is continuous, we have

$lim n → ∞ G x n , y n , z n ∗ (t)≥ G x , y , z ∗ (t−2δ)$

and

$G x , y , z ∗ (t)≥ lim n → ∞ G x n , y n , z n ∗ (t−2δ).$

Letting $δ→0$ in above two inequalities, since $G ∗$ is left-continuous, we conclude that

$lim n → ∞ G x n , y n , z n ∗ (t)= G x , y , z ∗ (t)$

for any $t>0$. This completes the proof. □

## 3 Fixed point theorems

In , Sehgal extended the notion of a Banach contraction mapping to the setting of Menger PM-spaces. Later on, Sehgal and Bharucha-Raid  proved a fixed point theorem for a mapping under the contractive condition in a complete Menger PM-space. Before proving our fixed point theorems, we first introduce a new concept of contraction in PGM-spaces, which is a corresponding version of Sehgal’s contraction in PM-spaces.

Definition 3.1 Let $(X, G ∗ ,T)$ be a PGM-space. A mapping $f:X→X$ is said to be contractive if there exists a constant $λ∈(0,1)$ such that

$G f x , f y , f z ∗ (t)≥ G x , y , z ∗ (t/λ)$
(3.1)

for all $x,y,z∈X$ and $t>0$.

The mapping f satisfying the condition (3.1) is called a λ-contraction.

Let T be a given t-norm. Then (by associativity) a family of mappings $T n :[0,1]→[0,1]$ for each $n≥1$ is defined as follows:

$T 1 (t)=T(t,t), T 2 (t)=T ( t , T 1 ( t ) ) ,…, T n (t)=T ( t , T n − 1 ( t ) ) ,…$

for any $t∈[0,1]$.

Definition 3.2 ()

A t-norm T is said to be of Hadzić-type if the family of functions ${ T n ( t ) } n = 1 ∞$ is equicontinuous at $t=1$, that is, for any $ϵ∈(0,1)$, there exists $δ∈(0,1)$ such that

$t>1−δ⟹ T n (t)>1−ϵ$

for each $n≥1$.

The t-norm $T=min$ is a trivial example of t-norm of Hadzić-type.

Lemma 3.3 Let $(X, G ∗ ,T)$ be a Menger PGM-space with T of Hadžić-type and ${ x n }$ be a sequence in X. Suppose that there exists $λ∈(0,1)$ satisfying

$G x n , x n + 1 , x n + 1 ∗ (t)≥ G x n − 1 , x n , x n ∗ (t/λ)$

for any $n≥1$ and $t>0$. Then ${ x n }$ is a Cauchy sequence in X.

Proof Since $G x n , x n + 1 , x n + 1 ∗ (t)≥ G x n − 1 , x n , x n ∗ (t/λ)$, by induction, we have

$G x n , x n + 1 , x n + 1 ∗ (t)≥ G x 0 , x 1 , x 1 ∗ ( t / λ n ) .$

Since X is a Menger PGM-space, we have $G x 0 , x 1 , x 1 ∗ (t/ λ n )→1$ as $n→∞$, so

$lim n → ∞ G x n , x n + 1 , x n + 1 ∗ (t)=1$
(3.2)

for any $t>0$.

Now, let $n≥1$ and $t>0$. We show, by induction, that, for any $k≥0$,

$G x n , x n + k , x n + k ∗ (t)≥ T k ( G x n , x n + 1 , x n + 1 ∗ ( t − λ t ) ) .$
(3.3)

For $k=0$, since $T(a,b)$ is a real number, $T 0 (a,b)=1$ for all $a,b∈[0,1]$. Hence, $G x n , x n , x n ∗ (t)=1= T 0 ( G x n , x n + 1 , x n + 1 ∗ )(t−λt)$, which implies that (3.3) holds for $k=0$. Assume that (3.3) holds for some $k≥1$. Then, since T is monotone, it follows from (PGM-4) that

$G x n , x n + k + 1 , x n + k + 1 ∗ ( t ) = G x n , x n + k + 1 , x n + k + 1 ∗ ( t − λ t + λ t ) ≥ T ( G x n , x n + 1 , x n + 1 ∗ ( t − λ t ) , G x n + 1 , x n + k + 1 , x n + k + 1 ∗ ( λ t ) ) ≥ T ( G x n , x n + 1 , x n + 1 ∗ ( t − λ t ) , G x n , x n + k , x n + k ∗ ( t ) ) ≥ T ( G x n , x n + 1 , x n + 1 ∗ ( t − λ t ) , T k ( G x n , x n + 1 , x n + 1 ∗ ( t − λ t ) ) ) = T k + 1 ( G x n , x n + 1 , x n + 1 ∗ ( t − λ t ) ) ,$

so we have the conclusion.

Now, we show that ${ x n }$ is a Cauchy sequence in X, i.e., $lim m , n , l → ∞ G x n , x m , x l ∗ (t)=1$ for any $t>0$. To this end, we first prove that $lim n , m → ∞ G x n , x m , x m ∗ (t)=1$ for any $t>0$. Let $t>0$ and $ϵ>0$ be given. By hypothesis, $T n :n≥1$ is equicontinuous at 1 and $T n (1)=1$, so there exists $δ>0$ such that, for any $a∈(1−δ,1]$,

$T n (a)>1−ϵ$
(3.4)

for all $n≥1$. From (3.2), it follows that $lim n → ∞ G x n , x n + 1 , x n + 1 ∗ (t−λt)=1$. Hence there exists $n 0 ∈N$ such that $G x n , x n + 1 , x n + 1 ∗ (t−λt)∈(1−δ,1]$ for any $n≥ n 0$. Hence, by (3.3) and (3.4), we conclude that $G x n , x n + k , x n + k ∗ (t)>1−ϵ$ for any $k≥0$. This shows $lim n , m → ∞ G x n , x m , x m ∗ (t)=1$ for any $t>0$. By (GPM-4), we have

$G x n , x m , x l ∗ ( t ) ≥ T ( G x n , x n , x m ∗ ( t / 2 ) , G x n , x n , x l ∗ ( t / 2 ) ) , G x n , x n , x m ∗ ( t / 2 ) ≥ T ( G x n , x m , x m ∗ ( t / 4 ) , G x n , x m , x m ∗ ( t / 4 ) ) , G x n , x n , x l ∗ ( t / 2 ) ≥ T ( G x n , x l , x l ∗ ( t / 4 ) , G x n , x l , x l ∗ ( t / 4 ) ) .$

Therefore, by the continuity of T, we conclude that

$lim m , n , l → ∞ G x n , x m , x l ∗ (t)=1$

for any $t>0$. This shows that the sequence ${ x n }$ is a Cauchy sequence in X. This completes the proof. □

From Example 1.6 and Lemma 3.3 we get the following corollary.

Corollary 3.4 ()

Let $(X,F,T)$ be a PM-space with T of Hadžić-type and ${ x n }⊂X$ be a sequence. If there exists a constant $λ∈(0,1)$ such that

$F x n , x n + 1 (t)≥ F x n − 1 , x n (t/λ),n≥1,t>0,$

then ${ x n }$ is a Cauchy sequence.

Proof Define $G x , y , z ∗ (t)=min{ F x , y (t), F y , z (t), F x , z (t)}$ for all $x,y,z∈X$ and all $t>0$. Example 1.6 shows that $(X, G ∗ ,T)$ is a PGM-space. Since $G x n , x n + 1 , x n + 1 ∗ (t)= F x n , x n + 1 (t)$ and $G x n − 1 , x n , x n ∗ (t/λ)= F x n − 1 , x n (t/λ)$, $F x n , x n + 1 (t)≥ F x n − 1 , x n (t/λ)$ implies $G x n , x n + 1 , x n + 1 ∗ (t)≥ G x n − 1 , x n , x n ∗ (t/λ)$ for all $n≥1$ and $t>0$. By Lemma 3.3 we conclude that ${ x n }$ is a Cauchy sequence in the sense of PGM-space $(X, G ∗ ,T)$. That is, for every $ϵ>0$ and $0<δ<1$, there exists a positive integer $M ϵ , δ$ such that $G x n , x m , x l ∗ (ϵ)>1−δ$ for all $m,n,l> M ϵ , δ$. By the definition of $G ∗$, we have

$min { F x n , x m ( ϵ ) , F x m , x l ( ϵ ) , F x n , x l ( ϵ ) } >1−δ,m,l,n> M ϵ , δ .$

This shows that ${ x n }$ is a Cauchy sequence in the sense of PM-space $(X,F,T)$. □

Theorem 3.5 Let $(X, G ∗ ,T)$ be a complete Menger PGM-space with T of Hadžić-type. Let $λ∈(0,1)$ and $f:X→X$ be a λ-contraction. Then, for any $x 0 ∈X$, the sequence ${ f n x 0 }$ converges to a unique fixed point of T.

Proof Take an arbitrary point $x 0$ in X. Construct a sequence ${ x n }$ by $x n + 1 = f n x 0$ for all $n≥0$. By (3.1), for any $t>0$, we have

$G x n , x n + 1 , x n + 1 ∗ ( t ) = G f x n − 1 , f x n , f x n ∗ ( t ) ≥ G x n − 1 , x n , x n ∗ ( t / λ ) .$

Lemma 3.3 shows that ${ x n }$ is a Cauchy sequence in X. Since X is complete, there exists a point $x∈X$ such that $x n →x$ as $n→∞$. By (3.1), it follows that

$G f x , f x n , f x n ∗ (t)≥ G x , x n , x n ∗ (t/λ).$

Letting $n→∞$, since $x n →x$ and $f x n →x$ as $n→∞$, we have

$G f x , x , x ∗ (t)=1$

for any $t>0$. Hence $x=fx$.

Next, suppose that y is another fixed point of f. Then, by (3.1), we have

$G x , y , y ∗ (t)= G f x , f y , f y ∗ (t)≥ G x , y , y ∗ (t/λ)≥⋯≥ G x , y , y ∗ ( t / λ n ) .$

Letting $n→∞$, since X is a Menger PGM-space, $G x , y , y ∗ (t/ λ n )→1$ as $n→∞$, so

$G x , y , y ∗ (t)=1$

for any $t>0$, which implies that $x=y$. Therefore, f has a unique fixed point in X. This completes the proof. □

Theorem 3.6 Let $(X, G ∗ ,T)$ be a complete Menger PGM-space with T of Hadžić-type. Let $f:X→X$ be a mapping satisfying

$G f x , f y , f z ∗ (λt)≥ 1 3 [ G x , f x , f x ∗ ( t ) + G y , f y , f y ∗ ( t ) + G z , f z , f z ∗ ( t ) ]$
(3.5)

for all $x,y,z∈X$, where $λ∈(0,1)$. Then, for any $x 0 ∈X$, the sequence ${ f n x 0 }$ converges to a unique fixed point of f.

Proof Take an arbitrary point $x 0$ in X. Construct a sequence ${ x n }$ by $x n + 1 = f n x 0$ for all $n≥0$. By (3.5), for any $t>0$, we have

$G x n , x n + 1 , x n + 1 ∗ ( λ t ) = G f x n − 1 , f x n , f x n ∗ ( λ t ) ≥ 1 3 [ G x n − 1 , f x n − 1 , f x n − 1 ∗ ( t ) + 2 G x n , f x n , f x n ∗ ( t ) ] ≥ 1 3 [ G x n − 1 , f x n − 1 , f x n − 1 ∗ ( t ) + 2 G x n , f x n , f x n ∗ ( λ t ) ] = 1 3 [ G x n − 1 , x n , x n ∗ ( t ) + 2 G x n , x n + 1 , x n + 1 ∗ ( λ t ) ] .$

This shows that

$G x n , x n + 1 , x n + 1 ∗ (t)≥ G x n − 1 , x n , x n ∗ (t/λ).$

Lemma 3.3 shows that ${ x n }$ is a Cauchy sequence in X. Since X is complete, there exists a point $x∈X$ such that $x n →x$ as $n→∞$. By (3.5), it follows that

$G f x , f x , f x n ∗ (t)≥ 1 3 [ 2 G x , f x , f x ∗ ( t / λ ) + G x n , f x n , f x n ∗ ( t / λ ) ] .$

Letting $n→∞$, since $x n →x$ and $f x n →x$ as $n→∞$, we have, for any $t>0$,

$G f x , f x , x ∗ (t)≥ 1 3 [ 2 G x , f x , f x ∗ ( t / λ ) + G x , x , x ∗ ( t / λ ) ] ≥ 1 3 [ 2 G x , f x , f x ∗ ( t ) + G x , x , x ∗ ( t / λ ) ]$

i.e.,

$G f x , f x , x ∗ (t)≥ G x , x , x ∗ (t/λ)=1.$

Hence $x=Tx$.

Next, suppose that y is another fixed point of f. Then, by (3.5), we have, for any $y>0$,

$G x , y , y ∗ ( t ) = G f x , f y , f y ∗ ( t ) ≥ 1 3 [ G x , f x , f x ∗ ( t / λ ) + 2 G y , f y , f y ∗ ( t / λ ) ] = 1 .$

This shows that $x=y$. Therefore, f has a unique fixed point in X. This completes the proof. □

Finally, we give the following example to illustrate Theorem 3.5 and Theorem 3.6.

Example 3.7 Set $X=[0,∞)$ and $T(a,b)=min{a,b}$ for all $a,b∈[0,1]$. Define a function $G ∗ : X 3 ×[0,∞)→[0,∞)$ by

$G x , y , z ∗ (t)= t t + G ( x , y , z )$

for all $x,y,z∈X$, where $G(x,y,z)=|x−y|+|y−z|+|z−x|$. Then G is a G-metric (see ). It is easy to check that $G ∗$ satisfies (PGM-1)-(PGM-3). Since $G(x,y,z)≤G(x,a,a)+G(a,y,z)$ for all $x,y,z,a∈X$, we have

$t + s s + t + G ( x , y , z ) ≥ t + s s + t + G ( x , a , a ) + G ( a , y , z ) ≥ min { s s + G ( x , a , a ) , t t + G ( a , y , z ) } .$

This shows that $G ∗$ satisfies (PGM-4). Hence $(X, G ∗ ,min)$ is a PGM-space.

(1) Let $λ∈(0,1)$. Define a mapping $f:X→X$ by $fx=λx$ for all $x∈X$. For any $t>0$, we have

$G f x , f y , f z ∗ (t)= t t + λ ( | x − y | + | y − z | + | z − x | )$

and

$G x , y , z ∗ (t/λ)= t / λ t / λ + ( | x − y | + | y − z | + | z − x | ) .$

Therefore, we conclude that f is a λ-contraction and f has a fixed point in X by Theorem 3.5. In fact, the fixed point is $x=0$.

(2) Let $λ∈(0,1)$. Define a mapping $f:X→X$ by $fx=1$ for all $x∈X$. For any $t>0$ and all $x,y,z∈X$, since

$G f x , f y , f z ∗ (t)= G 1 , 1 , 1 ∗ (t)=1$

and

$1 3 [ G x , f x , f x ∗ ( λ t ) + G y , f y , f y ∗ ( λ t ) + G z , f z , f z ∗ ( λ t ) ] ≤1,$

we conclude that

$G f x , f y , f z ∗ (t)≥ 1 3 [ G x , f x , f x ∗ ( λ t ) + G y , f y , f y ∗ ( λ t ) + G z , f z , f z ∗ ( λ t ) ]$

and hence f has a fixed point in X by Theorem 3.6. In fact, the fixed point is $x=1$.

## References

1. 1.

Schweizer B, Sklar A: Probabilistic Metric Spaces. Elsevier, New York; 1983.

2. 2.

Menger K: Statistical metrics. Proc. Natl. Acad. Sci. USA 1942, 28: 535–537. 10.1073/pnas.28.12.535

3. 3.

Chang SS, Cho YJ, Kang SM: Nonlinear Operator Theory in Probabilistic Metric Spaces. Nonva Science Publishers, New York; 2001.

4. 4.

Chang SS: Fixed point theory of in probabilistic metric spaces with applications. Sci. Sin., Ser. A 1983, 26: 1144–1155.

5. 5.

Ćirić L: Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces. Nonlinear Anal. 2010, 72: 2009–2018. 10.1016/j.na.2009.10.001

6. 6.

Ćirić L, Miheţ D, Saadati R: Monotone generalized contractions in partially ordered probabilistic metric spaces. Topol. Appl. 2009, 156: 2838–2844. 10.1016/j.topol.2009.08.029

7. 7.

Fang J-X: Fixed point theorems of local contraction mappings on Menger spaces. Appl. Math. Mech. 1991, 12: 363–372. 10.1007/BF02020399

8. 8.

Fang J-X: On fixed degree theorems for fuzzy mappings in Menger PM-spaces. Fuzzy Sets Syst. 2006, 157: 270–285. 10.1016/j.fss.2005.06.019

9. 9.

Hadzic O: Fixed point theorem for multivalued mappings in probabilistic metric spaces. Fuzzy Sets Syst. 1997, 98: 219–226.

10. 10.

Hadzic O, Pap E: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic, Dordrecht; 2001.

11. 11.

Hadzic O, Pap E, Budincevic M: A generalization of Tardiff’s fixed point theorem in probabilistic metric spaces and applications to random equations. Fuzzy Sets Syst. 2005, 156: 124–134. 10.1016/j.fss.2005.04.007

12. 12.

Liu Y-C, Li Z-X: Coincidence point theorems in probabilistic and fuzzy metric spaces. Fuzzy Sets Syst. 2007, 158: 58–70. 10.1016/j.fss.2006.07.010

13. 13.

Mihet D: Multivalued generalizations of probabilistic contractions. J. Math. Anal. Appl. 2005, 304: 462–472.

14. 14.

Razani A, Fouladgar K: Extension of contractive maps in the Menger probabilistic metric space. Chaos Solitons Fractals 2007, 34: 1724–1731. 10.1016/j.chaos.2006.05.022

15. 15.

Gähler S: 2-metriche räume und ihre topologische strukture. Math. Nachr. 1963, 26: 115–148. 10.1002/mana.19630260109

16. 16.

Cho YJ, Paul CS, Kim SS, Misiak A: Theory of 2-Inner Product Spaces. Nonva Science Publishers, New York; 2001.

17. 17.

Freese RW, Cho YJ: Geometry of Linear 2-Normed Spaces. Nonva Science Publishers, New York; 2001.

18. 18.

Ha KS, Cho YJ, White A: Strictly convex and strictly 2-convex 2-normed spaces. Math. Jpn. 1988, 33: 375–384.

19. 19.

Dhage BC: Generalized metric spaces and mappings with fixed point. Bull. Calcutta Math. Soc. 1992, 84: 329–336.

20. 20.

Mustafa Z, Sims B: Remarks concerning D -metric spaces. Proceedings of the International Conferences on Fixed Point Theory and Applications 2003, 189–198.

21. 21.

Mustafa Z, Sims B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7: 289–297.

22. 22.

Mustafa Z, Obiedat H, Awawdeh F: Some fixed point theorem for mapping on complete G -metric spaces. Fixed Point Theory Appl. 2008., 2008: Article ID 189870

23. 23.

Mustafa Z, Shatanawi W, Bataineh M: Existence of fixed point results in G -metric spaces. Fixed Point Theory Appl. 2009., 2009: Article ID 283028

24. 24.

Mustafa Z, Sims B: Fixed point theorems for contractive mappings in complete G -metric spaces. Fixed Point Theory Appl. 2009., 2009: Article ID 917175

25. 25.

Saadati R, O’Regan D, Vaezpour SM, Kim JK: Generalized distance and common fixed point theorems in Menger probabilistic metric spaces. Bull. Iran. Math. Soc. 2009, 35: 97–117.

26. 26.

Saadati R: Generalized distance and fixed point theorems in partially ordered probabilistic metric spaces. Mat. Vesn. 2013, 65: 82–93.

27. 27.

Kamran T, Samreen M, Shahzad N: Probabilistic G -contractions. Fixed Point Theory Appl. 2013., 2013: Article ID 223

28. 28.

Alshehri S, Arandelović I, Shahzad N: Symmetric spaces and fixed points of generalized contractions. Abstr. Appl. Anal. 2014., 2014: Article ID 763547

29. 29.

Ćirić Lj, Agarwal RP, Samet B: Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 56

30. 30.

Golet I: Fixed point theorems for multivalued mappings in probabilistic 2-metric spaces. An. Stiint. Univ. Ovidius Constanta Ser. Mat. 1995, 3: 44–51.

31. 31.

Sehgal, VM: Some fixed point theorems in functional analysis and probability. PhD Thesis, Wayne State University, Detroit, MI (1966)

32. 32.

Sehgal VM, Bharucha-Reid AT: Fixed points of contraction mappings on PM-spaces. Math. Syst. Theory 1972, 6: 97–102. 10.1007/BF01706080

33. 33.

Hadzić O: A fixed point theorem in Menger spaces. Publ. Inst. Math. (Belgr.) 1979, 20: 107–112.

## Acknowledgements

The first author is supported by the National Natural Science Foundation of China (Grant Number: 11371002,41201327) and Specialized Research Fund for the Doctoral Program of Higher Education (Grant Number:20131101110048) and Natural Science Foundation of Hebei Province (Grant Number: A2013201119). The second author is supported by the Fundamental Research Funds for the Central Universities (Grant Number: 13MS109). The authors S. Alsulami and L. Ciric thanks the Deanship of Scientific Research (DSR), King Abdulaziz University for financial support ( Grant Number: 130-037-D1433).

## Author information

Authors

### Corresponding author

Correspondence to Caili Zhou.

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

All authors read and approved the final manuscript.

## Rights and permissions

Reprints and Permissions

Zhou, C., Wang, S., Ćirić, L. et al. Generalized probabilistic metric spaces and fixed point theorems. Fixed Point Theory Appl 2014, 91 (2014). https://doi.org/10.1186/1687-1812-2014-91 