Skip to main content

Strong convergence theorem for the modified generalized equilibrium problem and fixed point problem of strictly pseudo-contractive mappings

Abstract

The purpose of this paper is to modify the generalized equilibrium problem introduced by Ceng et al. (J. Glob. Optim. 43:487-502, 2012) and to introduce the K-mapping generated by a finite family of strictly pseudo-contractive mappings and finite real numbers modifying the results of Kangtunyakarn and Suantai (Nonlinear Anal. 71:4448-4460, 2009). Then we prove the strong convergence theorem for finding a common element of the set of fixed points of a finite family of strictly pseudo-contractive mappings and a finite family of the set of solutions of the modified generalized equilibrium problem. Moreover, using our main result, we obtain the additional results related to the generalized equilibrium problem.

1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H with the inner product , and the norm . A mapping f:CC is contractive if there exists a constant α(0,1) such that

f ( x ) f ( y ) αxy,x,yC.

We now recall some well-known concepts and results as follows.

Definition 1.1 Let B:CC be a mapping. Then B is called

  1. (i)

    monotone if

    BxBy,xy0,x,yC,
  2. (ii)

    υ-strongly monotone if there exists a positive real number υ such that

    BxBy,xyυ x y 2 ,x,yC,
  3. (iii)

    ξ-inverse strongly monotone if there exists a positive real number ξ such that

    xy,BxByξ B x B y 2 ,x,yC,
  4. (iv)

    μ-Lipschitz continuous if there exists a nonnegative real number μ0 such that

    BxByμxy,x,yC.

Definition 1.2 Let T:CC be a mapping. Then:

  1. (i)

    An element xC is said to be a fixed point of T if Tx=x and F(T)={xC:Tx=x} denotes the set of fixed points of T.

  2. (ii)

    Mapping T is called nonexpansive if

    TxTyxy,x,yC.
  3. (iii)

    T is said to be κ-strictly pseudo-contractive if there exists a constant κ[0,1) such that

    T x T y 2 x y 2 +κ ( I T ) x ( I T ) y 2 ,x,yC.
    (1.1)

Note that the class of κ-strictly pseudo-contractions strictly includes the class of nonexpansive mappings, that is, nonexpansive mapping is a 0-strictly pseudo-contraction mapping. In a real Hilbert space H (1.1) is equivalent to

TxTy,xy x y 2 1 κ 2 ( I T ) x ( I T ) y 2 ,x,yC.

Remark 1.1 T:CC is a κ-strictly pseudo-contraction if and only if IT is 1 κ 2 -inverse strongly monotone.

In the last decades, many researcher have studied fixed point theorems associated with various types of nonlinear mapping; see, for instance, [14]. Fixed point problems arise in many fields such as the vibration of masses attached to strings or nets [5] and a network bandwidth allocation problem [6] which is one of the central issues in modern communication networks. For applications to neural networks, fixed point theorems can be used to design dynamic neural network in order to solve steady state solutions [7]. For general information on neural networks, see for instance, [8, 9].

Let F:C×CR be bifunction. The equilibrium problem for F is to determine its equilibrium point, i.e., the set

EP(F)= { x C : F ( x , y ) 0 , y C } .
(1.2)

Equilibrium problems were introduced by [10] in 1994 where such problems have had a significant impact and influence in the development of several branches of pure and applied sciences. Various problems in physics, optimization, and economics are related to seeking some elements of EP(F); see [10, 11]. Many authors have been investigating iterative algorithms for the equilibrium problems; see, for example, [1115].

Let CB(H) be the family of all nonempty closed bounded subsets of H and H(,) be the Hausdorff metric on CB(H) defined as

H(U,V)=max { sup u U d ( u , V ) , sup v V d ( U , v ) } ,U,VCB(H),

where d(u,V)= inf v V d(u,v), d(U,v)= inf u U d(u,v) and d(u,v)=uv.

Let C be a nonempty closed convex subset of H. Let φ:CR be a real-valued function, T:CCB(H) a multivalued mapping and Φ:H×C×CR an equilibrium-like function, that is, Φ(w,u,v)+Φ(w,v,u)=0 for all (w,u,v)H×C×C which satisfies the following conditions with respect to the multivalued mapping T:CCB(H).

(H1) For each fixed vC, (w,u)Φ(w,u,v) is an upper semicontinuous function from H×CR, that is, for (w,u)H×C, whenever w n w and u n u as n,

lim sup n Φ( w n , u n ,v)Φ(w,u,v).

(H2) For each fixed (w,v)H×C, uΦ(w,u,v) is a concave function.

(H3) For each fixed (w,u)H×C, vΦ(w,u,v) is a convex function.

In 2009, Ceng et al. [16] introduced the generalized equilibrium problem (GEP) as follows:

(GEP){ Find  u C  and  w T ( u )  such that Φ ( w , u , v ) + φ ( v ) φ ( u ) 0 , v C .
(1.3)

The set of such solutions uC of (GEP) is denoted by ( GEP ) s (Φ,φ). In the case of φ=0 and Φ(w,u,v)G(u,v), then ( GEP ) s (Φ,φ) is denoted by EP(G).

By using Nadler’s theorem [17], they introduced the following algorithm:

Let x 1 C and w 1 T( x 1 ), there exist sequences { w n }H and { x n },{ u n }C such that

{ w n T ( x n ) , w n w n + 1 ( 1 + 1 n ) H ( T ( x n ) , T ( x n + 1 ) ) , Φ ( w n , u n , v ) + φ ( v ) φ ( u n ) + 1 r n u n x n , v u n 0 , v C , x n + 1 = α n f ( x n ) + ( 1 α n ) S u n , n = 1 , 2 , .
(1.4)

They proved the strong convergence theorem of the sequence { x n } generated by (1.4) as follows.

Theorem 1.2 ([16])

Let C be a nonempty, bounded, closed and convex subset of a real Hilbert space H and let φ:CR be a lower semicontinuous and convex functional. Let T:CCB(H) be -Lipschitz continuous with constant μ, Φ:H×C×CR be an equilibrium-like function satisfying (H1)-(H3) and S be a nonexpansive mapping of C into itself such that F(S) ( GEP ) s (Φ,φ). Let f be a contraction of C into itself and let { x n }, { w n }, and { u n } be sequences generated by (1.4), where { α n }[0,1] and { r n }(0,) satisfy

lim n α n = 0 , n = 1 α n = , n = 1 | α n + 1 α n | < , lim inf n r n > 0 and n = 1 | r n + 1 r n | < .

If there exists a constant λ>0 such that

Φ ( w 1 , T r 1 ( x 1 ) , T r 2 ( x 2 ) ) +Φ ( w 2 , T r 2 ( x 2 ) , T r 1 ( x 1 ) ) λ T r 1 ( x 1 ) T r 2 ( x 2 ) 2 ,

for all ( r 1 , r 2 )Ξ×Ξ, ( x 1 , x 2 )C×C and w i T( x i ), i=1,2, where Ξ={ r n :n1}, then for x ˆ = P F ( S ) ( GEP ) s ( Φ , φ ) f( x ˆ ), there exists w ˆ T( x ˆ ) such that ( x ˆ , w ˆ ) is a solution of (GEP) and

x n x ˆ , w n w ˆ and u n x ˆ as n.

In 2012, Kangtunyakarn [12] introduced the iterative algorithm as follows.

Algorithm 1.3 ([12])

Let T i :i=1,2,,N, be κ i -pseudo-contraction mappings of C into itself and κ=max{ κ i :i=1,2,,N} and let S n be the S-mappings generated by T 1 , T 2 ,, T N and α 1 ( n ) , α 2 ( n ) ,, α N ( n ) , where α j ( n ) =( α 1 n , j , α 2 n , j , α 3 n , j )I×I×I, I=[0,1], α 1 n , j + α 2 n , j + α 3 n , j =1 and κ<a α 1 n , j , α 3 n , j b<1 for all j=1,2,,N1, κ α 1 n , N 1, κ α 3 n , N d<1, κ α 2 n , N e<1 for all j=1,2,,N. Let x 1 C= C 1 and w 1 1 T( x 1 ), w 1 2 D( x 1 ), there exist sequences { w n 1 },{ w n 2 }H, and { x n },{ u n },{ v n }C such that

{ w n 1 T ( x n ) , w n 1 w n + 1 1 ( 1 + 1 n ) H ( T ( x n ) , T ( x n + 1 ) ) , w n 2 D ( x n ) , w n 2 w n + 1 2 ( 1 + 1 n ) H ( D ( x n ) , D ( x n + 1 ) ) , Φ ( w n 1 , u n , u ) + φ 1 ( u ) φ 1 ( u n ) + 1 r n u n x n , u u n 0 , u C , Φ ( w n 2 , v n , v ) + φ 2 ( v ) φ 2 ( v n ) + 1 s n v n x n , v v n 0 , v C , z n = δ n P C ( I λ A ) u n + ( 1 δ n ) P C ( I η B ) v n , y n = α n z n + ( 1 α n ) S n z n , C n + 1 = { z C n : y n z x n z } , x n + 1 = P C n + 1 x 1 , n 1 ,
(1.5)

where D,T:CCB(H) are -Lipschitz continuous with constants μ 1 , μ 2 , respectively, Φ 1 , Φ 2 :H×C×CR are equilibrium-like functions satisfying (H1)-(H3), A:CH is an α-inverse strongly monotone mapping and B:CH is a β-inverse strongly monotone mapping.

He proved under some control conditions on { δ n }, { α n }, { s n }, and { r n } that the sequence { x n } generated by (1.5) converges strongly to P F x 1 , where F= i = 1 N F( T i ) ( GEP ) s ( Φ 1 , φ 1 ) ( GEP ) s ( Φ 2 , φ 2 )F( G 1 )F( G 2 ), G 1 , G 2 :CC are defined by G 1 (x)= P C (xλAx), G 2 (x)= P C (xηBx), xC and P F x 1 is a solution of the following system of variational inequalities:

{ A x , x x 0 , B x , x x 0 .

By modifying the generalized equilibrium problem (1.3), we introduced the modified generalized equilibrium problem (MGEP) as follows:

(MGEP){ Find  u C  and  w T ( I λ A ) u , λ > 0 , Φ ( w , u , v ) + φ ( v ) φ ( u ) + v u , A u 0 , v C ,
(1.6)

where A:CC is a mapping. The set of such solutions of (MGEP) is denoted by ( MGEP ) s (Φ,φ,A). If A=0, (1.6) reduces to (1.3).

In this paper, motivated by Theorem 1.2, Algorithm 1.3 and (1.6), we modify the generalized equilibrium problem introduced by Ceng et al. [16] and introduce the K-mapping generated by a finite family of strictly pseudo-contractive mappings and finite real numbers modifying the results of Kangtunyakarn and Suantai [13]. Then we prove the strong convergence theorem for finding a common element of the set of fixed points of a finite family of strictly pseudo-contractive mappings and a finite family of the set of solutions of the modified generalized equilibrium problem. Moreover, using our main result, we obtain the additional results related to the generalized equilibrium problem.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. We denote weak convergence and strong convergence by the notations ‘’ and ‘→’, respectively.

Recall that the (nearest point) projection P C from H onto C assigns to each xH the unique point P C xC satisfying the property

x P C x= min y C xy.

The following lemmas are needed to prove the main theorem.

Lemma 2.1 ([18])

Let H be a real Hilbert space. Then the following identities hold:

  1. (i)

    x ± y 2 = x 2 ±2x,y+ y 2 , x,yH;

  2. (ii)

    x + y 2 x 2 +2y,x+y, x,yH.

Lemma 2.2 ([19])

Let H be a real Hilbert space. Then for all x i H and α i [0,1] for i=0,1,2,,n such that i = 0 n α i =1 the following equality holds:

i = 0 n α i x i 2 = i = 0 n α i x i 2 0 i , j n α i α j x i x j 2 .

Lemma 2.3 ([18])

For a given zH and uC,

u= P C zuz,vu0,vC.

Furthermore, P C is a firmly nonexpansive mapping of H onto C and satisfies

P C x P C y 2 P C x P C y,xy,x,yH.

Lemma 2.4 (Demiclosedness principle [20])

Assume that T is a nonexpansive self-mapping of closed convex subset C of a Hilbert space H. If T has a fixed point, then IT is demiclosed. That is, whenever { x n } is a sequence in C weakly converging to some xC and the sequence {(IT) x n } strongly converges to some y it follows that (IT)x=y. Here, I is the identity mapping of H.

Lemma 2.5 ([21])

Let C be a nonempty closed convex subset of a real Hilbert space H and S:CC be a self-mapping of C. If S is a κ-strict pseudo-contractive mapping, then S satisfies the Lipschitz condition

SxSy 1 + κ 1 κ xy,x,yC.

Lemma 2.6 ([22])

Let { s n } be a sequence of nonnegative real numbers satisfying

s n + 1 (1 α n ) s n + δ n ,n0,

where α n is a sequence in (0,1) and { δ n } is a sequence such that

  1. (1)

    n = 1 α n =;

  2. (2)

    lim sup n δ n α n 0 or n = 1 | δ n |<.

Then lim n s n =0.

Definition 2.1 A multivalued mapping T:CCB(H) is said to be -Lipschitz continuous if there exists a constant μ>0 such that

H ( T ( u ) , T ( v ) ) μuv,u,vC,

where H(,) is the Hausdorff metric on CB(H).

Lemma 2.7 (Nadler’s theorem [17])

Let (X,) be a normed vector space and H(,) is the Hausdorff metric on CB(H). If U,VCB(H), then for every ϵ>0 and uU, there exists vV such that

uv(1+ϵ)H(U,V).

Theorem 2.8 ([16])

Let C be a nonempty, bounded, closed, and convex subset of a real Hilbert space H, and let φ:CR be a lower semicontinuous and convex functional. Let T:CCB(H) be -Lipschitz continuous with constant μ, and Φ:H×C×CR be an equilibrium-like function satisfying (H1)-(H3). Let r>0 be a constant. For each xC, take w x T(x) arbitrarily and define a mapping T r :CC as follows:

T r (x)= { u C : Φ ( w x , u , v ) + φ ( v ) φ ( u ) + 1 r u x , v u 0 , v C } .

Then we have the following:

  1. (a)

    T r is single-valued;

  2. (b)

    T r is firmly nonexpansive (that is, for any u,vC, T r u T r v 2 T r u T r v,uv) if

    Φ ( w 1 , T r ( x 1 ) , T r ( x 2 ) ) +Φ ( w 2 , T r ( x 2 ) , T r ( x 1 ) ) 0,

for all ( x 1 , x 2 )C×C and all w i T( x i ), i=1,2;

  1. (c)

    F( T r )= ( GEP ) s (Φ,φ);

  2. (d)

    ( GEP ) s (Φ,φ) is closed and convex.

Definition 2.2 ([13])

Let C be a nonempty closed convex subset of a real Banach space. Let { T i } i = 1 N be a finite family of κ i -strictly pseudo-contractive mapping of C into itself and let λ 1 , λ 2 ,, λ N be real numbers with 0 λ i 1 for every i=1,2,,N. Define a mapping K:CC as follows:

U 1 = λ 1 T 1 + ( 1 λ 1 ) I , U 2 = λ 2 T 2 U 1 + ( 1 λ 2 ) U 1 , U 3 = λ 3 T 3 U 2 + ( 1 λ 3 ) U 2 , U N 1 = λ N 1 T N 1 U N 2 + ( 1 λ N 1 ) U N 2 , K = U N = λ N T N U N 1 + ( 1 λ N ) U N 1 .
(2.1)

Such a mapping K is called the K-mapping generated by T 1 , T 2 ,, T N and λ 1 , λ 2 ,, λ N .

The following lemmas are needed to prove our main result.

Lemma 2.9 Let C be a nonempty closed convex subset of a real Hilbert space H. Let { T i } i = 1 N be a finite family of κ i -strictly pseudo-contractive mapping of C into itself with κ i γ 1 , for all i=1,2,,N, and i = 1 N F( T i ). Let λ 1 , λ 2 ,, λ N be real numbers with 0< λ i < γ 2 , for all i=1,2,,N and γ 1 + γ 2 <1. Let K be the K-mapping generated by T 1 , T 2 ,, T N and λ 1 , λ 2 ,, λ N . Then the following properties hold:

  1. (i)

    F(K)= i = 1 N F( T i );

  2. (ii)

    K is a nonexpansive mapping.

Proof To prove (i), it is easy to see that i = 1 N F( T i )F(K).

Next, we claim that F(K) i = 1 N F( T i ). To show this, let xF(K) and y i = 1 N F( T i ).

By the definition of K-mapping, we get

x y = K x y 2 = λ N T N U N 1 x + ( 1 λ N ) U N 1 x y 2 = λ N ( T N U N 1 x y ) + ( 1 λ N ) ( U N 1 x y ) 2 = λ N 2 T N U N 1 x y 2 + ( 1 λ N ) 2 U N 1 x y 2 + 2 λ N ( 1 λ N ) T N U N 1 x y , U N 1 x y = λ N 2 ( U N 1 x y 2 + κ N T N U N 1 x U N 1 x 2 ) + ( 1 λ N ) 2 U N 1 x y 2 + 2 λ N ( 1 λ N ) ( U N 1 x y 2 1 κ N 2 T N U N 1 x U N 1 x 2 ) = ( λ N 2 + ( 1 λ N ) 2 + 2 λ N ( 1 λ N ) ) U N 1 x y 2 + ( λ N 2 κ N λ N ( 1 λ N ) ( 1 κ N ) ) T N U N 1 x U N 1 x 2 = ( λ N + 1 λ N ) 2 U N 1 x y 2 + λ N ( λ N κ N ( 1 λ N ) ( 1 κ N ) ) T N U N 1 x U N 1 x 2 = U N 1 x y 2 + λ N ( λ N κ N ( 1 κ N ) + λ N ( 1 κ N ) ) T N U N 1 x U N 1 x 2 = U N 1 x y 2 + λ N ( κ N + λ N 1 ) T N U N 1 x U N 1 x 2 U N 1 x y 2 + λ N ( γ 1 + γ 2 1 ) T N U N 1 x U N 1 x 2 U N 1 x y 2 = U 2 x y 2 = λ 2 ( T 2 U 1 x y ) + ( 1 λ 2 ) ( U 1 x y ) 2 = λ 2 2 T 2 U 1 x y 2 + ( 1 λ 2 ) 2 U 1 x y 2 + 2 λ 2 ( 1 λ 2 ) T 2 U 1 x y , U 1 x y = λ 2 2 ( U 1 x y 2 + κ 2 T 2 U 1 x U 1 x 2 ) + ( 1 λ 2 ) 2 U 1 x y 2 + 2 λ 2 ( 1 λ 2 ) ( U 1 x y 2 1 κ 2 2 T 2 U 1 x U 1 x 2 ) = ( λ 2 2 + ( 1 λ 2 ) 2 + 2 λ 2 ( 1 λ 2 ) ) U 1 x y 2 + ( λ 2 2 κ 2 λ 2 ( 1 λ 2 ) ( 1 κ 2 ) ) T 2 U 1 x U 1 x 2 = ( λ 2 + 1 λ 2 ) 2 U 1 x y 2 + λ 2 ( λ 2 κ 2 ( 1 λ 2 ) ( 1 κ 2 ) ) T 2 U 1 x U 1 x 2 = U 1 x y 2 + λ 2 ( κ 2 + λ 2 1 ) T 2 U 1 x U 1 x 2 U 1 x y 2 + λ 2 ( ( γ 1 + γ 2 ) 1 ) T 2 U 1 x U 1 x 2 U 1 x y 2 = λ 1 ( T 1 x y ) + ( 1 λ 1 ) ( x y ) 2 = λ 1 2 T 1 x y 2 + ( 1 λ 1 ) 2 x y 2 + 2 λ 1 ( 1 λ 1 ) T 1 x y , x y = λ 1 2 ( x y 2 + κ 1 T 1 x x 2 ) + ( 1 λ 1 ) 2 x y 2 + 2 λ 1 ( 1 λ 1 ) ( x y 2 1 κ 1 2 T 1 x x 2 ) = ( λ 1 2 + ( 1 λ 1 ) 2 + 2 λ 1 ( 1 λ 1 ) ) x y 2 + ( λ 1 2 κ 1 λ 1 ( 1 λ 1 ) ( 1 κ 1 ) ) T 1 x x 2 = ( λ 1 + 1 λ 1 ) 2 x y 2 + λ 1 ( λ 1 κ 1 ( 1 λ 1 ) ( 1 κ 1 ) ) T 1 x x 2 = x y 2 + λ 1 ( κ 1 + λ 1 1 ) T 1 x x 2 x y 2 + λ 1 ( ( γ 1 + γ 2 ) 1 ) T 1 x x 2 .
(2.2)

From (2.2), it yields

λ 1 ( 1 ( γ 1 + γ 2 ) ) T 1 x x 2 0.

This implies that

T 1 xx=0.

Therefore x= T 1 x, that is,

xF( T 1 ).
(2.3)

By the definition of U 1 and (2.3), we have

U 1 x= λ 1 T 1 x+(1 λ 1 )x=x,

that is,

xF( U 1 ).
(2.4)

Again by (2.2) and (2.4), we obtain

x y 2 U 1 x y 2 + λ 2 ( ( γ 1 + γ 2 ) 1 ) T 2 U 1 x U 1 x 2 = x y 2 + λ 2 ( ( γ 1 + γ 2 ) 1 ) T 2 x x 2 ,

which implies that x= T 2 x, that is,

xF( T 2 ).
(2.5)

By the definition of U 2 , (2.4), and (2.5), we get

U 2 x= λ 2 T 2 U 1 x+(1 λ 2 ) U 1 x=x,

from which it follows that

xF( U 2 ).

Using the same argument, we can conclude that

xF( T i )andxF( U i ),i=1,2,,N1.

Next, we show that xF( T N ). Since

0 = K x x = λ N T N U N 1 x + ( 1 λ N ) U N 1 x x = λ N ( T N x x )

and λ N (0,1], we obtain

xF( T N ),

from which it follows that

x i = 1 N F( T i ).
(2.6)

Therefore

F(K) i = 1 N F( T i ).
(2.7)

Hence

F(K)= i = 1 N F( T i ).
(2.8)

To prove (ii), we claim that K is a nonexpansive mapping.

Let x,yC. Then we obtain

K x K y 2 = ( λ N T N U N 1 x + ( 1 λ N ) U N 1 x ) ( λ N T N U N 1 y + ( 1 λ N ) U N 1 y ) 2 = ( U N 1 x λ N ( U N 1 x T N U N 1 x ) ) ( U N 1 y λ N ( U N 1 y T N U N 1 y ) ) 2 = ( U N 1 x U N 1 y ) λ N ( ( I T N ) U N 1 x ( I T N ) U N 1 y ) 2 = U N 1 x U N 1 y 2 + λ N 2 ( I T N ) U N 1 x ( I T N ) U N 1 y 2 2 λ N U N 1 x U N 1 y , ( I T N ) U N 1 x ( I T N ) U N 1 y U N 1 x U N 1 y 2 + λ N 2 ( I T N ) U N 1 x ( I T N ) U N 1 y 2 2 λ N ( 1 κ N 2 ) ( I T N ) U N 1 x ( I T N ) U N 1 y 2 = U N 1 x U N 1 y 2 + λ N ( λ N ( 1 κ N ) ) ( I T N ) U N 1 x ( I T N ) U N 1 y 2 U N 1 x U N 1 y 2 + λ N ( γ 1 + γ 2 1 ) ( I T N ) U N 1 x ( I T N ) U N 1 y 2 = U N 1 x U N 1 y 2 λ N ( 1 ( γ 1 + γ 2 ) ) ( I T N ) U N 1 x ( I T N ) U N 1 y 2 = ( λ N 1 T N 1 U N 2 x + ( 1 λ N 1 ) U N 2 x ) ( λ N 1 T N 1 U N 2 y + ( 1 λ N 1 ) U N 2 y ) 2 λ N ( 1 ( γ 1 + γ 2 ) ) ( I T N ) U N 1 x ( I T N ) U N 1 y 2 = ( U N 2 x λ N 1 ( I T N 1 ) U N 2 x ) ( U N 2 y λ N 1 ( I T N 1 ) U N 2 y ) 2 λ N ( 1 ( γ 1 + γ 2 ) ) ( I T N ) U N 1 x ( I T N ) U N 1 y 2 = ( U N 2 x U N 2 y ) λ N 1 ( ( I T N 1 ) U N 2 x ( I T N 1 ) U N 2 y ) 2 λ N ( 1 ( γ 1 + γ 2 ) ) ( I T N ) U N 1 x ( I T N ) U N 1 y 2 = U N 2 x U N 2 y 2 + λ N 1 2 ( I T N 1 ) U N 2 x ( I T N 1 ) U N 2 y 2 2 λ N 1 U N 2 x U N 2 y , ( I T N 1 ) U N 2 x ( I T N 1 ) U N 2 y λ N ( 1 ( γ 1 + γ 2 ) ) ( I T N ) U N 1 x ( I T N ) U N 1 y 2 U N 2 x U N 2 y 2 + λ N 1 2 ( I T N 1 ) U N 2 x ( I T N 1 ) U N 2 y 2 2 λ N 1 ( 1 κ N 1 2 ) ( I T N 1 ) U N 2 x ( I T N 1 ) U N 2 y 2 λ N ( 1 ( γ 1 + γ 2 ) ) ( I T N ) U N 1 x ( I T N ) U N 1 y 2 = U N 2 x U N 2 y 2 + λ N 1 ( λ N 1 ( 1 κ N 1 ) ) ( I T N 1 ) U N 2 x ( I T N 1 ) U N 2 y 2 λ N ( 1 ( γ 1 + γ 2 ) ) ( I T N ) U N 1 x ( I T N ) U N 1 y 2 U N 2 x U N 2 y 2 + λ N 1 ( γ 1 + γ 2 1 ) ( I T N 1 ) U N 2 x ( I T N 1 ) U N 2 y 2 λ N ( 1 ( γ 1 + γ 2 ) ) ( I T N ) U N 1 x ( I T N ) U N 1 y 2 = U N 2 x U N 2 y 2 λ N 1 ( 1 ( γ 1 + γ 2 ) ) ( I T N 1 ) U N 2 x ( I T N 1 ) U N 2 y 2 λ N ( 1 ( γ 1 + γ 2 ) ) ( I T N ) U N 1 x ( I T N ) U N 1 y 2 = U N 2 x U N 2 y 2 ( 1 ( γ 1 + γ 2 ) ) i = N 1 N λ i ( I T i ) U i 1 x ( I T i ) U i 1 y 2 x y 2 ( 1 ( γ 1 + γ 2 ) ) i = 1 N λ i ( I T i ) U i 1 x ( I T i ) U i 1 y 2 ,

which implies that

K x K y 2 x y 2 ( 1 ( γ 1 + γ 2 ) ) i = 1 N λ i ( I T i ) U i 1 x ( I T i ) U i 1 y 2 .
(2.9)

From (2.9) and γ 1 + γ 2 <1, we obtain

KxKyxy,x,yC,

that is, K is a nonexpansive mapping. □

Lemma 2.10 Let C be a nonempty closed convex subset of a real Hilbert space H. Let { T i } i = 1 be a finite family of κ i -strictly pseudo-contractive mappings of C into itself with κ i γ 1 and i = 1 N F( T i ). For every i=1,2,,N and nN, let λ 1 , λ 2 ,, λ N and λ 1 n , λ 2 n ,, λ N n be real numbers with 0< λ i , λ i n < γ 2 and γ 1 + γ 2 <1 such that λ i n λ i as n and n = 1 | λ i n + 1 λ i n |<. For every nN, let K and K n be the K-mappings generated by T 1 , T 1 ,, T N and λ 1 , λ 2 ,, λ N and T 1 , T 2 ,, T N and λ 1 n , λ 2 n ,, λ N n , respectively. Then, for every bounded sequence { x n } in C, the following properties hold:

  1. (i)

    lim n K n x n K x n =0;

  2. (ii)

    n = 1 K n x n 1 K n 1 x n 1 <.

Proof Let { x n } be a bounded sequence in C and let U k and U n , k be generated by T 1 , T 1 ,, T N and λ 1 , λ 2 ,, λ N and T 1 , T 1 ,, T N and λ 1 n , λ 2 n ,, λ N n , respectively.

First, we shall prove that (i) holds. For each nN, we obtain

U n , 1 x n U 1 x n = λ 1 n T 1 x n + ( 1 λ 1 n ) x n ( λ 1 T 1 x n + ( 1 λ 1 ) x n ) = λ 1 n T 1 x n λ 1 n x n λ 1 T 1 x n + λ 1 x n = ( λ 1 n λ 1 ) T 1 x n ( λ 1 n λ 1 ) x n = | λ 1 n λ 1 | T 1 x n x n .
(2.10)

For k{2,3,,N}, we have

U n , k x n U k x n = λ k n T k U n , k 1 x n + ( 1 λ k n ) U n , k 1 x n ( λ k T k U k 1 x n + ( 1 λ k ) U k 1 x n ) = λ k n T k U n , k 1 x n λ k T k U k 1 x n + ( 1 λ k n ) U n , k 1 x n ( 1 λ k ) U k 1 x n = λ k n T k U n , k 1 x n λ k n T k U k 1 x n + λ k n T k U k 1 x n λ k T k U k 1 x n + ( 1 λ k n ) U n , k 1 x n ( 1 λ k n ) U k 1 x n + ( 1 λ k n ) U k 1 x n ( 1 λ k ) U k 1 x n = λ k n ( T k U n , k 1 x n T k U k 1 x n ) + ( λ k n λ k ) T k U k 1 x n + ( 1 λ k n ) ( U n , k 1 x n U k 1 x n ) + ( 1 λ k n ( 1 λ k ) ) U k 1 x n λ k n T k U n , k 1 x n T k U k 1 x n + | λ k n λ k | T k U k 1 x n + ( 1 λ k n ) U n , k 1 x n U k 1 x n + | λ k λ k n | U k 1 x n λ k n 1 + κ k 1 κ k U n , k 1 x n U k 1 x n + | λ k n λ k | T k U k 1 x n + ( 1 λ k n ) U n , k 1 x n U k 1 x n + | λ k λ k n | U k 1 x n 1 + κ k 1 κ k U n , k 1 x n U k 1 x n + 1 κ k 1 κ k U n , k 1 x n U k 1 x n + | λ k n λ k | ( T k U k 1 x n + U k 1 x n ) = 2 1 κ k U n , k 1 x n U k 1 x n + | λ k n λ k | ( T k U k 1 x n + U k 1 x n ) .
(2.11)

By (2.10) and (2.11), we get

K n x n K x n = U n , N x n U N x n 2 1 κ N U n , N 1 x n U N 1 x n + | λ N n λ N | ( T N U N 1 x n + U N 1 x n ) 2 1 κ N ( 2 1 κ N 1 U n , N 2 x n U N 2 x n + | λ N 1 n λ N 1 | ( T N 1 U N 2 x n + U N 2 x n ) ) + | λ N n λ N | ( T N U N 1 x n + U N 1 x n ) = ( 2 1 κ N ) ( 2 1 κ N 1 ) U n , N 2 x n U N 2 x n + 2 1 κ N | λ N 1 n λ N 1 | ( T N 1 U N 2 x n + U N 2 x n ) + | λ N n λ N | ( T N U N 1 x n + U N 1 x n ) = j = N 1 N ( 2 1 κ j ) U n , N 2 x n U N 2 x n + j = N 1 N ( 2 1 κ j + 1 ) N j | λ j n λ j | ( T j U j 1 x n + U j 1 x n ) j = 2 N ( 2 1 κ j ) U n , 1 x n U 1 x n + j = 2 N ( 2 1 κ j + 1 ) N j | λ j n λ j | ( T j U j 1 x n + U j 1 x n ) = j = 2 N ( 2 1 κ j ) | λ 1 n λ 1 | T 1 x n x n + j = 2 N ( 2 1 κ j + 1 ) N j | λ j n λ j | ( T j U j 1 x n + U j 1 x n ) .
(2.12)

By (2.12) and the fact that λ i n λ i as n for all i=1,2,,N, we deduce that lim n K n x n K x n =0.

Next, we will claim that (ii) holds. For each nN, we obtain

U n , 1 x n 1 U n 1 , 1 x n 1 = λ 1 n T 1 x n 1 + ( 1 λ 1 n ) x n 1 ( λ 1 n 1 T 1 x n 1 + ( 1 λ 1 n 1 ) x n 1 ) = λ 1 n T 1 x n 1 λ 1 n x n 1 λ 1 n 1 T 1 x n 1 + λ 1 n 1 x n 1 = ( λ 1 n λ 1 n 1 ) T 1 x n 1 ( λ 1 n λ 1 n 1 ) x n 1 = | λ 1 n λ 1 n 1 | T 1 x n 1 x n 1 .
(2.13)

For k{2,3,,N}, we have

U n , k x n 1 U n 1 , k x n 1 = λ k n T k U n , k 1 x n 1 + ( 1 λ k n ) U n , k 1 x n 1 ( λ k n 1 T k U n 1 , k 1 x n 1 + ( 1 λ k n 1 ) U n 1 , k 1 x n 1 ) = λ k n T k U n , k 1 x n 1 λ k n 1 T k U n 1 , k 1 x n 1 + ( 1 λ k n ) U n , k 1 x n 1 ( 1 λ k n 1 ) U n 1 , k 1 x n 1 = λ k n T k U n , k 1 x n 1 λ k n T k U n 1 , k 1 x n 1 + λ k n T k U n 1 , k 1 x n 1 λ k n 1 T k U n 1 , k 1 x n 1 + ( 1 λ k n ) U n , k 1 x n 1 ( 1 λ k n ) U n 1 , k 1 x n 1 + ( 1 λ k n ) U n 1 , k 1 x n 1 ( 1 λ k n 1 ) U n 1 , k 1 x n 1 = λ k n ( T k U n , k 1 x n 1 T k U n 1 , k 1 x n 1 ) + ( λ k n λ k n 1 ) T k U n 1 , k 1 x n 1 + ( 1 λ k n ) ( U n , k 1 x n 1 U n 1 , k 1 x n 1 ) + ( 1 λ k n ( 1 λ k n 1 ) ) U n 1 , k 1 x n 1 λ k n T k U n , k 1 x n 1 T k U n 1 , k 1 x n 1 + | λ k n λ k n 1 | T k U n 1 , k 1 x n 1 + ( 1 λ k n ) U n , k 1 x n 1 U n 1 , k 1 x n 1 + | λ k n λ k n 1 | U n 1 , k 1 x n 1 λ k n 1 + κ k 1 κ k U n , k 1 x n 1 U n 1 , k 1 x n 1 + | λ k n λ k n 1 | T k U n 1 , k 1 x n 1 + ( 1 λ k n ) U n , k 1 x n 1 U n 1 , k 1 x n 1 + | λ k n λ k n 1 | U n 1 , k 1 x n 1 1 + κ k 1 κ k U n , k 1 x n 1 U n 1 , k 1 x n 1 + 1 κ k 1 κ k U n , k 1 x n 1 U n 1 , k 1 x n 1 + | λ k n λ k n 1 | ( T k U n 1 , k 1 x n 1 + U n 1 , k 1 x n 1 ) = 2 1 κ k U n , k 1 x n 1 U n 1 , k 1 x n 1 + | λ k n λ k n 1 | ( T k U n 1 , k 1 x n 1 + U n 1 , k 1 x n 1 ) .
(2.14)

From (2.13) and (2.14), we obtain

K n x n 1 K n 1 x n 1 = U n , N x n 1 U n 1 , N x n 1 2 1 κ N U n , N 1 x n 1 U n 1 , N 1 x n 1 + | λ N n λ N n 1 | ( T N U n 1 , N 1 x n 1 + U n 1 , N 1 x n 1 ) 2 1 κ N ( 2 1 κ N 1 U n , N 2 x n 1 U n 1 , N 2 x n 1 + | λ N 1 n λ N 1 n 1 | ( T N 1 U n 1 , N 2 x n 1 + U n 1 , N 2 x n 1 ) ) + | λ N n λ N n 1 | ( T N U n 1 , N 1 x n 1 + U n 1 , N 1 x n 1 ) = ( 2 1 κ N ) ( 2 1 κ N 1 ) U n , N 2 x n 1 U n 1 , N 2 x n 1 + 2 1 κ N | λ N 1 n λ N 1 n 1 | ( T N 1 U n 1 , N 2 x n 1 + U n 1 , N 2 x n 1 ) + | λ N n λ N n 1 | ( T N U n 1 , N 1 x n 1 + U n 1 , N 1 x n 1 ) = j = N 1 N ( 2 1 κ j ) U n , N 2 x n 1 U n 1 , N 2 x n 1 + j = N 1 N ( 2 1 κ j + 1 ) N j | λ j n λ j n 1 | ( T j U n 1 , j 1 x n 1 + U n 1 , j 1 x n 1 ) j = 2 N ( 2 1 κ j ) U n , 1 x n 1 U n 1 , 1 x n 1 + j = 2 N ( 2 1 κ j + 1 ) N j | λ j n λ j n 1 | ( T j U n 1 , j 1 x n 1 + U n 1 , j 1 x n 1 ) = j = 2 N ( 2 1 κ j ) | λ 1 n λ 1 n 1 | T 1 x n 1 x n 1 + j = 2 N ( 2 1 κ j + 1 ) N j | λ j n λ j n 1 | ( T j U n 1 , j 1 x n 1 + U n 1 , j 1 x n 1 ) j = 2 N ( 2 1 κ j ) | λ 1 n λ 1 n 1 | M + 2 j = 2 N ( 2 1 κ j + 1 ) N j | λ j n λ j n 1 | M ,
(2.15)

where M= max n N { T 1 x n 1 x n 1 , T j U n 1 , j 1 x n 1 , U n 1 , j 1 x n 1 }, for all j=2,3,,N. Hence, by (2.15) and n = 1 | λ i n + 1 λ i n |< for all i=1,2,,N, we have n = 1 K n x n 1 K n 1 x n 1 <. □

In 2010, Kangtunyakarn and Suantai [23] introduced the S-mapping generated by the finite family of κ i -strictly pseudo-contractions in Hilbert space as in the following definition.

Definition 2.3 ([23])

Let C be a nonempty closed convex subset of real Hilbert space. Let { T i } i = 1 N be a finite family of κ i -strictly pseudo-contractions of C into itself. For each j=1,2,,N, let α j =( α 1 j , α 2 j , α 3 j )I×I×I where I[0,1] and α 1 j + α 2 j + α 3 j =1. Define the mappings S:CC as follows:

U 0 = I , U 1 = α 1 1 T 1 U 0 + α 2 1 U 0 + α 3 1 I , U 2 = α 1 2 T 2 U 1 + α 2 2 U 1 + α 3 2 I , U 3 = α 1 3 T 3 U 2 + α 2 3 U 2 + α 3 3 I , U N 1 = α 1 N 1 T N 1 U N 2 + α 2 N 1 U N 2 + α 3 N 1 I , S = U N = α 1 N T N U N 1 + α 2 N U N 1 + α 3 N I .

This mapping is called S-mapping generated by T 1 , T 2 ,, T N and α 1 , α 2 ,, α N .

Furthermore, they obtained the following important lemma.

Lemma 2.11 ([23])

Let C be a nonempty closed convex subset of real Hilbert space. Let { T i } i = 1 N be a finite family of κ i -strictly pseudo-contractions of C into itself with i = 1 N F( T i ) and κ=max{ κ i :i=1,2,,N} and let α j =( α 1 j , α 2 j , α 3 j )I×I×I, j=1,2,,N, where I=[0,1], α 1 j + α 2 j + α 3 j =1, α 1 j , α 2 j (κ,1) for all j=1,2,,N1 and α 1 N (κ,1], α 3 N [κ,1), α 2 j [κ,1) for all j=1,2,,N. Let S be the mapping generated by T 1 , T 2 ,, T N and α 1 , α 2 ,, α N . Then F(S)= i = 1 N F( T i ) and S is a nonexpansive mapping.

By putting α 1 j = λ j and α 2 j =0, for all j=1,2,,N, we see that the S-mapping reduces to the K-mapping as defined in Definition 2.2. Moreover, from Lemma 2.11, we have the following result.

Lemma 2.12 Let C be a nonempty closed convex subset of real Hilbert space. Let { T i } i = 1 N be a finite family of κ i -strictly pseudo-contractions of C into itself with i = 1 N F( T i ) and κ=max{ κ i :i=1,2,,N} and let λ j (κ,1)[0,1], for all j=1,2,,N1 and λ N (κ,1]. Let K be the mapping generated by T 1 , T 2 ,, T N and λ 1 , λ 2 ,, λ N . Then F(K)= i = 1 N F( T i ) and K is a nonexpansive mapping.

Remark 2.13 For the result of Lemma 2.9 in our work, we obtain some improvement as follows:

  1. (i)

    We relax the conditions of κ i and λ i in Lemma 2.12 in sense that κ i is not depended on λ i , for all i=1,2,,N.

  2. (ii)

    We do not assume the condition κ=max{ κ i :i=1,2,,N}.

Example 2.14 Let be the set of real numbers and let T i :RR be defined by

T i x=(i+1)x,for all xR,

and λ i = i + 5 i + 6 , for all i=1,2,,5. Let K be the K-mapping generated by T 1 , T 2 ,, T 5 and λ 1 , λ 2 ,, λ 5 . Then F(K)= i = 1 5 F( T i )={0}.

Solution. It is easy to see that T i is κ i -strictly pseudo-contractive mapping with κ i = i i + 2 . We obtain κ=max{ κ i :i=1,2,,5}= 5 7 and λ i ( 5 7 ,1], for all i=1,2,,5. By the definition of a K-mapping, we have

U 1 x = ( 6 7 ) ( 2 x ) + ( 1 6 7 ) x , U 2 x = ( 7 8 ) ( 3 U 1 x ) + ( 1 7 8 ) U 1 x , U 3 x = ( 8 9 ) ( 4 U 2 x ) + ( 1 8 9 ) U 2 x , U 4 x = ( 9 10 ) ( 5 U 3 x ) + ( 1 9 10 ) U 3 x , K x = U 5 x = ( 10 11 ) ( 6 U 4 x ) + ( 1 10 11 ) U 4 x .
(2.16)

Observe that i = 1 5 F( T i )={0}. Then, by Lemma 2.12, we obtain

F(K)= i = 1 5 F( T i )={0}.

Next, we give an example for Lemma 2.9.

Example 2.15 Let be the set of real numbers and let T i :RR be defined by

T i x=(i+1)x,for all xR,

and λ i = i 5 i + 1 , for all i=1,2,,5. Let K be the K-mapping generated by T 1 , T 2 ,, T 5 and λ 1 , λ 2 ,, λ 5 . Choose γ 1 = 11 14 and γ 2 = 11 52 , from which it follows that γ 1 + γ 2 = 11 14 + 11 52 = 726 728 = 363 364 <1. Then, by Lemma 2.9, we obtain F(K)= i = 1 5 F( T i )={0}.

3 Strong convergence theorem

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. For every i=1,2,,N, S i :CCB(H) be -Lipschitz continuous with coefficients μ i , Φ i :H×C×CR be equilibrium-like function satisfying (H1)-(H3). Let φ:CR be a lower semicontinuous and convex function and A:CC be an α-inverse strongly monotone mapping. Let { T i } i = 1 N be a finite family of κ i -strictly pseudo-contractive mappings and κ i γ 1 with F:= i = 1 N F( T i ) i = 1 N ( MGEP ) s ( Φ i ,φ,A). For every nN, let K n be the K-mapping generated by T 1 , T 2 ,, T N and λ 1 n , λ 2 n ,, λ N n where 0<ϕ λ i n ψ< γ 2 , for all i=1,2,,N and γ 1 + γ 2 <1. For every i=1,2,,N, let { x n } be the sequence generated by x 1 C and w 1 i S i (I r 1 i A) x 1 , there exist sequences { w n i }H and { x n },{ u n i }C such that

{ w n i w n + 1 i ( 1 + 1 n ) H ( S i ( I r n i A ) x n , S i ( I r n + 1 i A ) x n + 1 ) , w n i S i ( I r n i A ) x n Φ i ( w n i , u n i , y ) + φ ( y ) φ ( u n i ) + 1 r n i u n i x n , y u n i + A x n , y u n i 0 , y C , x n + 1 = α n f ( x n ) + β n ( i = 1 N a n i u n i ) + δ n K n x n , n 1 ,
(3.1)

where f:CC be a contraction mapping with a constant ξ and { α n },{ β n },{ δ n }(0,1) with α n + β n + δ n =1, n1. Suppose the following conditions hold:

  1. (i)

    lim n α n =0 and n = 1 α n =;

  2. (ii)

    0<τ β n , δ n υ<1;

  3. (iii)

    0η a n i σ<1, for all i=1,2,,N1 and 0<η a n N σ1 with n = 1 N a n i =1;

  4. (iv)

    0<ϵ r n i ω<2α, for all nN and i=1,2,,N;

  5. (v)

    n = 1 | α n + 1 α n |<, n = 1 | β n + 1 β n |<, n = 1 | δ n + 1 δ n |<, n = 1 | r n + 1 i r n i |<, n = 1 | a n + 1 i a n i |<, n = 1 | λ i n + 1 λ i n |<, for all i=1,2,,N;

  6. (vi)

    for each i=1,2,,N, there exists ρ i >0 such that

    Φ i ( w 1 i , T r 1 i ( x 1 ) , T r 2 i ( x 2 ) ) + Φ i ( w 2 i , T r 2 i ( x 2 ) , T r 1 i ( x 1 ) ) ρ i T r 1 i ( x 1 ) T r 2 i ( x 2 ) 2 ,
    (3.2)

for all ( r 1 i , r 2 i ) Θ i × Θ i , ( x 1 , x 2 )C×C and w j i S i ( x j ), for j=1,2, where Θ i ={ r n i :n1}.

Then { x n } and { u n i } converges strongly to q= P F f(q), for every i=1,2,,N.

Proof The proof shall be divided into seven steps.

Step 1. We will prove that I r n i A is nonexpansive, for all i=1,2,,N.

From (3.1), we have

Φ i ( w n i , u n i , y ) +φ(y)φ ( u n i ) + 1 r n i u n i ( I r n i A ) x n , y u n i 0,
(3.3)

for every yC. From (3.3) and Theorem 2.8, we obtain

u n i = T r n i ( I r n i A ) x n ,i=1,2,,N.

Put r i Θ i for all i=1,2,,N. From (3.2), we have

Φ i ( w 1 i , T r i ( x 1 ) , T r i ( x 2 ) ) + Φ i ( w 2 i , T r i ( x 2 ) , T r i ( x 1 ) ) ρ i T r i ( x 1 ) T r i ( x 2 ) 2 0 ,
(3.4)

for all ( x 1 , x 2 )C×C and w j i S i ( x j ), j=1,2.

From (3.4), we find the implication that Theorem 2.8 holds.

It obvious to see that I r n i A is a nonexpansive mapping, for every i=1,2,,N.

Indeed, A is α-inverse strongly monotone with r n i (0,2α), we get

( I r n i A ) x ( I r n i A ) y 2 = x y r n i ( A x A y ) 2 = x y 2 2 r n i x y , A x A y + ( r n i ) 2 A x A y 2 x y 2 2 α r n i A x A y 2 + ( r n i ) 2 A x A y 2 = x y 2 + r n i ( r n i 2 α ) A x A y 2 x y 2 .

Thus I r n i A is a nonexpansive mapping, for all i=1,2,,N.

Step 2. We will show that { x n } is bounded.

Let zF. By nonexpansiveness of K n , we have

x n + 1 z α n f ( x n ) z + β n i = 1 N a n i ( u n i z ) + δ n K n x n z α n f ( x n ) f ( z ) + f ( z ) z + β n i = 1 N a n i u n i z + δ n x n z α n ( f ( x n ) f ( z ) + f ( z ) z ) + β n i = 1 N a n i T r n i ( I r n i A ) x n z + δ n x n z α n ( ξ x n z + f ( z ) z ) + β n i = 1 N a n i x n z + δ n x n z = ( 1 α n ( 1 ξ ) ) x n z + α n f ( z ) z max { x 1 z , f ( z ) z 1 ξ } .

By induction, we have x n zmax{ x 1 z, f ( z ) z 1 ξ }, nN. It follows that { x n } is bounded and so is { u n i }, i=1,2,,N.

Step 3. We will show that lim n x n + 1 x n =0.

By the definition of x n , we obtain

x n + 1 x n = α n f ( x n ) + β n ( i = 1 N a n i u n i ) + δ n K n x n ( α n 1 f ( x n 1 ) + β n 1 ( i = 1 N a n 1 i u n 1 i ) + δ n 1 K n 1 x n 1 ) α n f ( x n ) f ( x n 1 ) + | α n α n 1 | f ( x n 1 ) + β n i = 1 N a n i u n i i = 1 N a n 1 i u n 1 i + | β n β n 1 | i = 1 N a n 1 i u n 1 i + δ n K n x n K n x n 1 + δ n K n x n 1 K n 1 x n 1 + | δ n δ n 1 | K n 1 x n 1 α n ξ x n x n 1 + | α n α n 1 | f ( x n 1 ) + β n i = 1 N a n i u n i i = 1 N a n i u n 1 i + i = 1 N a n i u n 1 i i = 1 N a n 1 i u n 1 i + | β n β n 1 | i = 1 N a n 1 i u n 1 i + δ n x n x n 1 + δ n K n x n 1 K n 1 x n 1 + | δ n δ n 1 | K n 1 x n 1 α n ξ x n x n 1 + | α n α n 1 | f ( x n 1 ) + β n i = 1 N a n i ( u n i u n 1 i ) + β n i = 1 N ( a n i a n 1 i ) u n 1 i + | β n β n 1 | i = 1 N a n 1 i u n 1 i + δ n x n x n 1 + δ n K n x n 1 K n 1 x n 1 + | δ n δ n 1 | K n 1 x n 1 α n ξ x n x n 1 + | α n α n 1 | f ( x n 1 ) + β n i = 1 N a n i u n i u n 1 i + β n i = 1 N | a n i a n 1 i | u n 1 i + | β n β n 1 | i = 1 N a n 1 i u n 1 i + δ n x n x n 1 + δ n K n x n 1 K n 1 x n 1 + | δ n δ n 1 | K n 1 x n 1 .
(3.5)

From u n i = T r n i (I r n i A) x n , for all i=1,2,,N, we have

Φ i ( w n i , u n i , y ) +φ(y)φ ( u n i ) + 1 r n i u n i ( I r n i A ) x n , y u n i 0,yC

and

Φ i ( w n + 1 i , u n + 1 i , y ) + φ ( y ) φ ( u n + 1 i ) + 1 r n + 1 i u n + 1 i ( I r n + 1 i A ) x n + 1 , y u n + 1 i 0 , y C .

In particular, we obtain

Φ i ( w n i , u n i , u n + 1 i ) +φ ( u n + 1 i ) φ ( u n i ) + 1 r n i u n i ( I r n i A ) x n , u n + 1 i u n i 0
(3.6)

and

Φ i ( w n + 1 i , u n + 1 i , u n i ) + φ ( u n i ) φ ( u n + 1 i ) + 1 r n + 1 i u n + 1 i ( I r n + 1 i A ) x n + 1 , u n i u n + 1 i 0 .
(3.7)

Summing up (3.6) with (3.7) and applying (3.4), we get

1 r n i u n i ( I r n i A ) x n , u n + 1 i u n i + 1 r n + 1 i u n + 1 i ( I r n + 1 i A ) x n + 1 , u n i u n + 1 i 0 ,

which implies that

u n + 1 i u n i , u n i ( I r n i A ) x n r n i u n + 1 i ( I r n + 1 i A ) x n + 1 r n + 1 i 0.

It follows that

u n + 1 i u n i , u n i u n + 1 i + u n + 1 i ( I r n i A ) x n r n i r n + 1 i ( u n + 1 i ( I r n + 1 i A ) x n + 1 ) 0.
(3.8)

From (3.8), we obtain

u n + 1 i u n i 2 u n + 1 i u n i , u n + 1 i ( I r n i A ) x n r n i r n + 1 i ( u n + 1 i ( I r n + 1 i A ) x n + 1 ) = u n + 1 i u n i , ( I r n + 1 i A ) x n + 1 ( I r n i A ) x n + ( 1 r n i r n + 1 i ) ( u n + 1 i ( I r n + 1 i A ) x n + 1 ) u n + 1 i u n i ( I r n + 1 i A ) x n + 1 ( I r n i A ) x n + ( 1 r n i r n + 1 i ) ( u n + 1 i ( I r n + 1 i A ) x n + 1 ) u n + 1 i u n i [ ( I r n + 1 i A ) x n + 1 ( I r n + 1 i A ) x n + ( I r n + 1 i A ) x n ( I r n i A ) x n + | 1 r n i r n + 1 i | u n + 1 i ( I r n + 1 i A ) x n + 1 ] u n + 1 i u n i [ ( I r n + 1 i A ) x n + 1 ( I r n + 1 i A ) x n + ( I r n + 1 i A ) x n ( I r n i A ) x n + 1 r n + 1 i | r n + 1 i r n i | u n + 1 i ( I r n + 1 i A ) x n + 1 ] u n + 1 i u n i [ x n + 1 x n + | r n + 1 i r n i | A x n + 1 ϵ | r n + 1 i r n i | u n + 1 i ( I r n + 1 i A ) x n + 1 ] ,

from which it follows that

u n + 1 i u n i x n + 1 x n + | r n + 1 i r n i | A x n + 1 ϵ | r n + 1 i r n i | u n + 1 i ( I r n + 1 i A ) x n + 1 .
(3.9)

From (3.9), we have

u n i u n 1 i x n x n 1 + | r n i r n 1 i | A x n 1 + 1 ϵ | r n i r n 1 i | u n i ( I r n i A ) x n .
(3.10)

From (3.5) and (3.10), we obtain

x n + 1 x n α n ξ x n x n 1 + | α n α n 1 | f ( x n 1 ) + β n i = 1 N a n i [ x n x n 1 + | r n i r n 1 i | A x n 1 + 1 ϵ | r n i r n 1 i | u n i ( I r n i A ) x n ] + β n i = 1 N | a n i a n 1 i | u n 1 i + | β n β n 1 | i = 1 N a n 1 i u n 1 i + δ n x n x n 1 + δ n K n x n 1 K n 1 x n 1 + | δ n δ n 1 | K n 1 x n 1 = α n ξ x n x n 1 + | α n α n 1 | f ( x n 1 ) + β n i = 1 N a n i x n x n 1 + β n i = 1 N a n i | r n i r n 1 i | A x n 1 + β n ϵ i = 1 N a n i | r n i r n 1 i | u n i ( I r n i A ) x n + β n i = 1 N | a n i a n 1 i | u n 1 i + | β n β n 1 | i = 1 N a n 1 i u n 1 i + δ n x n x n 1 + δ n K n x n 1 K n 1 x n 1 + | δ n δ n 1 | K n 1 x n 1 ( 1 α n ( 1 ξ ) ) x n x n 1 + | α n α n 1 | f ( x n 1 ) + i = 1 N | r n i r n 1 i | A x n 1 + 1 ϵ i = 1 N | r n i r n 1 i | u n i ( I r n i A ) x n + i = 1 N | a n i a n 1 i | u n 1 i + | β n β n 1 | i = 1 N a n 1 i u n 1 i + K n x n 1 K n 1 x n 1 + | δ n δ n 1 | K n 1 x n 1 .

Applying the conditions (i), (v), Lemma 2.6, and Lemma 2.10(ii), we obtain

lim n x n + 1 x n =0.
(3.11)

Step 4. We will show that lim n u n i x n = lim n K n x n x n =0, i=1,2,,N.

Since T r n i is a firmly nonexpansive mapping, for every i=1,2,,N, we obtain

T r n i ( I r n i A ) x n z 2 = T r n i ( I r n i A ) x n T r n i ( I r n i A ) z 2 ( I r n i A ) x n ( I r n i A ) z , u n i z = 1 2 ( ( I r n i A ) x n ( I r n i A ) z 2 + u n i z 2 ( I r n i A ) x n ( I r n i A ) z ( u n i z ) 2 ) 1 2 ( x n z 2 + u n i z 2 ( x n u n i ) r n i ( A x n A z ) 2 ) = 1 2 ( x n z 2 + u n i z 2 x n u n i 2 ( r n i ) 2 A x n A z 2 + 2 r n i x n u n i , A x n A z ) 1 2 ( x n z 2 + u n i z 2 x n u n i 2 + 2 r n i x n u n i A x n A z ) ,

which implies that

u n i z 2 x n z 2 x n u n i 2 +2 r n i x n u n i A x n Az.
(3.12)

From the nonexpansiveness of T r n i and u n i = T r n i (I r n i A) x n , for every i=1,2,,N, we have

u n i z 2 = T r n i ( I r n i A ) x n T r n i ( I r n i A ) z 2 ( x n z ) r n i ( A x n A z ) 2 = x n z 2 2 r n i x n z , A x n A z + ( r n i ) 2 A x n A z 2 x n z 2 2 α r n i A x n A z 2 + ( r n i ) 2 A x n A z 2 = x n z 2 r n i ( 2 α r n i ) A x n A z 2 .
(3.13)

From the definition of x n and (3.13), we get

x n + 1 z 2 α n f ( x n ) z 2 + β n i = 1 N a n i u n i z 2 + δ n x n z 2 α n f ( x n ) z 2 + β n i = 1 N a n i ( x n z 2 r n i ( 2 α r n i ) A x n A z 2 ) + δ n x n z 2 = α n f ( x n ) z 2 + β n i = 1 N a n i x n z 2 β n i = 1 N a n i r n i ( 2 α r n i ) A x n A z 2 + δ n x n z 2 x n z 2 + α n f ( x n ) z 2 β n i = 1 N a n i r n i ( 2 α r n i ) A x n A z 2 ,

from which it follows that

β n i = 1 N a n i r n i ( 2 α r n i ) A x n A z 2 x n z 2 x n + 1 z 2 + α n f ( x n ) z 2 ( x n z + x n + 1 z ) x n + 1 x n + α n f ( x n ) z 2 .
(3.14)

From (3.11), (3.14), and the conditions (i), (ii), (iii), and (iv), we obtain

lim n A x n Az=0.
(3.15)

From the definition of x n and (3.12), we have

x n + 1 z 2 α n f ( x n ) z 2 + β n i = 1 N a n i u n i z 2 + δ n x n z 2 α n f ( x n ) z 2 + β n i = 1 N a n i ( x n z 2 x n u n i 2 + 2 r n i x n u n i A x n A z ) + δ n x n z 2 α n f ( x n ) z 2 + β n i = 1 N a n i x n z 2 β n i = 1 N a n i x n u n i 2 + 2 β n i = 1 N a n i r n i x n u n i A x n A z + δ n x n z 2 x n z 2 + α n f ( x n ) z 2 β n i = 1 N a n i x n u n i 2 + 2 β n i = 1 N a n i r n i x n u n i A x n A z ,

which implies that

β n i = 1 N a n i x n u n i 2 x n z 2 x n + 1 z 2 + α n f ( x n ) z 2 + 2 β n i = 1 N a n i r n i x n u n i A x n A z ( x n z + x n + 1 z ) x n + 1 x n + α n f ( x n ) z 2 + 2 β n i = 1 N a n i r n i x n u n i A x n A z .
(3.16)

From (3.11), (3.15), (3.16), and the conditions (i), (ii), (iii), we get

lim n x n u n i =0,for all i=1,2,,N.
(3.17)

By the definition of x n , we obtain

x n + 1 x n = α n f ( x n ) + β n ( i = 1 N a n i u n i ) + δ n K n x n x n = α n ( f ( x n ) x n ) + β n i = 1 N a n i ( u n i x n ) + δ n ( K n x n x n ) .

From (3.11), (3.17), and the conditions (i) and (ii), we get

lim n K n x n x n =0.
(3.18)

Step 5. We show that { x n }, { w n i } and { r n i } are Cauchy sequences, for every i=1,2,,N.

Let a(0,1), by (3.11), there exists NN such that

x n + 1 x n < a n ,nN.
(3.19)

Thus, for any nNN and pN, we have

x n + p x n k = n n + p 1 x k + 1 x k k = n n + p 1 a k < k = n a k = a n 1 a .
(3.20)

Since a(0,1), we get lim n a n =0. From (3.20), taking n, we obtain { x n } is a Cauchy sequence in a Hilbert space H. Let lim n x n = x . Since S i :CCB(H) be -Lipschitz continuous on H with coefficients μ i , for every i=1,2,,N, and (3.1), we have

w n i w n + 1 i ( 1 + 1 n ) H ( S i ( I r n i A ) x n , S i ( I r n + 1 i A ) x n + 1 ) ( 1 + 1 n ) μ i ( I r n i A ) x n ( I r n + 1 i A ) x n + 1 ( 1 + 1 n ) μ i ( ( I r n i A ) x n ( I r n i A ) x n + 1 + ( I r n i A ) x n + 1 ( I r n + 1 i A ) x n + 1 ) ( 1 + 1 n ) μ i ( x n x n + 1 + | r n + 1 i r n i | A x n + 1 ) ( 1 + 1 n ) μ i ( x n x n + 1 + | r n + 1 i r n i | M ) ,
(3.21)

where M= max n N {A x n }. From (3.11), (3.21), and the condition (v), we obtain

lim n w n i w n + 1 i =0,for every i=1,2,,N.

By continuing the same argument as (3.19) and (3.20), we have { w n i } is a Cauchy sequence in a Hilbert space H, for all i=1,2,,N. Let lim n w n i = w i , for every i=1,2,,N. Using the same method as above and the condition (v), we see that { r n i } is a Cauchy sequence, for all i=1,2,,N. Put lim n r n i = r i , for every i=1,2,,N.

Next, we will prove that w i S i (I r i A) x , for all i=1,2,,N.

Since w n i S i (I r n i A) x n , we obtain

d ( w n i , S i ( I r i A ) x ) max { d ( w n i , S i ( I r i A ) x ) , sup w ˜ i S i ( I r i A ) x d ( S i ( I r n i A ) x n , w ˜ i ) } max { sup w ˆ i S i ( I r n i A ) x n d ( w ˆ i , S i ( I r i A ) x ) , sup w ˜ i S i ( I r i A ) x d ( S i ( I r n i A ) x n , w ˜ i ) } = H ( S i ( I r n i A ) x n , S i ( I r i A ) x ) , for every  i = 1 , 2 , , N .
(3.22)

Since

d ( w i , S i ( I r i A ) x ) w i w n i + d ( w n i , S i ( I r i A ) x ) w i w n i + H ( S i ( I r n i A ) x n , S i ( I r i A ) x ) w i w n i + μ i ( I r n i A ) x n ( I r i A ) x = w i w n i + μ i ( x n x ) ( r n i A x n r i A x ) ,

taking n, we have

d ( w i , S i ( I r i A ) x ) =0,

which implies that

w i S i ( I r i A ) x ,for all i=1,2,,N.
(3.23)

Step 6. We will show that lim sup n f(q)q, x n q0, where q= P F f(q).

To show this, choose a subsequence { x n k } of { x n } such that

lim sup n f ( q ) q , x n q = lim k f ( q ) q , x n k q .

Without loss of generality, we can assume that x n k x ˜ as k.

For every i=1,2,,N, 0<ϕ λ i n ψ< γ 2 <1, for all i=1,2,,N, without loss of generality, we may assume that

λ i n k λ i (0,1)as k,for every i=1,2,,N.

Let K be the K-mapping generated by T 1 , T 2 ,, T N and λ 1 , λ 2 ,, λ N . By Lemma 2.9, we see that K is nonexpansive and F(K)= i = 1 N F( T i ).

From Lemma 2.10(i), we obtain

lim k K n k x n k K x n k =0.
(3.24)

Since

x n k K x n k x n k K n k x n k + K n k x n k K x n k ,

by (3.18) and (3.24), we have

lim k x n k K x n k =0.
(3.25)

Since x n k x ˜ as n, by (3.25) and Lemma 2.4, we have

x ˜ F(K)= i = 1 N F( T i ).
(3.26)

Next, we show that x i = 1 N ( GEP ) s ( Φ i ,φ,A).

Since x n k x as k and (3.17), we have

u n k i x as k,for all i=1,2,,N.
(3.27)

From (3.1), we obtain

Φ i ( w n k i , u n k i , y ) +φ(y)φ ( u n k i ) + 1 r n k i u n k i x n k , y u n k i + A x n k , y u n k i 0,

for every yC and i=1,2,,N. From (3.17), (3.27), the condition (H1), and the lower semicontinuity of φ, we get

Φ i ( w i , x , y ) +φ(y)φ ( x ) + A x , y x 0,

for every yC and i=1,2,,N, from which it follows by (3.23) that

x ( GEP ) s ( Φ i ,φ,A),for every i=1,2,,N.

It implies that

x i = 1 N ( GEP ) s ( Φ i ,φ,A).
(3.28)

Since x n k x ˜ and x n k x as n, then x ˜ = x . From (3.26) and (3.28), we have

x F.
(3.29)

Indeed, since x n k x as k, by (3.29) and Lemma 2.3, we obtain

lim sup n f ( q ) q , x n q = lim k f ( q ) q , x n k q = f ( q ) q , x q 0.
(3.30)

Step 7. Finally, we will prove that { x n } and { u n i } converges strongly to q= P F f(q), for every i=1,2,,N.

By Lemma 2.1(ii), we have

x n + 1 q 2 = α n ( f ( x n ) q ) + β n i = 1 N a n i ( u n i q ) + δ n ( K n x n q ) 2 β n i = 1 N a n i ( u n i q ) + δ n ( K n x n q ) 2 + 2 α n f ( x n ) q , x n + 1 q ( β n i = 1 N a n i ( u n i q ) + δ n K n x n q ) 2 + 2 α n f ( x n ) f ( q ) , x n + 1 q + 2 α n f ( q ) q , x n + 1 q ( β n i = 1 N a n i x n q + δ n x n q ) 2 + 2 α n f ( x n ) f ( q ) x n + 1 q + 2 α n f ( q ) q , x n + 1 q ( ( 1 α n ) x n q ) 2 + 2 α n ξ x n q x n + 1 q + 2 α n f ( q ) q , x n + 1 q ( 1 α n ) 2 x n q 2 + α n ξ ( x n q 2 + x n + 1 q 2 ) + 2 α n f ( q ) q , x n + 1 q ,

which implies that

x n + 1 q 2 ( 1 α n ) 2 + α n ξ 1 α n ξ x n q 2 + 2 α n 1 α n ξ f ( q ) q , x n + 1 q = 1 α n ξ 2 α n ( 1 ξ ) 1 α n ξ x n q 2 + α n 2 1 α n ξ x n q 2 + 2 α n 1 α n ξ f ( q ) q , x n + 1 q = ( 1 2 α n ( 1 ξ ) 1 α n ξ ) x n q 2 + α n 2 1 α n ξ x n q 2 + 2 α n 1 α n ξ f ( q ) q , x n + 1 q = ( 1 2 α n ( 1 ξ ) 1 α n ξ ) x n q 2 + 2 α n ( 1 ξ ) 1 α n ξ ( α n 2 ( 1 ξ ) x n q 2 + 1 1 ξ f ( q ) q , x n + 1 q ) .

Applying the condition (i), (3.30), and Lemma 2.6, we have the sequence { x n } converges strongly to q= P F f(q). From (3.17), we also obtain { u n i } converges strongly to q= P F f(q), for every i=1,2,,N. This completes the proof. □

The following corollaries are consequences which are applied by Theorem 3.1. Therefore, we omit the proof.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H. For every i=1,2,,N, S i :CCB(H) be -Lipschitz continuous with coefficients μ i , Φ i :H×C×CR be equilibrium-like function satisfying (H1)-(H3). Let φ:CR be a lower semicontinuous and convex function and A:CC be an α-inverse strongly monotone mapping. Let T:CC be κ-strictly pseudo-contractive mapping with κ γ 1 and F:=F(T) i = 1 N ( MGEP ) s ( Φ i ,φ,A). For every nN, let { λ n } be a sequence of real numbers where 0< λ n < γ 2 and γ 1 + γ 2 <1. For every i=1,2,,N, let { x n } be the sequence generated by x 1 C and w 1 i S i (I r 1 i A) x 1 , there exist sequences { w n i }H and { x n },{ u n i }C such that

{ w n i w n + 1 i ( 1 + 1 n ) H ( S i ( I r n i A ) x n , S i ( I r n + 1 i A ) x n + 1 ) , w n i S i ( I r n i A ) x n Φ i ( w n i , u n i , y ) + φ ( y ) φ ( u n i ) + 1 r n i u n i x n , y u n i + A x n , y u n i 0 , y C , x n + 1 = α n f ( x n ) + β n ( i = 1 N a n i u n i ) + δ n ( λ n T + ( 1 λ n ) I ) x n , n 1 ,
(3.31)

where f:CC be a contraction mapping with a constant ξ and { α n },{ β n },{ δ n }(0,1) with α n + β n + δ n =1, n1. Suppose the following conditions hold:

  1. (i)

    lim n α n =0 and n = 1 α n =;

  2. (ii)

    0<τ β n , δ n υ<1;

  3. (iii)

    0η a n i σ<1, for all i=1,2,,N1 and 0<η a n N σ1 with n = 1 N a n i =1;

  4. (iv)

    0<ϵ r n i ω<2α, for all nN and i=1,2,,N;

  5. (v)

    n = 1 | α n + 1 α n |<, n = 1 | β n + 1 β n |<, n = 1 | δ n + 1 δ n |<, n = 1 | r n + 1 i r n i |<, n = 1 | a n + 1 i a n i |<, n = 1 | λ n + 1 λ n |<, for all i=1,2,,N;

  6. (vi)

    for each i=1,2,,N, there exists ρ i >0 such that

    Φ i ( w 1 i , T r 1 i ( x 1 ) , T r 2 i ( x 2 ) ) + Φ i ( w 2 i , T r 2 i ( x 2 ) , T r 1 i ( x 1 ) ) ρ i T r 1 i ( x 1 ) T r 2 i ( x 2 ) 2 ,
    (3.32)

for all ( r 1 i , r 2 i ) Θ i × Θ i ,( x 1 , x 2 )C×C and w j i S i ( x j ), for j=1,2, where Θ i ={ r n i :n1}.

Then { x n } and { u n i } converges strongly to q= P F f(q), for every i=1,2,,N.

Corollary 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H. For every i=1,2,,N, S i :CCB(H) be -Lipschitz continuous with coefficients μ i , Φ i :H×C×CR be equilibrium-like function satisfying (H1)-(H3). Let φ:CR be a lower semicontinuous and convex function. Let { T i } i = 1 N be a finite family of κ i -strictly pseudo-contractive mappings and κ i γ 1 with F:= i = 1 N F( T i ) i = 1 N ( GEP ) s ( Φ i ,φ). For every nN, let K n be the K-mapping generated by T 1 , T 2 ,, T N and λ 1 n , λ 2 n ,, λ N n where 0<ϕ λ i n ψ< γ 2 <1, for all i=1,2,,N and γ 1 + γ 2 <1. For every i=1,2,,N, let { x n } be the sequence generated by x 1 C and w 1 i S i ( x 1 ), there exist sequences { w n i }H and { x n },{ u n i }C such that

{ w n i S i ( x n ) , w n i w n + 1 i ( 1 + 1 n ) H ( S i ( x n ) , S i ( x n + 1 ) ) , Φ i ( w n i , u n i , y ) + φ ( y ) φ ( u n i ) + 1 r n i u n i x n , y u n i 0 , y C , x n + 1 = α n f ( x n ) + β n ( i = 1 N a n i u n i ) + δ n K n x n , n 1 ,
(3.33)

where f:CC is a contraction mapping with a constant ξ and { α n },{ β n },{ δ n }(0,1) with α n + β n + δ n =1, n1. Suppose the following conditions hold:

  1. (i)

    lim n α n =0 and n = 1 α n =;

  2. (ii)

    0<τ β n , δ n υ<1;

  3. (iii)

    0η a n i σ<1, for all i=1,2,,N1 and 0<η a n N σ1 with n = 1 N a n i =1;

  4. (iv)

    0<ϵ r n i ω<1, for all nN and i=1,2,,N;

  5. (v)

    n = 1 | α n + 1 α n |<, n = 1 | β n + 1 β n |<, n = 1 | δ n + 1 δ n |<, n = 1 | r n + 1 i r n i |<, n = 1 | a n + 1 i a n i |<, n = 1 | λ i n + 1 λ i n |<, for all i=1,2,,N;

  6. (vi)

    for each i=1,2,,N, there exists ρ i >0 such that

    Φ i ( w 1 i , T r 1 i ( x 1 ) , T r 2 i ( x 2 ) ) + Φ i ( w 2 i , T r 2 i ( x 2 ) , T r 1 i ( x 1 ) ) ρ i T r 1 i ( x 1 ) T r 2 i ( x 2 ) 2 ,
    (3.34)

for all ( r 1 i , r 2 i ) Θ i × Θ i ,( x 1 , x 2 )C×C and w j i S i ( x j ), for j=1,2, where Θ i ={ r n i :n1}.

Then { x n } and { u n i } converges strongly to q= P F f(q), for every i=1,2,,N.

Remark 3.4 From Corollary 3.3, put N=1, then the iterative scheme (3.33) reduces to

{ w n 1 S 1 ( x n ) , w n 1 w n + 1 1 ( 1 + 1 n ) H ( S 1 ( x n ) , S 1 ( x n + 1 ) ) , Φ 1 ( w n 1 , u n 1 , y ) + φ ( y ) φ ( u n 1 ) + 1 r n 1 u n 1 x n , y u n 1 0 , y C , x n + 1 = α n f ( x n ) + β n u n 1 + δ n ( λ 1 n T 1 + ( 1 λ 1 n ) I ) x n , n 1 ,

which is a modification of iterative scheme (1.4) in the results of Ceng et al. [16]. By assuming the initial condition x 1 C, w 1 1 S 1 ( x 1 ) and the following conditions hold:

  1. (i)

    lim n α n =0 and n = 1 α n =;

  2. (ii)

    0<τ β n , δ n υ<1;

  3. (iii)

    0<ϵ r n 1 ω<1, for all nN;

  4. (iv)

    n = 1 | α n + 1 α n |<, n = 1 | β n + 1 β n |<, n = 1 | δ n + 1 δ n |<, n = 1 | r n + 1 1 r n 1 |<, n = 1 | λ 1 n + 1 λ 1 n |<;

  5. (v)

    there exists ρ 1 >0 such that

    Φ 1 ( w 1 1 , T r 1 1 ( x 1 ) , T r 2 1 ( x 2 ) ) + Φ 1 ( w 2 1 , T r 2 1 ( x 2 ) , T r 1 1 ( x 1 ) ) ρ 1 T r 1 1 ( x 1 ) T r 2 1 ( x 2 ) 2 ,

for all ( r 1 1 , r 2 1 ) Θ 1 × Θ 1 ,( x 1 , x 2 )C×C and w j 1 S 1 ( x j ), for j=1,2, where Θ 1 ={ r n 1 :n1}.

Then { x n } and { u n 1 } converge strongly to q= P F f(q).

References

  1. Ceng LC, Sahu DR, Yao JC: Implicit iterative algorithms for asymptotically nonexpansive mappings nonexpansive mappings in the intermediate sense and Lipschitz-continuous monotone mappings. J. Comput. Appl. Math. 2010, 233: 2902–2915. 10.1016/j.cam.2009.11.035

    Article  MathSciNet  Google Scholar 

  2. Ceng CL, Ansari QH, Yao JC: Strong and weak convergence theorems for asymptotically strict pseudocontractive mappings in intermediate sense. J. Nonlinear Convex Anal. 2010, 11: 283–308.

    MathSciNet  Google Scholar 

  3. Ceng CL, Petruşel A, Yao JC: Iterative approximation of fixed points for asymptotically strict pseudocontractive type mappings in the intermediate sense. Taiwan. J. Math. 2011, 15: 587–606.

    Google Scholar 

  4. Peng JW, Yao JC: Ishikawa iterative algorithms for a generalized equilibrium problem and fixed point problems of a pseudo-contraction mapping. J. Glob. Optim. 2010, 46: 331–345. 10.1007/s10898-009-9428-9

    Article  MathSciNet  Google Scholar 

  5. Cheng SS: Partial Difference Equations. Taylor & Francis, London; 2003.

    Book  Google Scholar 

  6. Iiduka H: Fixed point optimization algorithm and its application to network bandwidth allocation. J. Comput. Appl. Math. 2012, 236: 1733–1742. 10.1016/j.cam.2011.10.004

    Article  MathSciNet  Google Scholar 

  7. Wang GQ, Cheng SS: Fixed point theorems arising from seeking steady states of neural networks. Appl. Math. Model. 2009, 33: 499–506. 10.1016/j.apm.2007.11.013

    Article  MathSciNet  Google Scholar 

  8. Roberts JS: Artificial Neural Networks. McGraw-Hill, Singapore; 1997.

    Google Scholar 

  9. Haykin S: Neural Networks: A Comprehensive Foundation. Macmillan Co., Eaglewood Cliffs; 1994.

    Google Scholar 

  10. Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994, 63(14):123–145.

    MathSciNet  Google Scholar 

  11. Combettes PL, Hirstoaga SA: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 2005, 6(1):117–136.

    MathSciNet  Google Scholar 

  12. Kangtunyakarn A:Hybrid iterative scheme for a generalized equilibrium problems, variational inequality problems and fixed point problem of a finite family of κ i -strictly pseudocontractive mappings. Fixed Point Theory Appl. 2012., 2012: Article ID 30

    Google Scholar 

  13. Kangtunyakarn A, Suantai S: A new mapping for finding common solutions of equilibrium problems and fixed point problems of finite family of nonexpansive mappings. Nonlinear Anal. 2009, 71: 4448–4460. 10.1016/j.na.2009.03.003

    Article  MathSciNet  Google Scholar 

  14. Takahashi W, Shimoji K: Convergence theorems for nonexpansive mappings and feasibility problems. Math. Comput. Model. 2000, 32: 1463–1471. 10.1016/S0895-7177(00)00218-1

    Article  MathSciNet  Google Scholar 

  15. Takahashi S, Takahashi W: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 2007, 331(1):506–515. 10.1016/j.jmaa.2006.08.036

    Article  MathSciNet  Google Scholar 

  16. Ceng LC, Ansari QH, Yao JC: Viscosity approximation methods for generalized equilibrium problems and fixed point problems. J. Glob. Optim. 2012, 43: 487–502.

    Article  MathSciNet  Google Scholar 

  17. Nadler SB Jr.: Multivalued contraction mappings. Pac. J. Math. 1969, 30: 475–488. 10.2140/pjm.1969.30.475

    Article  MathSciNet  Google Scholar 

  18. Takahashi W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama; 2000.

    Google Scholar 

  19. Zegeye H, Shahzad N: Convergence of Mann’s type iteration method for generalized asymptotically nonexpansive mappings. Comput. Math. Appl. 2011, 62: 4007–4014. 10.1016/j.camwa.2011.09.018

    Article  MathSciNet  Google Scholar 

  20. Browder FE: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach space. Arch. Ration. Mech. Anal. 1967, 24: 82–89.

    Article  MathSciNet  Google Scholar 

  21. Marino G, Xu HK: Weak and strong convergence theorem for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 2007, 329: 336–346. 10.1016/j.jmaa.2006.06.055

    Article  MathSciNet  Google Scholar 

  22. Xu HK: An iterative approach to quadric optimization. J. Optim. Theory Appl. 2003, 116: 659–678. 10.1023/A:1023073621589

    Article  MathSciNet  Google Scholar 

  23. Kangtunyakarn A, Suantai S: Strong convergence of a new iterative scheme for a finite family of strict pseudo-contractions. Comput. Math. Appl. 2010, 60: 680–694. 10.1016/j.camwa.2010.05.016

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to the referees for their useful comments and suggestions which improved the content of this paper. This research is supported by the Research Administration Division of King Mongkut’s Institute of Technology Ladkrabang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atid Kangtunyakarn.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors contributed equally and significantly to this research article. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Suwannaut, S., Kangtunyakarn, A. Strong convergence theorem for the modified generalized equilibrium problem and fixed point problem of strictly pseudo-contractive mappings. Fixed Point Theory Appl 2014, 86 (2014). https://doi.org/10.1186/1687-1812-2014-86

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2014-86

Keywords