Skip to main content

Relaxed and composite viscosity methods for variational inequalities, fixed points of nonexpansive mappings and zeros of accretive operators

Abstract

In this paper, we present relaxed and composite viscosity methods for computing a common solution of a general systems of variational inequalities, common fixed points of infinitely many nonexpansive mappings and zeros of accretive operators in real smooth and uniformly convex Banach spaces. The relaxed and composite viscosity methods are based on Korpelevich’s extragradient method, the viscosity approximation method and the Mann iteration method. Under suitable assumptions, we derive some strong convergence theorems for relaxed and composite viscosity algorithms not only in the setting of a uniformly convex and 2-uniformly smooth Banach space but also in a uniformly convex Banach space having a uniformly Gâteaux differentiable norm. The results presented in this paper improve, extend, supplement, and develop the corresponding results given in the literature.

1 Introduction

The theory of variational inequalities is well established and a tool to solve many problems arising from science, engineering, social sciences, etc., see, for example, [14] and the references therein. One of the interesting directions, from the research view point, in the theory of variational inequalities is to develop some new iterative methods for computing the approximate solutions of different kinds of variational inequalities. In 1976, Korpelevich [5] proposed an iterative algorithm for solving variational inequalities (VI) in the finite dimensional space setting, It is now known as the extragradient method. Korpelevich’s extragradient method has received great attention by many authors, who improved it in various ways and in different directions, see, for example [616] and the references therein. In the recent past, several iterative methods for solving VI were proposed and analyzed in [1724] in the setting of Banach spaces. In the last three decades, the system of variational inequalities is used as a tool to study the Nash equilibrium problem for a finite or infinite number of players, see, for example, [2, 3, 25, 26] and the references therein. Cai and Bu [20] considered a system of two variational inequalities (SVI) in the setting of real smooth Banach spaces. They proposed and analyzed an iterative method for computing the approximate solutions of system of variational inequalities. Such a solution is also a common fixed point of a family of nonexpansive mappings.

One of the most interesting problems in nonlinear analysis is to find a zero of an accretive operator. In 2007, Aoyama et al. [27] suggested a Halpern type iterative method for finding a common fixed point of a countable family of nonexpansive mappings and a zero of an accretive operator. They studied the strong convergence of the sequence generated by the proposed method in the setting of a uniformly convex Banach space having a uniformly Gâreaux differentiable norm. Ceng et al. [28] introduced and analyzed the composite iterative scheme to compute a zero of m-accretive operator A defined on a uniformly smooth Banach space or a reflexive Banach space having a weakly sequentially continuous duality mapping. It is shown that the iterative process in each case converges strongly to a zero of A. Subsequently, Jung [29] studied a viscosity approximation method, which generalizes the composite method in [28], to investigate the zero of an accretive operator.

During the last decade, several iterative methods have been proposed and analyzed to find a common solution of two different fixed point problems, a fixed point problem and a variational inequality problem, a fixed point problem for a family of nonexpansive mappings and a variational inequality problem or a fixed point problem and a system of variational inequalities, etc. See, for example, [8, 16, 20, 30, 31] and the references therein.

In the present paper, we mainly propose two different methods, namely, relaxed viscosity method and composite viscosity method, to find a common fixed point of an infinite family of nonexpansive mappings, a system of variational inequalities and zero of an accretive operator in the setting of a uniformly convex and 2-uniformly smooth Banach spaces. These methods are based on Korpelevich’s extragradient method, viscosity approximation method and Mann iteration method. Under suitable assumptions, we derive some strong convergence theorems for relaxed and composite viscosity algorithms not only in the setting of a uniformly convex and 2-uniformly smooth Banach space but also in the setting of uniformly convex Banach spaces having a uniformly Gâteaux differentiable norm. The results presented in this paper improve, extend, supplement, and develop the corresponding results in [10, 20, 24, 29, 30].

2 Preliminaries

Throughout the paper, unless otherwise specified, we adopt the following assumptions and notations.

Let X be a real Banach space whose dual space is denoted by X . Let C be a nonempty closed convex subset of X. We denote by Ξ C the set of all contractive mappings from C into itself.

The normalized duality mapping J:X 2 X is defined by

J(x)= { x X : x , x = x 2 = x 2 } ,xX,

where , denotes the generalized duality pairing. It is an immediate consequence of the Hahn-Banach Theorem that J(x) is nonempty for each xX.

Let U={xX:x=1} denote the unite sphere in X. A Banach space X is said to be uniformly convex if for each ϵ(0,2], there exists δ>0 such that for all x,yU,

xyϵ x + y 2 1δ.

It is well known that a uniformly convex Banach space is reflexive and strictly convex. A Banach space X is said to be smooth if the limit

lim t 0 x + t y x t ,

exists for all x,yU; in this case, X is also said to have a Gâteaux differentiable norm. X is said to have a uniformly Gâteaux differentiable norm if for each yU, the limit is attained uniformly for all xU. Moreover, it is said to be uniformly smooth if this limit is attained uniformly for all x,yU. The norm of X is said to be Fréchet differentiable if, for each xU, this limit is attained uniformly for all yU. A function ρ:[0,)[0,) defined by

ρ(τ)=sup { 1 2 ( x + y + x y ) 1 : x , y X , x = 1 , y = τ }

is called the modulus of smoothness of X. It is well known that X is uniformly smooth if and only if lim τ 0 ρ(τ)/τ=0. Let q be a fixed real number with 1<q2. Then a Banach space X is said to be q-uniformly smooth if there exists a constant c>0 such that ρ(τ)c τ q for all τ>0. As pointed out in [32], no Banach space is q-uniformly smooth for q>2. In addition, it is also known that J is single-valued if and only if X is smooth, whereas if X is uniformly smooth, then the mapping J is norm-to-norm uniformly continuous on bounded subsets of X. If X has a uniformly Gâteaux differentiable norm then the duality mapping J is norm-to-weak uniformly continuous on bounded subsets of X. For further details of the geometry of Banach spaces, we refer to [3335].

Now, we present some lemmas which will be used in the sequel.

Lemma 2.1 [36]

Let X be a 2-uniformly smooth Banach space. Then

x + y 2 x 2 +2 y , J ( x ) +2 κ y 2 ,x,yX,

where κ is the 2-uniformly smooth constant of X.

The following lemma is an immediate consequence of the subdifferential inequality of the function 1 2 2 .

Lemma 2.2 [37]

Let X be a real Banach space X. Then, for all x,yX,

  1. (a)

    x + y 2 x 2 +2y,j(x+y), j(x+y)J(x+y);

  2. (b)

    x + y 2 x 2 +2y,j(x), j(x)J(x).

Lemma 2.3 [36]

Given a number r>0. A real Banach space X is uniformly convex if and only if there exists a continuous strictly increasing function g:[0,)[0,), g(0)=0, such that

λ x + ( 1 λ ) y 2 λ x 2 +(1λ) y 2 λ(1λ)g ( x y )

for all λ[0,1] and x,yX such that xr and yr.

Lemma 2.4 [38]

Let X be a uniformly convex Banach space and B r ={xX:xr}, r>0. Then there exists a continuous, strictly increasing, and convex function g:[0,][0,], g(0)=0 such that

α x + β y + γ z 2 α x 2 +β y 2 +γ z 2 αβg ( x y )

for all x,y,z B r and all α,β,γ[0,1] with α+β+γ=1.

Proposition 2.1 [22]

Let X be a real smooth and uniform convex Banach space and r>0. Then there exists a strictly increasing, continuous, and convex function g:[0,2r]R, g(0)=0 such that

g ( x y ) x 2 2 x , J ( y ) + y 2 ,x,y B r ,

where B r ={xX:xr}.

Lemma 2.5 [39]

Let C be a nonempty closed convex subset of a strictly convex Banach space X. Let { T n } n = 0 be a sequence of nonexpansive mappings from C into itself such that n = 0 Fix( T n ) is nonempty. Let { λ n } be a sequence of positive numbers with n = 0 λ n =1. Then a mapping S:CC defined by Sx= n = 0 λ n T n x, for all xC, is well defined and nonexpansive, and Fix(S)= n = 0 Fix( T n ).

Lemma 2.6 [40]

Let { x n } and { z n } be bounded sequences in a Banach space X and { β n } be a sequence of nonnegative numbers in [0,1] with 0< lim inf n β n lim sup n β n <1. Suppose that x n + 1 = β n x n +(1 β n ) z n for all integers n0 and lim sup n ( z n + 1 z n x n + 1 x n )0. Then lim n x n z n =0.

Lemma 2.7 [41]

Let { s n } be a sequence of nonnegative real numbers satisfying

s n + 1 (1 α n ) s n + α n β n + γ n ,n0,

where { α n }, { β n }, and { γ n } satisfy the conditions:

  1. (i)

    { α n }[0,1] and n = 0 α n =;

  2. (ii)

    lim sup n β n 0;

  3. (iii)

    γ n 0, n0, and n = 0 γ n <.

Then lim sup n s n =0.

A mapping T:CC is called nonexpansive if TxTyxy for every x,yC. The set of fixed points of T is denoted by Fix(T). A mapping A:CX is said to be

  1. (a)

    accretive if for each x,yC, there exists j(xy)J(xy) such that

    A x A y , j ( x y ) 0;
  2. (b)

    α-strongly accretive if for each x,yC, there exists j(xy)J(xy) such that

    A x A y , j ( x y ) α x y 2 ,for some α(0,1);
  3. (c)

    β-inverse strongly accretive if for each x,yC, there exists j(xy)J(xy) such that

    A x A y , j ( x y ) β A x A y 2 ,for some β>0;
  4. (d)

    λ-strictly pseudocontractive [18, 42] if for each x,yC, there exists j(xy)J(xy) such that

    A x A y , j ( x y ) x y 2 λ x y ( A x A y ) 2 ,for some λ(0,1).

It is worth to emphasize that the definition of the inverse strongly accretive mapping is based on that of the inverse strongly monotone mapping [43].

Lemma 2.8 [[20], Lemma 2.8]

Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space X and for each i=1,2, B i :CX be an α i -inverse strongly accretive mapping. Then, for each i=1,2,

( I μ i B i ) x ( I μ i B i ) y 2 x y 2 +2 μ i ( μ i κ 2 α i ) B i x B i y 2 ,x,yC,

where μ i >0. In particular, if 0< μ i α i κ 2 , then I μ i B i is nonexpansive for each i=1,2.

Let C be a nonempty closed convex subset of a Banach space X and T:CC be a nonexpansive mapping with Fix(T). For all t(0,1) and f Ξ C , let x t C be a unique fixed point of the contraction xtf(x)+(1t)Tx on C, that is,

x t =tf( x t )+(1t)T x t .

Lemma 2.9 [44, 45]

Let X be an uniformly smooth Banach space, or a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm. Let C be a nonempty closed convex subset of X, T:CC be a nonexpansive mapping with Fix(T), and f Ξ C . Then the net { x t } defined by x t =tf( x t )+(1t)T x t converges strongly to a point in Fix(T). If we define a mapping Q: Ξ C Fix(T) by Q(f):=s lim t 0 x t , f Ξ C , then Q(f) solves the VIP

( I f ) Q ( f ) , J ( Q ( f ) p ) 0,f Ξ C ,pFix(T).

Recall that a (possibly set-valued mapping) operator AX×X with domain D(A) and range R(A) in X is accretive if, for each x i D(A) and y i A x i (i=1,2), there exists a j( x 1 x 2 )J( x 1 x 2 ) such that y 1 y 2 ,j( x 1 x 2 )0. An accretive operator A is said to satisfy the range condition if D ( A ) ¯ R(I+rA) for all r>0. An accretive operator A is m-accretive if R(I+rA)=X for each r>0. If A is an accretive operator which satisfies the range condition, then we define a mapping J r :R(I+rA)D(A) by J r = ( I + r A ) 1 for each r>0, which is called the resolvent of A. It is well known that J r is nonexpansive and Fix( J r )= A 1 0 for all r>0. Therefore,

Fix( J r )= A 1 0= { z D ( A ) : 0 A z } .

If A 1 0, then the inclusion 0Az is solvable.

Proposition 2.2 (Resolvent Identity [46])

For λ>0, μ>0 and xX,

J λ x= J μ ( μ λ x + ( 1 μ λ ) J λ x ) .

Let D be a subset of C. A mapping Π:CD is said to be sunny if

Π [ Π ( x ) + t ( x Π ( x ) ) ] =Π(x),

whenever Π(x)+t(xΠ(x))C for all xC and t0. A mapping Π:CC is called a retraction if Π 2 =Π. If a mapping Π:CC is a retraction, then Π(z)=z for every zR(Π) where R(Π) is the range of Π. A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto D.

Lemma 2.10 [23]

Let C be a nonempty closed convex subset of a real smooth Banach space X, D be a nonempty subset of C and Π be a retraction of C onto D. Then the following statements are equivalent:

  1. (a)

    Π is sunny and nonexpansive;

  2. (b)

    Π ( x ) Π ( y ) 2 xy,J(Π(x)Π(y)), x,yC;

  3. (c)

    xΠ(x),J(yΠ(x))0, xC, yD.

It is well known that if X=H a Hilbert space, then a sunny nonexpansive retraction Π C is coincident with the metric projection from X onto C, that is, Π C = P C . If C is a nonempty closed convex subset of a strictly convex and uniformly smooth Banach space X and if T:CC is a nonexpansive mapping with the fixed point set Fix(T), then the set Fix(T) is a sunny nonexpansive retract of C.

Lemma 2.11 [[20], Lemma 2.9]

Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space X and Π C be a sunny nonexpansive retraction from X onto C. For each i=1,2, let B i :CX be an α i -inverse strongly accretive mapping and G:CC be defined by

Gx= Π C [ Π C ( x μ 2 B 2 x ) μ 1 B 1 Π C ( x μ 2 B 2 x ) ] ,xC.

If 0< μ i α i κ 2 for each i=1,2, then G:CC is nonexpansive.

Let f Ξ C with a contractive coefficient ρ(0,1), { T n } n = 0 be a sequence of nonexpansive self-mappings on C and { λ n } n = 0 be a sequence of nonnegative numbers in [0,1]. For any n0, a self-mapping W n on C defined by

{ U n , n + 1 = I , U n , n = λ n T n U n , n + 1 + ( 1 λ n ) I , U n , n 1 = λ n 1 T n 1 U n , n + ( 1 λ n 1 ) I , U n , k = λ k T k U n , k + 1 + ( 1 λ k ) I , U n , k 1 = λ k 1 T k 1 U n , k + ( 1 λ k 1 ) I , U n , 1 = λ 1 T 1 U n , 2 + ( 1 λ 1 ) I , W n = U n , 0 = λ 0 T 0 U n , 1 + ( 1 λ 0 ) I
(2.1)

is called W-mapping [47] generated by T n , T n 1 ,, T 0 and λ n , λ n 1 ,, λ 0 .

Lemma 2.12 [[37], Lemma 3.2]

Let C be a nonempty closed convex subset of a strictly convex Banach space X. Let { T n } n = 0 be a sequence of nonexpansive self-mappings on C such that n = 0 Fix( T n ) and { λ n } n = 0 be a sequence of positive numbers in (0,b] for some b(0,1). Then, for every xC and k0, the limit lim n U n , k x exists.

B using Lemma 2.12, we define a W-mapping W:CC generated by the sequences { T n } n = 0 and { λ n } n = 0 by

Wx= lim n W n x= lim n U n , 0 x,for every xC.

Throughout this paper, we assume that { λ n } n = 0 is a sequence of positive numbers in (0,b] for some b(0,1).

Lemma 2.13 [[37], Lemma 3.3]

Let C be a nonempty closed convex subset of a strictly convex Banach space X. Let { T n } n = 0 be a sequence of nonexpansive self-mappings on C such that n = 0 Fix( T n ) and let { λ n } n = 0 be a sequence of positive numbers in (0,b] for some b(0,1). Then Fix(W)= n = 0 Fix( T n ).

Let μ be a continuous linear functional on l and s=( a 0 , a 1 ,) l . We write μ n ( a n ) instead of μ(s). μ is called a Banach limit if μ satisfies μ= μ n (1)=1 and μ n ( a n + 1 )= μ n ( a n ) for all ( a 0 , a 1 ,) l . If μ is a Banach limit, then the following implications hold:

  1. (a)

    for all n0, a n c n implies μ n ( a n ) μ n ( c n );

  2. (b)

    μ n ( a n + r )= μ n ( a n ) for any fixed positive integer r;

  3. (c)

    lim inf n a n μ n ( a n ) lim sup n a n for all ( a 0 , a 1 ,) l .

Lemma 2.14 [48]

Let aR be a real number and a sequence { a n } l satisfy the condition μ n ( a n )a for all Banach limits μ. If lim sup n ( a n + r a n )0, then lim sup n a n a.

In particular, if r=1 in Lemma 2.14, then we obtain the following corollary.

Corollary 2.1 [49]

Let aR be a real number and a sequence { a n } l satisfy the condition μ n ( a n )a for all Banach limits μ. If lim sup n ( a n + 1 a n )0, then lim sup n a n a.

3 Formulations

Let C be a nonempty closed convex subset of a smooth Banach space X, B 1 , B 2 :CX be nonlinear mappings and μ 1 and μ 2 be two positive constants. The problem of system of variational inequalities (SVI) in the setting of a real smooth Banach space X is to find ( x , y )C×C such that

{ μ 1 B 1 y + x y , J ( x x ) 0 , x C , μ 2 B 2 x + y x , J ( x y ) 0 , x C .
(3.1)

The set of solutions of SVI (3.1) is denoted by SVI(C, B 1 , B 2 ). Very recently, Cai and Bu [20] constructed an iterative algorithm for solving SVI (3.1) and a common fixed point problem of an infinite family of nonexpansive mappings in a uniformly convex and 2-uniformly smooth Banach space. They studied the strong convergence of the proposed algorithm.

In particular, if X=H, a real Hilbert space, then SVI (3.1) reduces to the following problem of SVI of finding ( x , y )C×C such that

{ μ 1 B 1 y + x y , x x 0 , x C , μ 2 B 2 x + y x , x y 0 , x C .
(3.2)

Further, if B 1 = B 2 =A, where A:CX is an operator, and x = y , then the SVI (3.2) reduces to the classical variational inequality problem (VIP) of finding x C such that

A x , x x 0,xC.
(3.3)

The solution set of the VIP (3.3) is denoted by VI(C,A). For details and applications of theory of variational inequalities, we refer to [14] and the references therein.

Recently, Ceng et al. [10] transformed problem (3.2) into a fixed point problem in the following way.

Lemma 3.1 [10]

For given x ¯ , y ¯ C,( x ¯ , y ¯ ) is a solution of problem (3.2) if and only if x ¯ is a fixed point of the mapping G:CC defined by

G(x)= P C [ P C ( x μ 2 B 2 x ) μ 1 B 1 P C ( x μ 2 B 2 x ) ] ,xC,
(3.4)

where y ¯ = P C ( x ¯ μ 2 B 2 x ¯ ) and P C is the projection of H onto C.

In particular, if for each i=1,2, B i :CH is a β i -inverse strongly monotone mapping, then G is a nonexpansive mapping provided μ i (0,2 β i ) for each i=1,2.

In particular, whenever X is a real smooth Banach space, B 1 B 2 A and x = y , then SVI (3.1) reduces to the variational inequality problem (VIP) of finding x C such that

A x , J ( x x ) 0,xC,
(3.5)

which was considered by Aoyama et al. [17]. Note that VIP (3.5) is connected with the fixed point problem for nonlinear mapping [44], the problem of finding a zero point of a nonlinear operator [50] and so on. It is clear that VIP (3.5) extends VIP (3.3) from Hilbert spaces to Banach spaces. For further study on VIP in the setting of Banach spaces, we refer to [17, 21] and the references therein.

Define a mapping G:CC by

G(x):= Π C (I μ 1 B 1 ) Π C (I μ 2 B 2 )x,xC.
(3.6)

The fixed point set of G is denoted by Ω.

Lemma 3.2 Let C be a nonempty closed convex subset of a smooth Banach space X. Let Π C be a sunny nonexpansive retraction from X onto C and B 1 , B 2 :CX be nonlinear mappings. Then ( x , y )C×C is a solution of SVI (3.1) if and only if x = Π C ( y μ 1 B 1 y ), where y = Π C ( x μ 2 B 2 x ).

Proof We rewrite SVI (3.1) as

{ x ( y μ 1 B 1 y ) , J ( x x ) 0 , x C , y ( x μ 2 B 2 x ) , J ( x y ) 0 , x C ,

which is obviously equivalent to

{ x = Π C ( y μ 1 B 1 y ) , y = Π C ( x μ 2 B 2 x ) ,

because of Lemma 2.10. This completes the proof. □

In terms of Lemma 3.2, we observe that

x = Π C [ Π C ( x μ 2 B 2 x ) μ 1 B 1 Π C ( x μ 2 B 2 x ) ] ,

which implies that x is a fixed point of the mapping G.

Motivated and inspired by the research going on in this area, we introduce some relaxed and composite viscosity methods for finding a zero of an accretive operator AX×X such that D ( A ) ¯ C r > 0 R(I+rA), solving SVI (3.1) and the common fixed point problem of an infinite family { T n } of nonexpansive self-mappings on C. Our methods are based on Korpelevich’s extragradient method, the viscosity approximation method, and Mann’s iteration method. Under suitable assumptions, we derive some strong convergence theorems for relaxed and composite viscosity algorithms not only in the setting of uniformly convex and 2-uniformly smooth Banach space but also in a uniformly convex Banach space having a uniformly Gâteaux differentiable norm. The results presented in this paper improve, extend, supplement, and develop the corresponding results given in [10, 20, 24, 29, 48].

4 Relaxed viscosity algorithms and convergence criteria

In this section, we introduce relaxed viscosity algorithms in the setting of real smooth uniformly convex Banach spaces and study the strong convergence of the sequences generated by the proposed algorithms.

Throughout this paper, we denote by Ω the fixed point set of the mapping G= Π C (I μ 1 B 1 ) Π C (I μ 2 B 2 ).

Assumption 4.1 Let { α n }, { β n }, { γ n }, { δ n }, { σ n } be the sequences in (0,1) such that α n + β n + γ n + δ n =1 for all n0. Suppose that the following conditions hold:

  1. (i)

    lim n α n =0 and n = 0 α n =;

  2. (ii)

    { γ n },{ δ n }[c,d] for some c,d(0,1);

  3. (iii)

    lim n (| σ n σ n 1 |+| β n β n 1 |+| γ n γ n 1 |+| δ n δ n 1 |)=0;

  4. (iv)

    n = 1 | r n r n 1 |< and r n ε>0 for all n0;

  5. (v)

    0< lim inf n β n lim sup n β n <1 and 0< lim inf n σ n lim sup n σ n <1.

Theorem 4.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach space X. Let Π C be a sunny nonexpansive retraction from X onto C and AX×X be an accretive operator such that D ( A ) ¯ C r > 0 R(I+rA). For each i=1,2, let B i :CX be α i -inverse strongly accretive mapping and f:CC be a contraction with coefficient ρ(0,1). Let { T i } i = 0 be an infinite family of nonexpansive mappings from C into itself such that F:= i = 0 Fix( T i )Ω A 1 0 with 0< μ i < α i κ 2 for i=1,2. Assume that Assumption  4.1 holds. For arbitrarily given x 0 C, let { x n } be a sequence generated by

{ y n = σ n x n + ( 1 σ n ) J r n G x n , x n + 1 = α n f ( y n ) + β n x n + γ n W n y n + δ n J r n G y n , n 0 ,
(4.1)

where W n is the W-mapping generated by (2.1). Then

  1. (a)

    lim n x n + 1 x n =0;

  2. (b)

    the sequence { x n } n = 0 converges strongly to some qF which is a unique solution of the following variational inequality problem (VIP):

    ( I f ) q , J ( q p ) 0,pF,

provided β n β for some fixed β(0,1).

Proof We first claim that the sequence { x n } is bounded. Indeed, take a fixed pF arbitrarily. Then we get p=Gp, p= W n p, and p= J r n p for all n0. By Lemma 2.11, G is nonexpansive. Then, from (4.1), we have

y n p σ n x n p + ( 1 σ n ) J r n G x n p σ n x n p + ( 1 σ n ) G x n p σ n x n p + ( 1 σ n ) x n p = x n p
(4.2)

and

x n + 1 p α n f ( y n ) p + β n x n p + γ n W n y n p + δ n J r n G y n p α n ( f ( y n ) f ( p ) + f ( p ) p ) + β n x n p + γ n y n p + δ n G y n p α n ( ρ y n p + f ( p ) p ) + β n x n p + γ n y n p + δ n y n p α n ( ρ x n p + f ( p ) p ) + β n x n p + γ n x n p + δ n x n p = ( 1 α n ( 1 ρ ) ) x n p + α n ( 1 ρ ) f ( p ) p 1 ρ max { x n p , f ( p ) p 1 ρ } .

By induction, we obtain

x n pmax { x 0 p , f ( p ) p 1 ρ } ,n0.
(4.3)

Hence, { x n } is bounded, and so are the sequences { y n }, {G x n }, {G y n }, and {f( y n )}.

Next we show that

lim n x n + 1 x n =0.
(4.4)

We note that x n + 1 can be rewritten as follows:

x n + 1 = β n x n +(1 β n ) z n ,

where z n = α n f ( y n ) + γ n W n y n + δ n J r n G y n 1 β n . Observe that

z n z n 1 = α n f ( y n ) + γ n W n y n + δ n J r n G y n 1 β n α n 1 f ( y n 1 ) + γ n 1 W n 1 y n 1 + δ n 1 J r n 1 G y n 1 1 β n 1 = x n + 1 β n x n 1 β n x n β n 1 x n 1 1 β n 1 = x n + 1 β n x n 1 β n x n β n 1 x n 1 1 β n + x n β n 1 x n 1 1 β n x n β n 1 x n 1 1 β n 1 x n + 1 β n x n 1 β n x n β n 1 x n 1 1 β n + x n β n 1 x n 1 1 β n x n β n 1 x n 1 1 β n 1 = 1 1 β n x n + 1 β n x n ( x n β n 1 x n 1 ) + | 1 1 β n 1 1 β n 1 | x n β n 1 x n 1 = 1 1 β n x n + 1 β n x n ( x n β n 1 x n 1 ) + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 x n 1 = 1 1 β n × α n f ( y n ) + γ n W n y n + δ n J r n G y n α n 1 f ( y n 1 ) γ n 1 W n 1 y n 1 δ n 1 J r n 1 G y n 1 + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 x n 1 1 1 β n [ α n f ( y n ) f ( y n 1 ) + γ n W n y n W n 1 y n 1 + δ n J r n G y n J r n 1 G y n 1 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 x n 1 .
(4.5)

On the other hand, if r n 1 r n , using the resolvent identity in Proposition 2.2,

J r n x n = J r n 1 ( r n 1 r n x n + ( 1 r n 1 r n ) J r n x n ) ,

we get

J r n G x n J r n 1 G x n 1 = J r n 1 ( r n 1 r n G x n + ( 1 r n 1 r n ) J r n G x n ) J r n 1 G x n 1 r n 1 r n G x n G x n 1 + ( 1 r n 1 r n ) J r n G x n G x n 1 x n x n 1 + r n r n 1 r n J r n G x n G x n 1 x n x n 1 + 1 ε | r n r n 1 | J r n G x n G x n 1 .

If r n r n 1 , then it is easy to see that

J r n G x n J r n 1 G x n 1 x n 1 x n + 1 ε | r n 1 r n | J r n 1 G x n 1 G x n .

By combining the above cases, we obtain

J r n G x n J r n 1 G x n 1 x n 1 x n + | r n 1 r n | ε sup n 1 { J r n G x n G x n 1 + J r n 1 G x n 1 G x n } , n 1 .

Similarly, we have

J r n G y n J r n 1 G y n 1 y n 1 y n + | r n 1 r n | ε sup n 1 { J r n G y n G y n 1 + J r n 1 G y n 1 G y n } , n 1 .

Therefore, we obtain

{ J r n G x n J r n 1 G x n 1 x n 1 x n + | r n 1 r n | M 0 , J r n G y n J r n 1 G y n 1 y n 1 y n + | r n 1 r n | M 0 , n 1 ,
(4.6)

where

sup n 1 { 1 ε ( J r n G x n G x n 1 + J r n 1 G x n 1 G x n ) } M 0 ,

and

sup n 1 { 1 ε ( J r n G y n G y n 1 + J r n 1 G y n 1 G y n ) } M 0 ,

for some M 0 >0. Since T i and U n , i are nonexpansive, from (2.1), we deduce that for each n1

W n y n 1 W n 1 y n 1 = λ 0 T 0 U n , 1 y n 1 λ 0 T 0 U n 1 , 1 y n 1 W n y n 1 W n 1 y n 1 λ 0 U n , 1 y n 1 U n 1 , 1 y n 1 W n y n 1 W n 1 y n 1 = λ 0 λ 1 T 1 U n , 2 y n 1 λ 1 T 1 U n 1 , 2 y n 1 W n y n 1 W n 1 y n 1 λ 0 λ 1 U n , 2 y n 1 U n 1 , 2 y n 1 W n y n 1 W n 1 y n 1 W n y n 1 W n 1 y n 1 ( i = 0 n 1 λ i ) U n , n y n 1 U n 1 , n y n 1 W n y n 1 W n 1 y n 1 M i = 0 n 1 λ i , for some constant  M > 0 .
(4.7)

By simple computations, we obtain

y n y n 1 = σ n ( x n x n 1 ) + ( σ n σ n 1 ) ( x n 1 J r n 1 G x n 1 ) + ( 1 σ n ) ( J r n G x n J r n 1 G x n 1 ) .

It follows from (4.6) that

y n y n 1 σ n x n x n 1 + | σ n σ n 1 | x n 1 J r n 1 G x n 1 + ( 1 σ n ) J r n G x n J r n 1 G x n 1 σ n x n x n 1 + | σ n σ n 1 | x n 1 J r n 1 G x n 1 + ( 1 σ n ) [ x n 1 x n + | r n 1 r n | M 0 ] x n x n 1 + | σ n σ n 1 | x n 1 J r n 1 G x n 1 + | r n 1 r n | M 0 .
(4.8)

Taking into account that 0< lim inf n β n lim sup n β n <1, without loss of generality, we may assume that { β n }[ c ˆ , d ˆ ]. Utilizing (4.5)-(4.8), we have

z n z n 1 1 1 β n [ α n f ( y n ) f ( y n 1 ) + γ n W n y n W n 1 y n 1 + δ n J r n G y n J r n 1 G y n 1 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 x n 1 1 1 β n [ α n f ( y n ) f ( y n 1 ) + γ n W n y n W n y n 1 + δ n J r n G y n J r n 1 G y n 1 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 + γ n W n y n 1 W n 1 y n 1 ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 x n 1 1 1 β n [ α n ρ y n y n 1 + γ n y n y n 1 + δ n ( y n 1 y n + | r n 1 r n | M 0 ) + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 + γ n M i = 0 n 1 λ i ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 x n 1 = 1 1 β n [ ( 1 β n α n ( 1 ρ ) ) y n y n 1 + 1 1 β n [ δ n | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) ] + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 + γ n M i = 0 n 1 λ i ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) α n 1 f ( y n 1 ) + γ n 1 W n 1 y n 1 + J r n 1 G y n 1 = ( 1 α n ( 1 ρ ) 1 β n ) y n y n 1 + 1 1 β n [ δ n | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 + γ n M i = 0 n 1 λ i ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) α n 1 f ( y n 1 ) + γ n 1 W n 1 y n 1 + J r n 1 G y n 1 y n y n 1 + 1 1 β n [ δ n | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 + γ n M i = 0 n 1 λ i ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) α n 1 f ( y n 1 ) + γ n 1 W n 1 y n 1 + J r n 1 G y n 1 x n x n 1 + | σ n σ n 1 | x n 1 J r n 1 G x n 1 + | r n 1 r n | M 0 + 1 1 β n [ δ n | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 + γ n M i = 0 n 1 λ i ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) α n 1 f ( y n 1 ) + γ n 1 W n 1 y n 1 + δ n 1 J r n 1 G y n 1 x n x n 1 + [ | σ n σ n 1 | + | α n α n 1 | + | β n β n 1 | + | γ n γ n 1 | + | δ n δ n 1 | + i = 0 n 1 λ i ] M 1 ,
(4.9)

where sup n 0 { 1 ( 1 d ˆ ) 2 (f( y n )+ W n y n + J r n G y n + x n J r n G x n +M+2 M 0 )} M 1 for some M 1 >0. Thus, it follows from (4.9) and conditions (i), (iii), (iv) that

lim n ( z n z n 1 x n x n 1 ) 0.

Since 0< lim inf n β n lim sup n β n <1, by Lemma 2.6, we get

lim n x n z n =0.

Consequently,

lim n x n + 1 x n = lim n (1 β n ) z n x n =0.

Now we show that x n G x n 0 as n. Indeed, by Lemma 2.3 and (4.1), we get

y n p 2 = σ n ( x n p ) + ( 1 σ n ) ( J r n G x n p ) 2 σ n x n p 2 + ( 1 σ n ) J r n G x n p 2 σ n ( 1 σ n ) g ( x n J r n G x n ) σ n x n p 2 + ( 1 σ n ) x n p 2 σ n ( 1 σ n ) g ( x n J r n G x n ) = x n p 2 σ n ( 1 σ n ) g ( x n J r n G x n ) .
(4.10)

By Lemma 2.2(a), (4.1), and (4.10), we obtain

x n + 1 p 2 = α n ( f ( y n ) f ( p ) ) + β n ( x n p ) + γ n ( W n y n p ) + δ n ( J r n G y n p ) + α n ( f ( p ) p ) 2 α n ( f ( y n ) f ( p ) ) + β n ( x n p ) + γ n ( W n y n p ) + δ n ( J r n G y n p ) 2 + 2 α n f ( p ) p , J ( x n + 1 p ) α n f ( y n ) f ( p ) 2 + β n x n p 2 + γ n W n y n p 2 + δ n J r n G y n p 2 + 2 α n f ( p ) p , J ( x n + 1 p ) α n ρ 2 y n p 2 + β n x n p 2 + γ n y n p 2 + δ n G y n p 2 + 2 α n f ( p ) p , J ( x n + 1 p ) α n ρ y n p 2 + β n x n p 2 + γ n y n p 2 + δ n y n p 2 + 2 α n f ( p ) p , J ( x n + 1 p ) = ( 1 β n α n ( 1 ρ ) ) y n p 2 + β n x n p 2 + 2 α n f ( p ) p , J ( x n + 1 p ) ( 1 β n α n ( 1 ρ ) ) [ x n p 2 σ n ( 1 σ n ) g ( x n J r n G x n ) ] + β n x n p 2 + 2 α n f ( p ) p , J ( x n + 1 p ) = ( 1 α n ( 1 ρ ) ) x n p 2 ( 1 β n α n ( 1 ρ ) ) σ n ( 1 σ n ) g ( x n J r n G x n ) + 2 α n f ( p ) p , J ( x n + 1 p ) x n p 2 ( 1 β n α n ( 1 ρ ) ) σ n ( 1 σ n ) g ( x n J r n G x n ) + 2 α n f ( p ) p x n + 1 p ,

and thus

( 1 β n α n ( 1 ρ ) ) σ n ( 1 σ n ) g ( x n J r n G x n ) x n p 2 x n + 1 p 2 + 2 α n f ( p ) p x n + 1 p ( x n p + x n + 1 p ) x n x n + 1 + 2 α n f ( p ) p x n + 1 p .

Since α n 0 and x n + 1 x n 0, from condition (v) and the boundedness of { x n }, it follows that

lim n g ( x n J r n G x n ) =0.

Utilizing the properties of g, we have

lim n x n J r n G x n =0,
(4.11)

and thus,

lim n y n x n = lim n (1 σ n ) J r n G x n x n =0.
(4.12)

For simplicity, we put q= Π C (p μ 2 B 2 p), u n = Π C ( x n μ 2 B 2 x n ) and v n = Π C ( u n μ 1 B 1 u n ). Then v n =G x n for all n0. From Lemma 2.8, we have

u n q 2 = Π C ( x n μ 2 B 2 x n ) Π C ( p μ 2 B 2 p ) 2 x n p μ 2 ( B 2 x n B 2 p ) 2 x n p 2 2 μ 2 ( α 2 κ 2 μ 2 ) B 2 x n B 2 p 2 ,
(4.13)

and

v n p 2 = Π C ( u n μ 1 B 1 u n ) Π C ( q μ 1 B 1 q ) 2 u n q μ 1 ( B 1 u n B 1 q ) 2 u n q 2 2 μ 1 ( α 1 κ 2 μ 1 ) B 1 u n B 1 q 2 .
(4.14)

By combining (4.13) and (4.14), we obtain

v n p 2 x n p 2 2 μ 2 ( α 2 κ 2 μ 2 ) B 2 x n B 2 p 2 2 μ 1 ( α 1 κ 2 μ 1 ) B 1 u n B 1 q 2 .
(4.15)

By the convexity of 2 , we have, from (4.1) and (4.15),

y n p 2 σ n x n p 2 + ( 1 σ n ) J r n G x n p 2 σ n x n p 2 + ( 1 σ n ) v n p 2 σ n x n p 2 + ( 1 σ n ) [ x n p 2 2 μ 2 ( α 2 κ 2 μ 2 ) B 2 x n B 2 p 2 2 μ 1 ( α 1 κ 2 μ 1 ) B 1 u n B 1 q 2 ] = x n p 2 2 ( 1 σ n ) [ μ 2 ( α 2 κ 2 μ 2 ) B 2 x n B 2 p 2 + μ 1 ( α 1 κ 2 μ 1 ) B 1 u n B 1 q 2 ] ,

and thus

2 ( 1 σ n ) [ μ 2 ( α 2 κ 2 μ 2 ) B 2 x n B 2 p 2 + μ 1 ( α 1 κ 2 μ 1 ) B 1 u n B 1 q 2 ] x n p 2 y n p 2 ( x n p + y n p ) x n y n .

Since x n y n 0 and 0< μ i < α i κ 2 for i=1,2, and { x n } and { y n } are bounded, we obtain from condition (v) that

lim n B 2 x n B 2 p=0and lim n B 1 u n B 1 q=0.
(4.16)

Utilizing Proposition 2.2 and Lemma 2.10, we have

u n q 2 = Π C ( x n μ 2 B 2 x n ) Π C ( p μ 2 B 2 p ) 2 x n μ 2 B 2 x n ( p μ 2 B 2 p ) , J ( u n q ) = x n p , J ( u n q ) + μ 2 B 2 p B 2 x n , J ( u n q ) 1 2 [ x n p 2 + u n q 2 g 1 ( x n u n ( p q ) ) ] + μ 2 B 2 p B 2 x n u n q ,

which implies that

u n q 2 x n p 2 g 1 ( x n u n ( p q ) ) +2 μ 2 B 2 p B 2 x n u n q.
(4.17)

In the same way, we derive

v n p 2 = Π C ( u n μ 1 B 1 u n ) Π C ( q μ 1 B 1 q ) 2 u n μ 1 B 1 u n ( q μ 1 B 1 q ) , J ( v n p ) = u n q , J ( v n p ) + μ 1 B 1 q B 1 u n , J ( v n p ) 1 2 [ u n q 2 + v n p 2 g 2 ( u n v n + ( p q ) ) ] + μ 1 B 1 q B 1 u n v n p ,

and we get

v n p 2 u n q 2 g 2 ( u n v n + ( p q ) ) +2 μ 1 B 1 q B 1 u n v n p.
(4.18)

Combining (4.17) and (4.18), we get

v n p 2 x n p 2 g 1 ( x n u n ( p q ) ) g 2 ( u n v n + ( p q ) ) + 2 μ 2 B 2 p B 2 x n u n q + 2 μ 1 B 1 q B 1 u n v n p .
(4.19)

By the convexity of 2 , we have, from (4.1) and (4.19),

y n p 2 σ n x n p 2 + ( 1 σ n ) J r n G x n p 2 σ n x n p 2 + ( 1 σ n ) v n p 2 σ n x n p 2 + ( 1 σ n ) [ x n p 2 g 1 ( x n u n ( p q ) ) g 2 ( u n v n + ( p q ) ) + 2 μ 2 B 2 p B 2 x n u n q + 2 μ 1 B 1 q B 1 u n v n p ] x n p 2 ( 1 σ n ) [ g 1 ( x n u n ( p q ) ) + g 2 ( u n v n + ( p q ) ) ] + 2 μ 2 B 2 p B 2 x n u n q + 2 μ 1 B 1 q B 1 u n v n p ,

and hence

( 1 σ n ) [ g 1 ( x n u n ( p q ) ) + g 2 ( u n v n + ( p q ) ) ] x n p 2 y n p 2 + 2 μ 2 B 2 p B 2 x n u n q + 2 μ 1 B 1 q B 1 u n v n p ( x n p + y n p ) x n y n + 2 μ 2 B 2 p B 2 x n u n q + 2 μ 1 B 1 q B 1 u n v n p .

From (4.12), (4.16), condition (v), and the boundedness of { x n }, { y n }, { u n }, and { v n }, we deduce

lim n g 1 ( x n u n ( p q ) ) =0and lim n g 2 ( u n v n + ( p q ) ) =0.

Utilizing the properties of g 1 and g 2 , we obtain

lim n x n u n ( p q ) =0and lim n u n v n + ( p q ) =0.
(4.20)

Hence,

x n v n x n u n ( p q ) + u n v n + ( p q ) 0as n,

that is,

lim n x n G x n =0.
(4.21)

Next, we show that

lim n J r n x n x n =0and lim n W n x n x n =0.

Indeed, observe that x n + 1 can be rewritten as

x n + 1 = α n f ( y n ) + β n x n + γ n W n y n + δ n J r n G y n = α n f ( y n ) + β n x n + ( γ n + δ n ) γ n W n y n + δ n J r n G y n γ n + δ n = α n f ( y n ) + β n x n + e n z ˆ n ,
(4.22)

where e n = γ n + δ n and z ˆ n = γ n W n y n + δ n J r n G y n γ n + δ n . Utilizing Lemma 2.4 and (4.22), we have

x n + 1 p 2 = α n ( f ( y n ) p ) + β n ( x n p ) + e n ( z ˆ n p ) 2 α n f ( y n ) p 2 + β n x n p 2 + e n z ˆ n p 2 β n e n g 3 ( z ˆ n x n ) = α n f ( y n ) p 2 + β n x n p 2 β n e n g 3 ( z ˆ n x n ) + e n γ n W n y n + δ n J r n G y n γ n + δ n p 2 = α n f ( y n ) p 2 + β n x n p 2 β n e n g 3 ( z ˆ n x n ) + e n γ n γ n + δ n ( W n y n p ) + δ n γ n + δ n ( J r n G y n p ) 2 α n f ( y n ) p 2 + β n x n p 2 β n e n g 3 ( z ˆ n x n ) + e n [ γ n γ n + δ n W n y n p 2 + δ n γ n + δ n J r n G y n p 2 ] α n f ( y n ) p 2 + β n x n p 2 β n e n g 3 ( z ˆ n x n ) + e n [ γ n γ n + δ n y n p + δ n γ n + δ n y n p 2 ] α n f ( y n ) p 2 + β n x n p 2 β n e n g 3 ( z ˆ n x n ) + e n [ γ n γ n + δ n x n p + δ n γ n + δ n x n p 2 ] = α n f ( y n ) p 2 + ( 1 α n ) x n p 2 β n e n g 3 ( z ˆ n x n ) α n f ( y n ) p 2 + x n p 2 β n e n g 3 ( z ˆ n x n ) ,

which implies that

β n e n g 3 ( z ˆ n x n ) α n f ( y n ) p 2 + x n p 2 x n + 1 p 2 α n f ( y n ) p 2 + ( x n p + x n + 1 p ) x n x n + 1 .

Utilizing (4.4), conditions (i), (ii), (v), and the boundedness of { x n } and {f( y n )}, we obtain

lim n g 3 ( z ˆ n x n ) =0.

From the properties of g 3 , we have

lim n z ˆ n x n =0.

Utilizing Lemma 2.3 and the definition of z ˆ n , we have

z ˆ n p 2 = γ n W n y n + δ n J r n G y n γ n + δ n p 2 = γ n γ n + δ n ( W n y n p ) + δ n γ n + δ n ( J r n G y n p ) 2 γ n γ n + δ n W n y n p 2 + δ n γ n + δ n J r n G y n p 2 γ n δ n ( γ n + δ n ) 2 g 4 ( J r n G y n W n y n ) y n p 2 γ n δ n ( γ n + δ n ) 2 g 4 ( J r n G y n W n y n ) x n p 2 γ n δ n ( γ n + δ n ) 2 g 4 ( J r n G y n W n y n ) ,

and thus

γ n δ n ( γ n + δ n ) 2 g 4 ( J r n G y n W n y n ) x n p 2 z ˆ n p 2 ( x n p + z ˆ n p ) x n z ˆ n .

Since { x n } and { z ˆ n } are bounded and z ˆ n x n 0 as n, we deduce from condition (ii) that

lim n g 4 ( W n y n J r n G y n ) =0.

From the properties of g 4 , we have

lim n W n y n J r n G y n =0.
(4.23)

On the other hand, x n + 1 can also be rewritten as

x n + 1 = α n f ( y n ) + β n x n + γ n W n y n + δ n J r n G y n = β n x n + γ n W n y n + ( α n + δ n ) α n f ( y n ) + δ n J r n G y n α n + δ n = β n x n + γ n W n y n + d n z ˜ n ,

where d n = α n + δ n and z ˜ n = α n f ( y n ) + δ n J r n G y n α n + δ n . Utilizing Lemma 2.4 and the convexity of 2 , we have

x n + 1 p 2 = β n ( x n p ) + γ n ( W n y n p ) + d n ( z ˜ n p ) 2 β n x n p 2 + γ n W n y n p 2 + d n z ˜ n p 2 β n γ n g 5 ( x n W n y n ) = β n x n p 2 + γ n W n y n p 2 + d n α n f ( y n ) + δ n J r n G y n α n + δ n p 2 β n γ n g 5 ( x n W n y n ) = β n x n p 2 + γ n W n y n p 2 + d n α n α n + δ n ( f ( y n ) p ) + δ n α n + δ n ( J r n G y n p ) 2 β n γ n g 5 ( x n W n y n ) β n x n p 2 + γ n y n p 2 + d n [ α n α n + δ n f ( y n ) p 2 + δ n α n + δ n J r n G y n p 2 ] β n γ n g 5 ( x n W n y n ) β n x n p 2 + γ n y n p 2 + d n [ α n α n + δ n f ( y n ) p 2 + δ n α n + δ n y n p 2 ] β n γ n g 5 ( x n W n y n ) α n f ( y n ) p 2 + ( β n + γ n ) x n p 2 + δ n x n p 2 β n γ n g 5 ( x n W n y n ) = α n f ( y n ) p 2 + ( 1 α n ) x n p 2 β n γ n g 5 ( x n W n y n ) α n f ( y n ) p 2 + x n p 2 β n γ n g 5 ( x n W n y n ) ,

which implies that

β n γ n g 5 ( x n W n y n ) α n f ( y n ) p 2 + x n p 2 x n + 1 p 2 α n f ( y n ) p 2 + ( x n p + x n + 1 p ) x n x n + 1 .

From (4.4), conditions (i), (ii), (v), and the boundedness of { x n } and {f( y n )}, we have

lim n g 5 ( x n W n y n ) =0.

Utilizing the properties of g 5 , we have

lim n x n W n y n =0,
(4.24)

which together with (4.12) and (4.24), implies that

x n W n x n x n W n y n + W n y n W n x n x n W n y n + y n x n 0 as  n ,

that is,

lim n x n W n x n =0.
(4.25)

We note that

x n J r n x n x n W n y n + W n y n J r n G y n + J r n G y n J r n G x n + J r n G x n J r n x n x n W n y n + W n y n J r n G y n + y n x n + G x n x n .

Thus, from (4.12), (4.21), (4.23), and (4.24), it follows that

lim n x n J r n x n =0.
(4.26)

Now, we claim that lim n x n J r x n =0 for a fixed number r such that ε>r>0. In fact, using the resolvent identity in Proposition 2.2, we have

J r n x n J r x n = J r ( r r n x n + ( 1 r r n ) J r n x n ) J r x n ( 1 r r n ) x n J r n x n x n J r n x n .
(4.27)

Thus, from (4.26) and (4.27), we get

x n J r x n x n J r n x n + J r n x n J r x n x n J r n x n + x n J r n x n = 2 x n J r n x n 0 as  n ,

that is,

lim n x n J r x n =0.
(4.28)

Suppose that β n β for some fixed β,γ(0,1) such that α n +β+ γ n + δ n =1 for all n0. Define a mapping Vx=(1 θ 1 θ 2 ) J r x+ θ 1 Wx+ θ 2 Gx, where θ 1 , θ 2 (0,1) are two constants with θ 1 + θ 2 <1. Then, by Lemmas 2.5 and 2.13, we have Fix(V)=Fix( J r )Fix(W)Fix(G)=F. For each k1, let { p k } be a unique element of C such that

p k = 1 k f( p k )+ ( 1 1 k ) V p k .

From Lemma 2.9, we conclude that p k qFix(V)=F as k. Observe that for every n, k

x n + 1 W p k = α n ( f ( y n ) W p k ) + β ( x n W p k ) + γ n ( W n y n W p k ) + δ n ( J r n G y n W p k ) α n f ( y n ) W p k + β x n W p k + γ n W n y n W p k + δ n ( J r n G y n W n y n + W n y n W p k ) = α n f ( y n ) W p k + β x n W p k + ( γ n + δ n ) W n y n W p k + δ n J r n G y n W n y n = α n f ( y n ) W p k + β x n W p k + ( 1 α n β ) W n y n W p k + δ n J r n G y n W n y n α n f ( y n ) W p k + β x n W p k + ( 1 α n β ) [ W n y n W n p k + W n p k W p k ] + δ n J r n G y n W n y n α n f ( y n ) W p k + β x n W p k + ( 1 α n β ) [ y n p k + W n p k W p k ] + δ n J r n G y n W n y n α n f ( y n ) W p k + β x n W p k + ( 1 β ) [ x n p k + y n x n + W n p k W p k ] + δ n J r n G y n W n y n = Δ n + β x n W p k + ( 1 β ) x n p k ,
(4.29)

where Δ n = α n f( y n )W p k +(1β)[ y n x n + W n p k W p k ]+ δ n J r n G y n W n y n . Since lim n α n = lim n y n x n = lim n W n p k W p k = lim n J r n G y n W n y n =0, we know that Δ n 0 as n.

From (4.29), we obtain

x n + 1 W p k 2 ( β x n W p k + ( 1 β ) x n p k ) 2 + Δ n [ 2 ( β x n W p k + ( 1 β ) x n p k ) + Δ n ] = β 2 x n W p k 2 + ( 1 β ) 2 x n p k 2 + 2 β ( 1 β ) x n W p k x n p k + τ n β 2 x n W p k 2 + ( 1 β ) 2 x n p k 2 + β ( 1 β ) ( x n W p k 2 + x n p k 2 ) + τ n = β x n W p k 2 + ( 1 β ) x n p k 2 + τ n ,
(4.30)

where τ n = Δ n [2(β x n W p k +(1β) x n p k )+ Δ n ]0 as n.

For any Banach limit μ, from (4.30), we have

μ n x n W p k 2 = μ n x n + 1 W p k 2 μ n x n p k 2 .
(4.31)

In addition, note that

x n G p k 2 x n G x n + G x n G p k 2 ( x n G x n + x n p k ) 2 = x n p k 2 + x n G x n ( 2 x n p k + x n G x n ) ,

and

x n J r p k 2 x n J r x n + J r x n J r p k 2 ( x n J r x n + x n p k ) 2 = x n p k 2 + x n J r x n ( 2 x n p k + x n J r x n ) .

It is easy to see from (4.21) and (4.28) that

μ n x n G p k 2 μ n x n p k 2 and μ n x n J r p k 2 μ n x n p k 2 .
(4.32)

Utilizing (4.31) and (4.32), we have

μ n x n V p k 2 = μ n ( 1 θ 1 θ 2 ) ( x n J r p k ) + θ 1 ( x n W p k ) + θ 2 ( x n G p k ) 2 ( 1 θ 1 θ 2 ) μ n x n J r p k 2 + θ 1 μ n x n W p k 2 + θ 2 μ n x n G p k 2 μ n x n p k 2 .
(4.33)

Also, observe that

x n p k = 1 k ( x n f ( p k ) ) + ( 1 1 k ) ( x n V p k ),

that is,

( 1 1 k ) ( x n V p k )= x n p k 1 k ( x n f ( p k ) ) .
(4.34)

It follows from Lemma 2.2(ii) and (4.34) that

( 1 1 k ) 2 x n V p k 2 x n p k 2 2 k x n p k + p k f ( p k ) , J ( x n p k ) = ( 1 2 k ) x n p k 2 + 2 k f ( p k ) p k , J ( x n p k ) .
(4.35)

So by (4.33) and (4.35), we have

( 1 1 k ) 2 μ n x n p k 2 ( 1 2 k ) μ n x n p k 2 + 2 k μ n f ( p k ) p k , J ( x n p k ) ,

and hence,

1 k 2 μ n x n p k 2 2 k μ n f ( p k ) p k , J ( x n p k ) .

This implies that

1 2 k μ n x n p k 2 μ n f ( p k ) p k , J ( x n p k ) .
(4.36)

Since p k qFix(V)=F as k, by the uniform Fréchet differentiability of the norm of X, we have

μ n f ( q ) q , J ( x n q ) 0.

On the other hand, from (4.4) and the norm-to-norm uniform continuity of J on bounded subsets of X, we have

lim n | f ( q ) q , J ( x n + 1 q ) f ( q ) q , J ( x n q ) | =0.
(4.37)

Utilizing Lemma 2.14, we deduce from (4.36) and (4.37) that

lim sup n f ( q ) q , J ( x n q ) 0.

Finally, we show that x n q as n. It is easy to see from (4.1) that

y n q 2 σ n x n q 2 +(1 σ n ) J r n G x n q 2 x n q 2 .

Utilizing Lemma 2.2(a), from (4.1) and the convexity of 2 we get

x n + 1 q 2 = α n ( f ( y n ) f ( q ) ) + β n ( x n q ) + γ n ( W n y n q ) + δ n ( J r n G y n q ) + α n ( f ( q ) q ) 2 α n ( f ( y n ) f ( q ) ) + β n ( x n q ) + γ n ( W n y n q ) + δ n ( J r n G y n q ) 2 + 2 α n f ( q ) q , J ( x n + 1 q ) α n f ( y n ) f ( q ) 2 + β n x n q 2 + γ n W n y n q 2 + δ n J r n G y n q 2 + 2 α n f ( q ) q , J ( x n + 1 q ) α n ρ y n q 2 + β n x n q 2 + γ n y n q 2 + δ n y n q 2 + 2 α n f ( q ) q , J ( x n + 1 q ) α n ρ x n q 2 + β n x n q 2 + γ n x n q 2 + δ n x n q 2 + 2 α n f ( q ) q , J ( x n + 1 q ) = ( 1 α n ( 1 ρ ) ) x n q 2 + 2 α n f ( q ) q , J ( x n + 1 q ) = ( 1 α n ( 1 ρ ) ) x n q 2 + α n ( 1 ρ ) 2 f ( q ) q , J ( x n + 1 q ) 1 ρ .
(4.38)

Applying Lemma 2.7 to (4.38), we obtain x n q as n. This completes the proof. □

Corollary 4.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach space X and Π C be a sunny nonexpansive retraction from X onto C. Let AX×X be an accretive operator such that D ( A ) ¯ C r > 0 R(I+rA). Let V:CC be α-strictly pseudocontractive mapping and f:CC be a contraction with coefficient ρ(0,1). Let { T i } i = 0 be an infinite family of nonexpansive mappings from C into itself such that F= i = 0 Fix( T i )Fix(V) A 1 0. Suppose that Assumption  4.1 holds. For arbitrarily given x 0 C, let { x n } be the sequence generated by

{ y n = σ n x n + ( 1 σ n ) J r n ( ( 1 l ) I + l V ) x n , x n + 1 = α n f ( y n ) + β n x n + γ n W n y n + δ n J r n ( ( 1 l ) I + l V ) y n , n 0 ,
(4.39)

where 0<l< α κ 2 , W n is the W-mapping generated by (2.1). Then

  1. (a)

    lim n x n + 1 x n =0;

  2. (b)

    the sequence { x n } n = 0 converges strongly to some qF which is a unique solution of the following variational inequality problem (VIP):

    ( I f ) q , J ( q p ) 0,pF,

provided β n β for some fixed β(0,1).

Proof In Theorem 4.1, we put B 1 =IV, B 2 =0 and μ 1 =l where 0<l< α κ 2 . Then SVI (3.1) is equivalent to the VIP of finding x C such that

B 1 x , J ( x x ) 0,xC.

In this case, B 1 :CX is α-inverse strongly accretive. It is not hard to see that Fix(V)=VI(C, B 1 ). Indeed, for l>0, we have

u VI ( C , B 1 ) B 1 u , J ( y u ) 0 y C u l B 1 u u , J ( u y ) 0 y C u = Π C ( u l B 1 u ) u = Π C ( u l u + l V u ) u l u + l V u u , J ( u y ) 0 y C u V u , J ( u y ) 0 y C u = V u u Fix ( V ) .

Accordingly, we have F= i = 0 Fix( T i )Ω A 1 0= i = 0 Fix( T i )Fix(V) A 1 0, and

Π C (I μ 1 B 1 ) Π C (I μ 2 B 2 ) x n = Π C (I μ 1 B 1 ) x n = Π C ( ( 1 l ) x n + l V x n ) = ( ( 1 l ) I + l V ) x n .

Similarly, we get

Π C (I μ 1 B 1 ) Π C (I μ 2 B 2 ) y n = ( ( 1 l ) I + l V ) y n .

So, the scheme (4.1) reduces to (4.39), and therefore, the desired result follows from Theorem 4.1. □

We give the following important lemmas which will be used in our next result.

Lemma 4.1 Let C be a nonempty closed convex subset of a smooth Banach space X and B i :CX be λ i -strictly pseudocontractive mappings and α i -strongly accretive with α i + λ i 1 for i=1,2. Then, for μ i (0,1],

( I μ i B i ) x ( I μ i B i ) y { 1 α i λ i + ( 1 μ i ) ( 1 + 1 λ i ) } xy,x,yC,

for i=1,2. In particular, if 1 λ i 1 + λ i (1 1 α i λ i ) μ i 1, then I μ i B i is nonexpansive for i=1,2.

Proof Using the λ i -strict pseudocontractivity of B i , we derive for every x,yC

λ i ( I B i ) x ( I B i ) y 2 ( I B i ) x ( I B i ) y , J ( x y ) ( I B i ) x ( I B i ) y x y ,

which implies that

( I B i ) x ( I B i ) y 1 λ i xy.

Hence,

B i x B i y ( I B i ) x ( I B i ) y + x y ( 1 + 1 λ i ) x y .

Utilizing the α i -strong accretivity and λ i -strict pseudocontractivity of B i , we get

λ i ( I B i ) x ( I B i ) y 2 x y 2 B i x B i y , J ( x y ) ( 1 α i ) x y 2 .

So, we have

( I B i ) x ( I B i ) y 1 α i λ i xy.

Therefore, for μ i (0,1], we have

( I μ i B i ) x ( I μ i B i ) y ( I B i ) x ( I B i ) y + ( 1 μ i ) B i x B i y 1 α i λ i x y + ( 1 μ i ) ( 1 + 1 λ i ) x y = { 1 α i λ i + ( 1 μ i ) ( 1 + 1 λ i ) } x y .

Since 1 λ i 1 + λ i (1 1 α i λ i ) μ i 1, it follows that

1 α i λ i +(1 μ i ) ( 1 + 1 λ i ) 1.

This implies that I μ i B i is nonexpansive for i=1,2. □

Lemma 4.2 Let C be a nonempty closed convex subset of a smooth Banach space X and Π C be a sunny nonexpansive retraction from X onto C. For each i=1,2, let B i :CX be λ i -strictly pseudocontractive and α i -strongly accretive with α i + λ i 1. Let G:CC be the mapping defined by

G(x)= Π C [ Π C ( x μ 2 B 2 x ) μ 1 B 1 Π C ( x μ 2 B 2 x ) ] ,xC.

If 1 λ i 1 + λ i (1 1 α i λ i ) μ i 1, then G:CC is nonexpansive.

Proof By Lemma 4.1, I μ i B i is nonexpansive for i=1,2. Therefore, for all x,yC, we have

G ( x ) G ( y ) = Π C [ Π C ( x μ 2 B 2 x ) μ 1 B 1 Π C ( x μ 2 B 2 x ) ] Π C [ Π C ( y μ 2 B 2 y ) μ 1 B 1 Π C ( y μ 2 B 2 y ) ] = Π C ( I μ 1 B 1 ) Π C ( I μ 2 B 2 ) x Π C ( I μ 1 B 1 ) Π C ( I μ 2 B 2 ) y ( I μ 1 B 1 ) Π C ( I μ 2 B 2 ) x ( I μ 1 B 1 ) Π C ( I μ 2 B 2 ) y Π C ( I μ 2 B 2 ) x Π C ( I μ 2 B 2 ) y ( I μ 2 B 2 ) x ( I μ 2 B 2 ) y x y .

This shows that G:CC is nonexpansive. This completes the proof. □

Theorem 4.2 Let C be a nonempty closed convex subset of a uniformly convex Banach space X which has a uniformly Gâteaux differentiable norm. Let Π C be a sunny nonexpansive retraction from X onto C and AX×X be an accretive operator in X such that D ( A ) ¯ C r > 0 R(I+rA). For each i=1,2, let B i :CX be λ i -strictly pseudocontractive and α i -strongly accretive with α i + λ i 1 and f:CC be a contraction with coefficient ρ(0,1). Let { T i } i = 0 be an infinite family of nonexpansive mappings from C into itself such that F= i = 0 Fix( T i )Ω A 1 0 with 1 λ i 1 + λ i (1 1 α i λ i ) μ i 1 for i=1,2. For arbitrarily given x 0 C, let { x n } be the sequence generated by

{ y n = σ n G x n + ( 1 σ n ) J r n G x n , x n + 1 = α n f ( y n ) + β n y n + γ n W n y n + δ n J r n G y n , n 0 ,
(4.40)

where W n is the W-mapping generated by (2.1). Assume that Assumption  4.1 holds except condition (iii), which is replaced by the following condition:

  1. (iii)

    n = 1 (| σ n σ n 1 |+| α n α n 1 |+| β n β n 1 |+| γ n γ n 1 |+| δ n δ n 1 |)<.

Then

  1. (a)

    lim n x n + 1 x n =0;

  2. (b)

    the sequence { x n } n = 0 converges strongly to some qF which is the unique solution of the following variational inequality problem (VIP):

    ( I f ) q , J ( q p ) 0,pF,

provided β n β for some fixed β(0,1).

Proof Take a fixed pF arbitrarily. Then we obtain p=Gp, p= W n p and J r n p=p for all n0. By using Lemma 4.2 and the same argument as in the proof beginning of the proof of Theorem 4.1, we have { x n }, { y n }, {G x n }, {G y n }, {f( y n )} are bounded sequences. Let us show that x n + 1 x n 0 as n. In fact, repeating the same argument as those in the proof of Theorem 4.1, we obtain

{ J r n G x n J r n 1 G x n 1 x n 1 x n + | r n 1 r n | M 0 , J r n G y n J r n 1 G y n 1 y n 1 y n + | r n 1 r n | M 0 , n 1 ,
(4.41)

where

sup n 1 { 1 ε ( J r n G x n G x n 1 + J r n 1 G x n 1 G x n ) } M 0

and

sup n 1 { 1 ε ( J r n G y n G y n 1 + J r n 1 G y n 1 G y n ) } M 0 ,

for some M 0 >0. By (4.40) and simple calculations, we have

y n y n 1 = σ n ( G x n G x n 1 ) + ( σ n σ n 1 ) ( G x n 1 J r n 1 G x n 1 ) + ( 1 α n ) ( J r n G x n J r n 1 G x n 1 ) .

It follows that

y n y n 1 σ n G x n G x n 1 + | σ n σ n 1 | G x n 1 J r n 1 G x n 1 + ( 1 α n ) J r n G x n J r n 1 G x n 1 σ n x n x n 1 + | σ n σ n 1 | G x n 1 J r n 1 G x n 1 + ( 1 σ n ) ( x n 1 x n + | r n 1 r n | M 0 ) x n x n 1 + | σ n σ n 1 | G x n 1 J r n 1 G x n 1 + | r n r n 1 | M 0 .
(4.42)

Repeating the same argument as in (4.7) in the proof of Theorem 4.1, we get

W n y n 1 W n 1 y n 1 M i = 0 n 1 λ i ,for some constant M>0.
(4.43)

Considering condition (v), without loss of generality, we may assume that { β n }[ c ˆ , d ˆ ] for some c ˆ , d ˆ (0,1). From (4.40), it follows that x n + 1 can be rewritten as

x n + 1 = β n y n +(1 β n ) z n ,
(4.44)

where z n = α n f ( y n ) + γ n W n y n + δ n J r n G y n 1 β n . Utilizing (4.3) and (4.42) we have

z n z n 1 = α n f ( y n ) + γ n W n y n + δ n J r n G y n 1 β n α n 1 f ( y n 1 ) + γ n 1 W n 1 y n 1 + δ n 1 J r n 1 G y n 1 1 β n 1 = x n + 1 β n y n 1 β n x n β n 1 y n 1 1 β n 1 = x n + 1 β n y n 1 β n x n β n 1 y n 1 1 β n + x n β n 1 y n 1 1 β n x n β n 1 y n 1 1 β n 1 x n + 1 β n y n 1 β n x n β n 1 y n 1 1 β n + x n β n 1 y n 1 1 β n x n β n 1 y n 1 1 β n 1 = 1 1 β n x n + 1 β n y n ( x n β n 1 y n 1 ) + | 1 1 β n 1 1 β n 1 | x n β n 1 y n 1 = 1 1 β n x n + 1 β n y n ( x n β n 1 y n 1 ) + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 = 1 1 β n × α n f ( y n ) + γ n W n y n + δ n J r n G y n α n 1 f ( y n 1 ) γ n 1 W n 1 y n 1 δ n 1 J r n 1 G y n 1 + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 1 1 β n [ α n f ( y n ) f ( y n 1 ) + γ n W n y n W n 1 y n 1 + δ n J r n G y n J r n 1 G y n 1 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 1 1 β n [ α n ρ y n y n 1 + γ n W n y n W n y n 1 + δ n [ y n 1 y n + | r n 1 r n | M 0 ] + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + γ n W n y n 1 W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 1 1 β n [ ( α n ρ + γ n + δ n ) y n 1 y n + | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + γ n M i = 0 n 1 λ i + | δ n δ n 1 | J r n 1 G y n 1 ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 ( 1 ( 1 ρ ) α n 1 β n ) y n y n 1 + 1 1 β n [ | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 ] + M i = 0 n 1 λ i + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 .
(4.45)

By simple calculations, (4.44) implies that

x n + 1 x n = β n ( y n y n 1 )+( β n β n 1 )( y n 1 z n 1 )+(1 β n )( z n z n 1 ).

This together with (4.42) and (4.45) we have

x n + 1 x n β n y n y n 1 + | β n β n 1 | y n 1 z n 1 + ( 1 β n ) z n z n 1 β n y n y n 1 + | β n β n 1 | y n 1 z n 1 + ( 1 β n ) { ( 1 ( 1 ρ ) α n 1 β n ) y n y n 1 + 1 1 β n [ | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 ] + M i = 0 n 1 λ i + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 } ( 1 ( 1 ρ ) α n ) y n y n 1 + | β n β n 1 | y n 1 z n 1 + | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 + M i = 0 n 1 λ i + | β n β n 1 | 1 β n 1 x n β n 1 y n 1 ( 1 ( 1 ρ ) α n ) [ x n x n 1 + | σ n σ n 1 | G x n 1 J r n 1 G x n 1 + | r n r n 1 | M 0 ] + | β n β n 1 | y n 1 z n 1 + | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | W n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 + M i = 0 n 1 λ i + | β n β n 1 | 1 β n 1 α n 1 f ( y n 1 ) + γ n 1 W n 1 y n 1 + δ n 1 J r n 1 G y n 1 ( 1 ( 1 ρ ) α n ) x n x n 1 + ( | σ n σ n 1 | + | α n α n 1 | + | β n β n 1 | + | γ n γ n 1 | + | δ n δ n 1 | + | r n 1 r n | ) M ˆ + M i = 0 n 1 λ i ,

where 1 1 d ˆ sup n 0 {f( y n )+ W n y n + J r n G y n +G x n J r n G x n + y n z n +2 M 0 } M ˆ for some M ˆ >0. By Lemma 2.7 and conditions (i), (iii), and (iv), we conclude that (noting that 0< λ i b<1, i0)

lim n x n + 1 x n =0.
(4.46)

Next we show that x n G x n 0 as n. Indeed, utilizing Lemma 2.3, we get from (4.40)

y n p 2 = σ n ( G x n p ) + ( 1 σ n ) ( J r n G x n p ) 2 σ n G x n p 2 + ( 1 σ n ) J r n G x n p 2 σ n ( 1 σ n ) g ( G x n J r n G x n ) σ n x n p 2 + ( 1 σ n ) x n p 2 σ n ( 1 σ n ) g ( G x n J r n G x n ) = x n p 2 σ n ( 1 σ n ) g ( G x n J r n G x n ) .
(4.47)

By Lemma 2.2 (a), (4.40), and (4.47), we have

x n + 1 p 2 = α n ( f ( y n ) f ( p ) ) + β n ( y n p ) + γ n ( W n y n p ) + δ n ( J r n G y n p ) + α n ( f ( p ) p ) 2 α n ( f ( y n ) f ( p ) ) + β n ( y n p ) + γ n ( W n y n p ) + δ n ( J r n G y n p ) 2 + 2 α n f ( p ) p , J ( x n + 1 p ) α n f ( y n ) f ( p ) 2 + β n y n p 2 + γ n W n y n p 2 + δ n J r n G y n p 2 + 2 α n f ( p ) p , J ( x n + 1 p ) α n ρ y n p 2 + β n y n p 2 + γ n y n p 2 + δ n y n p 2 + 2 α n f ( p ) p x n + 1 p = ( 1 α n ( 1 ρ ) ) y n p 2 + 2 α n f ( p ) p x n + 1 p y n p 2 + 2 α n f ( p ) p x n + 1 p x n p 2 σ n ( 1 σ n ) g ( G x n J r n G x n ) + 2 α n f ( p ) p x n + 1 p ,

which yields

σ n ( 1 σ n ) g ( G x n J r n G x n ) x n p 2 x n + 1 p 2 + 2 α n f ( p ) p x n + 1 p ( x n p + x n + 1 p ) x n x n + 1 + 2 α n f ( p ) p x n + 1 p .

Since α n 0 and x n + 1 x n 0, from condition (v) and the boundedness of { x n }, it follows that

lim n g ( G x n J r n G x n ) =0.

Utilizing the properties of g, we have

lim n G x n J r n G x n =0.
(4.48)

On the other hand, observe that x n + 1 can be rewritten as

x n + 1 = α n f ( y n ) + β n y n + γ n W n y n + δ n J r n G y n = α n f ( y n ) + β n y n + ( γ n + δ n ) γ n W n y n + δ n J r n G y n γ n + δ n = α n f ( y n ) + β n y n + e n z ˆ n ,
(4.49)

where e n = γ n + δ n and z ˆ n = γ n W n y n + δ n J r n G y n γ n + δ n . By Lemma 2.4, (4.3), and (4.49), we have

x n + 1 p 2 = α n ( f ( y n ) p ) + β n ( y n p ) + e n ( z ˆ n p ) 2 α n f ( y n ) p 2 + β n y n p 2 + e n z ˆ n p 2 β n e n g 1 ( z ˆ n y n ) = α n f ( y n ) p 2 + β n y n p 2 β n e n g 1 ( z ˆ n y n ) + e n γ n W n y n + δ n J r n G y n γ n + δ n p 2 = α n f ( y n ) p 2 + β n y n p 2 β n e n g 1 ( z ˆ n y n ) + e n γ n γ n + δ n ( W n y n p ) + δ n γ n + δ n ( J r n G y n p ) 2 α n f ( y n ) p 2 + β n y n p 2 β n e n g 1 ( z ˆ n y n ) + e n [ γ n γ n + δ n W n y n p 2 + δ n γ n + δ n J r n G y n p 2 ] α n f ( y n ) p 2 + β n y n p 2 β n e n g 1 ( z ˆ n y n ) + e n [ γ n γ n + δ n y n p 2 + δ n γ n + δ n y n p 2 ] = α n f ( y n ) p 2 + ( 1 α n ) y n p 2 β n e n g 1 ( z ˆ n y n ) α n f ( y n ) p 2 + y n p 2 β n e n g 1 ( z ˆ n y n ) α n f ( y n ) p 2 + x n p 2 β n e n g 1 ( z ˆ n y n ) ,

which implies that

β n e n g 1 ( z ˆ n y n ) α n f ( y n ) p 2 + x n p 2 x n + 1 p 2 α n f ( y n ) p 2 + ( x n p + x n + 1 p ) x n x n + 1 .

Utilizing (4.46), conditions (i), (ii), (v), and the boundedness of { x n } and {f( y n )}, we get

lim n g 1 ( z ˆ n y n ) =0.

From the properties of g 1 , we have

lim n z ˆ n y n =0.
(4.50)

Utilizing Lemma 2.3 and the definition of z ˆ n , we have

z ˆ n p 2 = γ n W n y n + δ n J r n G y n γ n + δ n p 2 = γ n γ n + δ n ( W n y n p ) + δ n γ n + δ n ( J r n G y n p ) 2 γ n γ n + δ n W n y n p 2 + δ n γ n + δ n J r n G y n p 2 γ n δ n ( γ n + δ n ) 2 g 2 ( J r n G y n W n y n ) y n p 2 γ n δ n ( γ n + δ n ) 2 g 2 ( J r n G y n W n y n ) ,

which leads to

γ n δ n ( γ n + δ n ) 2 g 2 ( J r n G y n W n y n ) y n p 2 z ˆ n p 2 ( y n p + z ˆ n p ) y n z ˆ n .

Since { y n } and { z ˆ n } are bounded, from (4.50) and condition (ii), we deduce

lim n g 2 ( W n y n J r n G y n ) =0.

From the properties of g 2 , we have

lim n W n y n J r n G y n =0.
(4.51)

Furthermore, x n + 1 can also be rewritten as

x n + 1 = α n f ( y n ) + β n y n + γ n W n y n + δ n J r n G y n = β n y n + γ n W n y n + ( α n + δ n ) α n f ( y n ) + δ n J r n G y n α n + δ n = β n y n + γ n W n y n + d n z ˜ n ,

where d n = α n + δ n and z ˜ n = α n f ( y n ) + δ n J r n G y n α n + δ n . Utilizing Lemma 2.4, the convexity of 2 , and (4.3), we have

x n + 1 p 2 = β n ( y n p ) + γ n ( W n y n p ) + d n ( z ˜ n p ) 2 β n y n p 2 + γ n W n y n p 2 + d n z ˜ n p 2 β n γ n g 3 ( y n W n y n ) = β n y n p 2 + γ n W n y n p 2 + d n α n f ( y n ) + δ n J r n G y n α n + δ n p 2 β n γ n g 3 ( y n W n y n ) = β n y n p 2 + γ n W n y n p 2 + d n α n α n + δ n ( f ( y n ) p ) + δ n α n + δ n ( J r n G y n p ) 2 β n γ n g 3 ( y n W n y n ) β n y n p 2 + γ n y n p 2 + d n [ α n α n + δ n f ( y n ) p 2 + δ n α n + δ n J r n G y n p 2 ] β n γ n g 3 ( y n W n y n ) α n f ( y n ) p 2 + ( β n + γ n ) y n p 2 + δ n y n p 2 β n γ n g 3 ( y n W n y n ) = α n f ( y n ) p 2 + ( 1 α n ) y n p 2 β n γ n g 3 ( y n W n y n ) α n f ( y n ) p 2 + y n p 2 β n γ n g 3 ( y n W n y n ) α n f ( y n ) p 2 + x n p 2 β n γ n g 3 ( y n W n y n ) ,

which implies that

β n γ n g 3 ( y n W n y n ) α n f ( y n ) p 2 + x n p 2 x n + 1 p 2 α n f ( y n ) p 2 + ( x n p + x n + 1 p ) x n x n + 1 .

From (4.46), conditions (i), (ii), (v), and the boundedness of { x n } and {f( y n )}, we have

lim n g 3 ( y n W n y n ) =0.

Utilizing the properties of g 3 , we have

lim n y n W n y n =0.
(4.52)

Thus, from (4.51) and (4.52), we get

y n J r n G y n y n W n y n + W n y n J r n G y n 0as n,

that is,

lim n y n J r n G y n =0.
(4.53)

Therefore, from (4.40), (4.46), (4.52), (4.53), and α n 0, we have

x n y n x n x n + 1 + x n + 1 y n x n x n + 1 + α n f ( y n ) y n + γ n W n y n y n + δ n J r n G y n y n x n x n + 1 + α n f ( y n ) y n + W n y n y n + J r n G y n y n 0 as  n ,

that is,

lim n x n y n =0.
(4.54)

Utilizing (4.40), (4.48), and (4.54), we obtain

x n G x n x n y n + y n G x n = x n y n + ( 1 σ n ) J r n G x n G x n x n y n + J r n G x n G x n 0 as  n ,

that is,

lim n x n G x n =0.
(4.55)

In addition, from (4.52) and (4.54), we have

x n W n x n x n y n + y n W n y n + W n y n W n x n 2 x n y n + y n W n y n 0 as  n ,

that is,

lim n x n W n x n =0.
(4.56)

Note that

x n J r n x n x n G x n + G x n J r n G x n + J r n G x n J r n x n 2 x n G x n + G x n J r n G x n .

So, from (4.48) and (4.55), it follows that

lim n x n J r n x n =0.
(4.57)

Repeating the same argument as in (4.28) in the proof of Theorem 4.1, we get

lim n x n J r x n =0,
(4.58)

for a fixed number r such that ε>r>0.

Suppose that β n β for some fixed β,γ(0,1) satisfying α n +β+ γ n + δ n =1 for all n0. Define a mapping Vx=(1 θ 1 θ 2 ) J r x+ θ 1 Wx+ θ 2 Gx, where θ 1 , θ 2 (0,1) are two constants with θ 1 + θ 2 <1. Then, by Lemmas 2.5 and 2.13, we have Fix(V)=Fix( J r )Fix(W)Fix(G)=F. For each k1, let { p k } be a unique element of C such that

p k = 1 k f( p k )+ ( 1 1 k ) V p k .

From Lemma 2.9, we conclude that p k qFix(V)=F as k. Observe that for every n, k

x n + 1 W p k α n f ( y n ) W p k + β y n W p k + γ n W n y n W p k + δ n ( J r n G y n W n y n + W n y n W p k ) = α n f ( y n ) W p k + β y n W p k + ( γ n + δ n ) W n y n W p k + δ n J r n G y n W n y n = α n f ( y n ) W p k + β y n W p k + ( 1 α n β ) W n y n W p k + δ n J r n G y n W n y n α n f ( y n ) W p k + β y n W p k + ( 1 α n β ) [ W n y n W n p k + W n p k W p k ] + δ n J r n G y n W n y n α n f ( y n ) W p k + β y n W p k + ( 1 α n β ) ( y n p k + W n p k W p k ) + δ n J r n G y n W n y n α n f ( y n ) W p k + β ( x n W p k + y n x n ) + ( 1 β ) [ x n p k + y n x n + W n p k W p k ] + δ n J r n G y n W n y n = Δ n + β x n W p k + ( 1 β ) x n p k ,
(4.59)

where Δ n = α n f( y n )W p k +(1β)( 1 1 β y n x n + W n p k W p k )+ δ n J r n G y n W n y n . Since lim n α n = lim n y n x n = lim n W n p k W p k = lim n J r n G y n W n y n =0, we know that Δ n 0 as n.

Repeating the same argument as in (4.31) and (4.32) in the proof of Theorem 4.1, we conclude that for any Banach limit μ,

μ n x n W p k 2 = μ n x n + 1 W p k 2 μ n x n p k 2 ,
(4.60)

and

μ n x n G p k 2 μ n x n p k 2 and μ n x n J r p k 2 μ n x n p k 2 .
(4.61)

Utilizing (4.60) and (4.61), we obtain

μ n x n V p k 2 = μ n ( 1 θ 1 θ 2 ) ( x n J r p k ) + θ 1 ( x n W p k ) + θ 2 ( x n G p k ) 2 ( 1 θ 1 θ 2 ) μ n x n J r p k 2 + θ 1 μ n x n W p k 2 + θ 2 μ n x n G p k 2 μ n x n p k 2 .
(4.62)

Repeating the same argument as in (4.36) in the proof of Theorem 4.1, we get

1 2 k μ n x n p k 2 μ n f ( p k ) p k , J ( x n p k ) .
(4.63)

Since p k qFix(V)=F as k, by the uniform Gâteaux differentiability of the norm of X, we have

μ n f ( q ) q , J ( x n q ) 0.

On the other hand, from (4.4) and the norm-to-weak uniform continuity of J on bounded subsets of X, it follows that

lim n | f ( q ) q , J ( x n + 1 q ) f ( q ) q , J ( x n q ) | =0.
(4.64)

Using Lemma 2.14, we deduce from (4.63) and (4.64) that

lim sup n f ( q ) q , J ( x n q ) 0.

Finally, we show that x n q as n. It is easy to see from (4.1) that

y n q 2 σ n G x n q 2 +(1 σ n ) J r n G x n q 2 x n q 2 .

Utilizing Lemma 2.2(a), from (4.1) and the convexity of 2 we get

x n + 1 q 2 = α n ( f ( y n ) f ( q ) ) + β n ( y n q ) + γ n ( W n y n q ) + δ n ( J r n G y n q ) + α n ( f ( q ) q ) 2 α n f ( y n ) f ( q ) 2 + β n y n q 2 + γ n W n y n q 2 + δ n J r n G y n q 2 + 2 α n f ( q ) q , J ( x n + 1 q ) α n ρ y n q 2 + β n y n q 2 + γ n y n q 2 + δ n y n q 2 + 2 α n f ( q ) q , J ( x n + 1 q ) = ( 1 α n ( 1 ρ ) ) y n q 2 + 2 α n f ( q ) q , J ( x n + 1 q ) ( 1 α n ( 1 ρ ) ) x n q 2 + α n ( 1 ρ ) 2 f ( q ) q , J ( x n + 1 q ) 1 ρ .
(4.65)

Applying Lemma 2.7 to (4.65), we obtain x n q as n. This completes the proof. □

Corollary 4.2 Let C be a nonempty closed convex subset of a uniformly convex Banach space X which has an uniformly Gâteaux differentiable norm. Let Π C be a sunny nonexpansive retraction from X onto C and AX×X be an accretive operator in X such that D ( A ) ¯ C r > 0 R(I+rA). Let V:CC be a mapping such that IV:CX is ζ-strictly pseudocontractive and θ-strongly accretive with θ+ζ1. Let f:CC be a contraction with coefficient ρ(0,1) and { T i } i = 0 be an infinite family of nonexpansive mappings of C into itself such that F= i = 0 Fix( T i )Fix(V) A 1 0. For arbitrarily given x 0 C, let { x n } be the sequence generated by

{ y n = σ n ( ( 1 l ) I + l V ) x n + ( 1 σ n ) J r n ( ( 1 l ) I + l V ) x n , x n + 1 = α n f ( y n ) + β n y n + γ n W n y n + δ n J r n ( ( 1 l ) I + l V ) y n , n 0 ,
(4.66)

where 1 ζ 1 + ζ (1 1 θ ζ )l1, W n is the W-mapping generated by (2.1). Assume that Assumption  4.1 holds except condition (iii), which is replaced by the following condition:

  1. (iii)

    n = 1 (| σ n σ n 1 |+| α n α n 1 |+| β n β n 1 |+| γ n γ n 1 |+| δ n δ n 1 |)<.

Then

  1. (a)

    lim n x n + 1 x n =0;

  2. (b)

    the sequence { x n } n = 0 converges strongly to some qF which is a unique solution of the following variational inequality problem (VIP):

    ( I f ) q , J ( q p ) 0,pF,

provided β n β for some fixed β(0,1).

Proof In Theorem 4.2, we put B 1 =IV, B 2 =0 and μ 1 =l where 1 ζ 1 + ζ (1 1 θ ζ )l1. Then SVI (3.1) is equivalent to the VIP of finding x C such that

B 1 x , J ( x x ) 0,xC.

In this case, B 1 :CX is ζ-strictly pseudocontractive and θ-strongly accretive. Repeating the same arguments as in the proof of Corollary 4.1, we can infer that Fix(V)=VI(C, B 1 ). Accordingly, F= i = 0 Fix( T i )Ω A 1 0= i = 0 Fix( T i )Fix(V) A 1 0,

G x n = ( ( 1 l ) I + l V ) x n andG y n = ( ( 1 l ) I + l V ) y n .

So, the scheme (4.40) reduces to (4.66). Therefore, the desired result follows from Theorem 4.2. □

Remark 4.1 Theorems 4.1 and 4.2 improve and extend [[30], Theorem 3.2], [[20], Theorem 3.1] and [[29], Theorem 3.1] in the following aspects.

  1. (a)

    The problem of finding a point q n Fix( T n )Ω A 1 0 in Theorems 4.1 and 4.2 is more general and more subtle than the problem of finding a point q n Fix( T n ) in [[30], Theorem 3.2], the problem of finding a point q n Fix( T n )Ω in [[20], Theorem 3.1] and the problem of finding a point q A 1 0 in [[29], Theorem 3.1].

  2. (b)

    Theorems 4.1 and 4.2 are proved without the assumption of the asymptotical regularity of { x n } in [[29], Theorem 3.1] (that is, lim n x n x n + 1 =0).

  3. (c)

    The iterative scheme in [[20], Theorem 3.1] is extended to develop the iterative schemes (4.1) and (4.40) in Theorems 4.1 and 4.2 by virtue of the iterative schemes of [[30], Theorem 3.2] and [[29], Theorem 3.1]. The iterative schemes (4.1) and (4.40) in Theorems 4.1 and 4.2 are more advantageous and more flexible than the iterative scheme in [[20], Theorem 3.1] because they involve several parameter sequences.

  4. (d)

    The iterative schemes (4.1) and (4.40) in Theorems 4.1 and 4.2 are different from the iterative schemes in [[30], Theorem 3.2], [[20], Theorem 3.1] and [[29], Theorem 3.1] because the mapping G in [[20], Theorem 3.1] and the mapping J r n in [[29], Theorem 3.1] are replaced by the composite mapping J r n G in Theorems 4.1 and 4.2.

  5. (e)

    The proof of [[20], Theorem 3.1] depends on the argument techniques in [10], the inequality in 2-uniformly smooth Banach spaces, and the inequality in smooth and uniform convex Banach spaces. Because the composite mapping J r n G appears in the iterative scheme (4.1) of Theorem 4.1, the proof of Theorem 4.1 depends on the argument techniques in [10], the inequality in 2-uniformly smooth Banach spaces, the inequality in smooth and uniform convex Banach spaces, the inequalities in uniform convex Banach spaces, and the properties of the W-mapping and the Banach limit. However, the proof of our Theorem 4.2 does not depend on the argument techniques in [10], the inequality in 2-uniformly smooth Banach spaces, and the inequality in smooth and uniform convex Banach spaces. It depends on only the inequalities in uniform convex Banach spaces and the properties of the W-mapping and the Banach limit.

  6. (f)

    The assumption of the uniformly convex and 2-uniformly smooth Banach space X in [[20], Theorem 3.1] is weakened to the uniformly convex Banach space X having a uniformly Gâteaux differentiable norm in Theorem 4.2.

5 Composite viscosity algorithms and convergence criteria

In this section, we introduce composite viscosity algorithms in real smooth and uniformly convex Banach spaces and study the strong convergence theorems. We first state the following important and useful lemma which will be used in the sequel.

Lemma 5.1 [27]

Let C be a nonempty closed convex subset of a Banach space X and S 0 , S 1 , be a sequence of mappings of C into itself. Suppose that n = 1 sup{ S n x S n 1 x:xC}<. Then, for each yC, { S n y} converges strongly to some point in C. Moreover, let S:CC be a mapping defined by Sy= lim n S n y for all yC. Then lim n sup{Sx S n x:xC}=0.

Assumption 5.1 Let { α n }, { β n }, { γ n }, { δ n }, { σ n } be the sequences in (0,1) such that α n + β n + γ n + δ n =1 for all n0. Suppose that the following conditions hold:

  1. (i)

    lim n α n =0 and n = 0 α n =;

  2. (ii)

    { γ n },{ δ n }[c,d] for some c,d(0,1);

  3. (iii)

    n = 1 (| σ n σ n 1 |+| α n α n 1 |+| β n β n 1 |+| γ n γ n 1 |+| δ n δ n 1 |)<;

  4. (iv)

    n = 1 | r n r n 1 |< and r n ε>0 for all n0;

  5. (v)

    0< lim inf n β n lim sup n β n <1 and 0< lim inf n σ n lim sup n σ n <1.

We now state and prove our first result on the composite implicit viscosity algorithm.

Theorem 5.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach space X. Let Π C be a sunny nonexpansive retraction from X onto C and AX×X be an accretive operator on X such that D ( A ) ¯ C r > 0 R(I+rA). Let the mapping B i :CX be α i -inverse strongly accretive for i=1,2, and f:CC be a contraction with coefficient ρ(0,1). Let { S i } i = 0 be an infinite family of nonexpansive mappings of C into itself such that F= i = 0 Fix( S i )Ω A 1 0 with 0< μ i < α i κ 2 for i=1,2. Suppose that Assumption  5.1 holds. For arbitrarily given x 0 C, let { x n } be the sequence generated by

{ y n = α n f ( y n ) + β n x n + γ n S n x n + δ n J r n G x n , x n + 1 = σ n y n + ( 1 σ n ) J r n G y n , n 0 .
(5.1)

Assume that n = 1 sup x D S n x S n 1 x< for any bounded subset D of C, S:CC be a mapping defined by Sx= lim n S n x for all xC, and Fix(S)= n = 0 Fix( S n ). Then the sequence { x n } converges strongly to qF, which solves the following VIP:

q f ( q ) , J ( q p ) 0,pF.

Proof First of all, let us show that the sequence { x n } is bounded. Indeed, take a fixed pF arbitrarily. Then we get p=Gp, p= S n p and p= J r n p for all n0. By Lemma 2.11, G is nonexpansive. Then, from (5.1), we have

y n p α n f ( y n ) p + β n x n p + γ n S n x n p + δ n J r n G x n p α n ( f ( y n ) f ( p ) + f ( p ) p ) + β n x n p + γ n x n p + δ n G x n p α n ( ρ y n p + f ( p ) p ) + β n x n p + γ n x n p + δ n x n p = ( 1 α n ) x n p + α n ρ y n p + α n f ( p ) p ,

which implies that

y n p ( 1 ( 1 ρ ) α n 1 α n ρ ) x n p+ α n 1 α n ρ f ( p ) p .
(5.2)

So, we have

x n + 1 p σ n y n p + ( 1 σ n ) J r n G y n p σ n y n p + ( 1 σ n ) G y n p σ n y n p + ( 1 σ n ) y n p = y n p ( 1 ( 1 ρ ) α n 1 α n ρ ) x n p + α n 1 α n ρ f ( p ) p = ( 1 ( 1 ρ ) α n 1 α n ρ ) x n p + ( 1 ρ ) α n 1 α n ρ f ( p ) p 1 ρ max { x n p , f ( p ) p 1 ρ } .

By induction, we obtain

x n pmax { x 0 p , f ( p ) p 1 ρ } ,n0.
(5.3)

Hence, { x n } is bounded, and so are the sequences { y n }, {G x n }, {G y n }, and {f( y n )}.

Let us show that

lim n x n + 1 x n =0.
(5.4)

Observe that y n can be rewritten as

y n = β n x n +(1 β n ) z n ,

where z n = α n f ( y n ) + γ n S n x n + δ n J r n G x n 1 β n . Note that

z n z n 1 = α n f ( y n ) + γ n S n x n + δ n J r n G x n 1 β n α n 1 f ( y n 1 ) + γ n 1 S n 1 x n 1 + δ n 1 J r n 1 G x n 1 1 β n 1 = y n β n x n 1 β n y n 1 β n 1 x n 1 1 β n 1 = y n β n x n 1 β n y n 1 β n 1 x n 1 1 β n + y n 1 β n 1 x n 1 1 β n y n 1 β n 1 x n 1 1 β n 1 y n β n x n 1 β n y n 1 β n 1 x n 1 1 β n + y n 1 β n 1 x n 1 1 β n y n 1 β n 1 x n 1 1 β n 1 = 1 1 β n y n β n x n ( y n 1 β n 1 x n 1 ) + | 1 1 β n 1 1 β n 1 | y n 1 β n 1 x n 1 = 1 1 β n y n β n x n ( y n 1 β n 1 x n 1 ) + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) y n 1 β n 1 x n 1 = 1 1 β n α n f ( y n ) + γ n S n x n + δ n J r n G x n α n 1 f ( y n 1 ) γ n 1 S n 1 x n 1 δ n 1 J r n 1 G x n 1 + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) y n 1 β n 1 x n 1 1 1 β n [ α n f ( y n ) f ( y n 1 ) + γ n S n x n S n 1 x n 1 + δ n J r n G x n J r n 1 G x n 1 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | S n 1 x n 1 + | δ n δ n 1 | J r n 1 G x n 1 ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) y n 1 β n 1 x n 1 .
(5.5)

On the other hand, if r n 1 r n , using the resolvent identity in Proposition 2.2,

J r n x n = J r n 1 ( r n 1 r n x n + ( 1 r n 1 r n ) J r n x n ) ,

we get

J r n G x n J r n 1 G x n 1 = J r n 1 ( r n 1 r n G x n + ( 1 r n 1 r n ) J r n G x n ) J r n 1 G x n 1 r n 1 r n G x n G x n 1 + ( 1 r n 1 r n ) J r n G x n G x n 1 x n x n 1 + r n r n 1 r n J r n G x n G x n 1 x n x n 1 + 1 ε | r n r n 1 | J r n G x n G x n 1 .

If r n r n 1 , then it is easy to see that

J r n G x n J r n 1 G x n 1 x n 1 x n + 1 ε | r n 1 r n | J r n 1 G x n 1 G x n .

Thus, combining the above cases, we obtain

J r n G x n J r n 1 G x n 1 x n 1 x n + | r n 1 r n | ε sup n 1 { J r n G x n G x n 1 + J r n 1 G x n 1 G x n } , n 1 .

In a similar way, we derive

J r n G y n J r n 1 G y n 1 y n 1 y n + | r n 1 r n | ε sup n 1 { J r n G y n G y n 1 + J r n 1 G y n 1 G y n } , n 1 .

Therefore, we have

{ J r n G x n J r n 1 G x n 1 x n 1 x n + | r n 1 r n | M 0 , J r n G y n J r n 1 G y n 1 y n 1 y n + | r n 1 r n | M 0 ,
(5.6)

for all n1, where

sup n 1 { 1 ε ( J r n G x n G x n 1 + J r n 1 G x n 1 G x n ) } M 0 ,

and

sup n 1 { 1 ε ( J r n G y n G y n 1 + J r n 1 G y n 1 G y n ) } M 0 ,

for some M 0 >0. Combining (5.6) and (5.5), we have

z n z n 1 1 1 β n [ α n f ( y n ) f ( y n 1 ) + γ n S n x n S n 1 x n 1 + δ n ( x n 1 x n + M 0 | r n 1 r n | ) + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | S n 1 x n 1 + | δ n δ n 1 | J r n 1 G x n 1 ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) y n 1 β n 1 x n 1 1 1 β n [ α n ρ y n y n 1 + γ n S n x n S n x n 1 + δ n ( x n 1 x n + M 0 | r n 1 r n | ) + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | S n 1 x n 1 + | δ n δ n 1 | J r n 1 G x n 1 + γ n S n x n 1 S n 1 x n 1 ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) α n 1 f ( y n 1 ) + γ n 1 S n 1 x n 1 + δ n 1 J r n 1 G x n 1 1 1 β n [ α n ρ y n y n 1 + ( γ n + δ n ) x n 1 x n + M ( | α n α n 1 | + | γ n γ n 1 | + | δ n δ n 1 | + | r n 1 r n | ) + γ n S n x n 1 S n 1 x n 1 ] + 1 ( 1 β n 1 ) ( 1 β n ) | β n β n 1 | M ,
(5.7)

where sup n 0 { M 0 +f( y n )+ S n x n + J r n G x n }M for some M>0. By simple calculations, we have

y n y n 1 = β n ( x n x n 1 )+(1 β n )( z n z n 1 )+( β n β n 1 )( x n 1 z n 1 ).
(5.8)

Taking into account condition (v), without loss of generality, we may assume that { β n }[a,b] for some a,b(0,1). Hence, from (5.7) and (5.8), we deduce

y n y n 1 β n x n x n 1 + ( 1 β n ) z n z n 1 + | β n β n 1 | x n 1 z n 1 β n x n x n 1 + ( 1 β n ) { 1 1 β n [ α n ρ y n y n 1 + ( γ n + δ n ) x n 1 x n + M ( | α n α n 1 | + | γ n γ n 1 | + | δ n δ n 1 | + | r n 1 r n | ) + γ n S n x n 1 S n 1 x n 1 ] + 1 ( 1 β n 1 ) ( 1 β n ) | β n β n 1 | M } + | β n β n 1 | x n 1 z n 1 = ( 1 α n ) x n 1 x n + α n ρ y n y n 1 + M ( | α n α n 1 | + | γ n γ n 1 | + | δ n δ n 1 | + | r n 1 r n | ) + γ n S n x n 1 S n 1 x n 1 + 1 1 β n 1 | β n β n 1 | M + | β n β n 1 | x n 1 z n 1 ( 1 α n ) x n 1 x n + α n ρ y n y n 1 + M 1 ( | α n α n 1 | + | β n β n 1 | + | γ n γ n 1 | + | δ n δ n 1 | + | r n 1 r n | ) + S n x n 1 S n 1 x n 1 ,

where sup n 0 { M 1 b + x n z n } M 1 for some M 1 >0. This leads to

y n y n 1 ( 1 ( 1 ρ ) α n 1 α n ρ ) x n 1 x n + M 1 1 α n ρ ( | α n α n 1 | + | β n β n 1 | + | γ n γ n 1 | + | δ n δ n 1 | + | r n 1 r n | ) + 1 1 α n ρ S n x n 1 S n 1 x n 1 .
(5.9)

Again by simple calculations, we have

x n + 1 x n = σ n ( y n y n 1 ) + ( σ n σ n 1 ) ( y n 1 J r n 1 G y n 1 ) + ( 1 σ n ) ( J r n G y n J r n 1 G y n 1 ) .

This together with (5.6) and (5.9) implies that

x n + 1 x n σ n y n y n 1 + | σ n σ n 1 | y n 1 J r n 1 G y n 1 + ( 1 σ n ) J r n G y n J r n 1 G y n 1 σ n y n y n 1 + | σ n σ n 1 | y n 1 J r n 1 G y n 1 + ( 1 σ n ) ( y n 1 y n + | r n 1 r n | M 0 ) y n y n 1 + | σ n σ n 1 | y n 1 J r n 1 G y n 1 + | r n 1 r n | M 0 ( 1 ( 1 ρ ) α n 1 α n ρ ) x n 1 x n + M 1 1 α n ρ ( | α n α n 1 | + | β n β n 1 | + | γ n γ n 1 | + | δ n δ n 1 | + | r n 1 r n | ) + 1 1 α n ρ S n x n 1 S n 1 x n 1 + | σ n σ n 1 | y n 1 J r n 1 G y n 1 + | r n 1 r n | M 0 ( 1 ( 1 ρ ) α n 1 α n ρ ) x n 1 x n + M ˜ ( | σ n σ n 1 | + | α n α n 1 | + | β n β n 1 | + | γ n γ n 1 | + | δ n δ n 1 | + | r n 1 r n | + S n x n 1 S n 1 x n 1 ) ,

where sup n 0 { M 1 + 1 1 α n ρ + M 0 + y n J r n G y n } M ˜ for some M ˜ >0. Noting that ( 1 ρ ) α n 1 α n ρ (1ρ) α n for all n0, from condition (i), we know that n = 0 ( 1 ρ ) α n 1 α n ρ =. Utilizing Lemma 2.7, we conclude from conditions (iii), (iv), and the assumption on { S n } that

lim n x n + 1 x n =0.

Next we show that x n G x n 0 as n.

Indeed, according to Lemma 2.2(a), we have from (5.1)

y n p 2 = α n ( f ( y n ) f ( p ) ) + β n ( x n p ) + γ n ( S n x n p ) + δ n ( J r n G x n p ) + α n ( f ( p ) p ) 2 α n ( f ( y n ) f ( p ) ) + β n ( x n p ) + γ n ( S n x n p ) + δ n ( J r n G x n p ) 2 + 2 α n f ( p ) p , J ( y n p ) α n f ( y n ) f ( p ) 2 + β n x n p 2 + γ n S n x n p 2 + δ n J r n G x n p 2 + 2 α n f ( p ) p , J ( y n p ) α n ρ 2 y n p 2 + β n x n p 2 + γ n x n p 2 + δ n G x n p 2 + 2 α n f ( p ) p , J ( y n p ) α n ρ y n p 2 + β n x n p 2 + γ n x n p 2 + δ n x n p 2 + 2 α n f ( p ) p , J ( y n p ) = α n ρ y n p 2 + ( 1 α n ) x n p 2 + 2 α n f ( p ) p , J ( y n p ) ,
(5.10)

which implies that

y n p 2 ( 1 ( 1 ρ ) α n 1 α n ρ ) x n p 2 + 2 α n 1 α n ρ f ( p ) p , J ( y n p ) .

Utilizing Lemma 2.3, we get from (5.1) and (5.10)

x n + 1 p 2 = σ n ( y n p ) + ( 1 σ n ) ( J r n G y n p ) 2 σ n y n p 2 + ( 1 σ n ) J r n G y n p 2 σ n ( 1 σ n ) g ( y n J r n G y n ) σ n y n p 2 + ( 1 σ n ) y n p 2 σ n ( 1 σ n ) g ( y n J r n G y n ) = y n p 2 σ n ( 1 σ n ) g ( y n J r n G y n ) ( 1 ( 1 ρ ) α n 1 α n ρ ) x n p 2 + 2 α n 1 α n ρ f ( p ) p , J ( y n p ) σ n ( 1 σ n ) g ( y n J r n G y n ) x n p 2 + 2 α n 1 α n ρ f ( p ) p y n p σ n ( 1 σ n ) g ( y n J r n G y n ) ,

and hence

σ n ( 1 σ n ) g ( y n J r n G y n ) x n p 2 x n + 1 p 2 + 2 α n 1 α n ρ f ( p ) p y n p ( x n p + x n + 1 p ) x n x n + 1 + 2 α n 1 α n ρ f ( p ) p y n p .

Since α n 0 and x n + 1 x n 0, from condition (v) and the boundedness of { x n } and { y n }, it follows that

lim n g ( y n J r n G y n ) =0.

Utilizing the properties of g, we have

lim n y n J r n G y n =0.
(5.11)

Observe that

x n y n x n x n + 1 + x n + 1 y n = x n x n + 1 + ( 1 σ n ) J r n G y n y n x n x n + 1 + J r n G y n y n .

From (5.4) and (5.11), we have

lim n x n y n =0.
(5.12)

For simplicity, put q= Π C (p μ 2 B 2 p), u n = Π C ( x n μ 2 B 2 x n ) and v n = Π C ( u n μ 1 B 1 u n ). Then v n =G x n for all n0. From Lemma 2.8, we have

u n q 2 = Π C ( x n μ 2 B 2 x n ) Π C ( p μ 2 B 2 p ) 2 x n p μ 2 ( B 2 x n B 2 p ) 2 x n p 2 2 μ 2 ( α 2 κ 2 μ 2 ) B 2 x n B 2 p 2 ,
(5.13)

and

v n p 2 = Π C ( u n μ 1 B 1 u n ) Π C ( q μ 1 B 1 q ) 2 u n q μ 1 ( B 1 u n B 1 q ) 2 u n q 2 2 μ 1 ( α 1 κ 2 μ 1 ) B 1 u n B 1 q 2 .
(5.14)

Combining (5.13) and (5.14), we obtain

v n p 2 x n p 2 2 μ 2 ( α 2 κ 2 μ 2 ) B 2 x n B 2 p 2 2 μ 1 ( α 1 κ 2 μ 1 ) B 1 u n B 1 q 2 .
(5.15)

By Lemma 2.2(a), (5.1), and (5.15), we have

y n p 2 = α n ( f ( y n ) f ( p ) ) + β n ( x n p ) + γ n ( S n x n p ) + δ n ( J r n G x n p ) + α n ( f ( p ) p ) 2 α n f ( y n ) f ( p ) 2 + β n x n p 2 + γ n S n x n p 2 + δ n J r n G x n p 2 + 2 α n f ( p ) p , J ( y n p ) α n ρ 2 y n p 2 + β n x n p 2 + γ n x n p 2 + δ n v n p 2 + 2 α n f ( p ) p y n p α n ρ y n p 2 + β n x n p 2 + γ n x n p 2 + δ n [ x n p 2 2 μ 2 ( α 2 κ 2 μ 2 ) B 2 x n B 2 p 2 2 μ 1 ( α 1 κ 2 μ 1 ) B 1 u n B 1 q 2 ] + 2 α n f ( p ) p y n p α n y n p 2 + ( 1 α n ) x n p 2 2 δ n [ μ 2 ( α 2 κ 2 μ 2 ) B 2 x n B 2 p 2 + μ 1 ( α 1 κ 2 μ 1 ) B 1 u n B 1 q 2 ] + 2 α n f ( p ) p y n p .

Thus, we have

2 δ n [ μ 2 ( α 2 κ 2 μ 2 ) B 2 x n B 2 p 2 + μ 1 ( α 1 κ 2 μ 1 ) B 1 u n B 1 q 2 ] ( 1 α n ) x n p 2 ( 1 α n ) y n p 2 + 2 α n f ( p ) p y n p ( 1 α n ) ( x n p + y n p ) x n y n + 2 α n f ( p ) p y n p .

Since 0< μ i < α i κ 2 for i=1,2, from (5.12) and conditions (i), (ii), we obtain

lim n B 2 x n B 2 p=0and lim n B 1 u n B 1 q=0.
(5.16)

Utilizing Proposition 2.2 and Lemma 2.10, we have

u n q 2 = Π C ( x n μ 2 B 2 x n ) Π C ( p μ 2 B 2 p ) 2 x n μ 2 B 2 x n ( p μ 2 B 2 p ) , J ( u n q ) = x n p , J ( u n q ) + μ 2 B 2 p B 2 x n , J ( u n q ) 1 2 [ x n p 2 + u n q 2 g 1 ( x n u n ( p q ) ) ] + μ 2 B 2 p B 2 x n u n q ,

which implies that

u n q 2 x n p 2 g 1 ( x n u n ( p q ) ) +2 μ 2 B 2 p B 2 x n u n q.
(5.17)

In the same way, we derive

v n p 2 = Π C ( u n μ 1 B 1 u n ) Π C ( q μ 1 B 1 q ) 2 u n μ 1 B 1 u n ( q μ 1 B 1 q ) , J ( v n p ) = u n q , J ( v n p ) + μ 1 B 1 q B 1 u n , J ( v n p ) 1 2 [ u n q 2 + v n p 2 g 2 ( u n v n + ( p q ) ) ] + μ 1 B 1 q B 1 u n v n p ,

which implies that

v n p 2 u n q 2 g 2 ( u n v n + ( p q ) ) +2 μ 1 B 1 q B 1 u n v n p.
(5.18)

Combining (5.17) and (5.18), we get

v n p 2 x n p 2 g 1 ( x n u n ( p q ) ) g 2 ( u n v n + ( p q ) ) + 2 μ 2 B 2 p B 2 x n u n q + 2 μ 1 B 1 q B 1 u n v n p .
(5.19)

By Lemma 2.2(a), (5.1), and (5.19), we have

y n p 2 = α n ( f ( y n ) f ( p ) ) + β n ( x n p ) + γ n ( S n x n p ) + δ n ( J r n G x n p ) + α n ( f ( p ) p ) 2 α n f ( y n ) f ( p ) 2 + β n x n p 2 + γ n S n x n p 2 + δ n J r n G x n p 2 + 2 α n f ( p ) p , J ( y n p ) α n ρ y n p 2 + β n x n p 2 + γ n x n p 2 + δ n v n p 2 + 2 α n f ( p ) p y n p α n ρ y n p 2 + β n x n p 2 + γ n x n p 2 + δ n [ x n p 2 g 1 ( x n u n ( p q ) ) g 2 ( u n v n + ( p q ) ) + 2 μ 2 B 2 p B 2 x n u n q + 2 μ 1 B 1 q B 1 u n v n p ] + 2 α n f ( p ) p y n p α n y n p 2 + ( 1 α n ) x n p 2 δ n [ g 1 ( x n u n ( p q ) ) + g 2 ( u n v n + ( p q ) ) ] + 2 μ 2 B 2 p B 2 x n u n q + 2 μ 1 B 1 q B 1 u n v n p + 2 α n f ( p ) p y n p ,

and hence

δ n [ g 1 ( x n u n ( p q ) ) + g 2 ( u n v n + ( p q ) ) ] ( 1 α n ) x n p 2 ( 1 α n ) y n p 2 + 2 μ 2 B 2 p B 2 x n u n q + 2 μ 1 B 1 q B 1 u n v n p + 2 α n f ( p ) p y n p ( 1 α n ) ( x n p + y n p ) x n y n + 2 μ 2 B 2 p B 2 x n u n q + 2 μ 1 B 1 q B 1 u n v n p + 2 α n f ( p ) p y n p .

Utilizing conditions (i), (ii), from (5.12) and (5.16), we have

lim n g 1 ( x n u n ( p q ) ) =0and lim n g 2 ( u n v n + ( p q ) ) =0.
(5.20)

Utilizing the properties of g 1 and g 2 , we have

lim n x n u n ( p q ) =0and lim n u n v n + ( p q ) =0.
(5.21)

From (5.21), we get

x n v n x n u n ( p q ) + u n v n + ( p q ) 0as n,

that is,

lim n x n G x n =0.
(5.22)

Next, let us show that

lim n J r n x n x n =0and lim n S n x n x n =0.

Indeed, observe that y n can be rewritten as

y n = α n f ( y n ) + β n x n + γ n S n x n + δ n J r n G x n = α n f ( y n ) + β n x n + ( γ n + δ n ) γ n S n x n + δ n J r n G x n γ n + δ n = α n f ( y n ) + β n x n + e n z ˆ n ,
(5.23)

where e n = γ n + δ n and z ˆ n = γ n S n x n + δ n J r n G x n γ n + δ n . Utilizing Lemma 2.4 and (5.23), we have

y n p 2 = α n ( f ( y n ) p ) + β n ( x n p ) + e n ( z ˆ n p ) 2 α n f ( y n ) p 2 + β n x n p 2 + e n z ˆ n p 2 β n e n g 3 ( z ˆ n x n ) = α n f ( y n ) p 2 + β n x n p 2 β n e n g 3 ( z ˆ n x n ) + e n γ n S n x n + δ n J r n G x n γ n + δ n p 2 = α n f ( y n ) p 2 + β n x n p 2 β n e n g 3 ( z ˆ n x n ) + e n γ n γ n + δ n ( S n x n p ) + δ n γ n + δ n ( J r n G x n p ) 2 α n f ( y n ) p 2 + β n x n p 2 β n e n g 3 ( z ˆ n x n ) + e n [ γ n γ n + δ n S n x n p 2 + δ n γ n + δ n J r n G x n p 2 ] α n f ( y n ) p 2 + β n x n p 2 β n e n g 3 ( z ˆ n x n ) + e n [ γ n γ n + δ n x n p + δ n γ n + δ n x n p 2 ] = α n f ( y n ) p 2 + ( 1 α n ) x n p 2 β n e n g 3 ( z ˆ n x n ) α n f ( y n ) p 2 + x n p 2 β n e n g 3 ( z ˆ n x n ) ,

which implies that

β n e n g 3 ( z ˆ n x n ) α n f ( y n ) p 2 + x n p 2 y n p 2 α n f ( y n ) p 2 + ( x n p + y n p ) x n y n .

Utilizing (5.12), conditions (i), (ii), (v), and the boundedness of { x n }, { y n }, and {f( y n )}, we get

lim n g 3 ( z ˆ n x n ) =0.

From the properties of g 3 , we have

lim n z ˆ n x n =0.

Utilizing Lemma 2.3 and the definition of z ˆ n , we have

z ˆ n p 2 = γ n S n x n + δ n J r n G x n γ n + δ n p 2 = γ n γ n + δ n ( S n x n p ) + δ n γ n + δ n ( J r n G x n p ) 2 γ n γ n + δ n S n x n p 2 + δ n γ n + δ n J r n G x n p 2 γ n δ n ( γ n + δ n ) 2 g 4 ( J r n G x n S n x n ) x n p 2 γ n δ n ( γ n + δ n ) 2 g 4 ( J r n G x n S n x n ) ,

which leads to

γ n δ n ( γ n + δ n ) 2 g 4 ( J r n G x n S n x n ) x n p 2 z ˆ n p 2 ( x n p + z ˆ n p ) x n z ˆ n .

Since { x n } and { z ˆ n } are bounded and z ˆ n x n 0 as n, we deduce from condition (ii) that

lim n g 4 ( S n x n J r n G x n ) =0.

From the properties of g 4 , we have

lim n S n x n J r n G x n =0.
(5.24)

On the other hand, y n can also be rewritten as

y n = α n f ( y n ) + β n x n + γ n S n x n + δ n J r n G x n = β n x n + γ n S n x n + ( α n + δ n ) α n f ( y n ) + δ n J r n G x n α n + δ n = β n x n + γ n S n x n + d n z ˜ n ,

where d n = α n + δ n and z ˜ n = α n f ( y n ) + δ n J r n G x n α n + δ n . Utilizing Lemma 2.4 and the convexity of 2 , we have

y n p 2 = β n ( x n p ) + γ n ( S n x n p ) + d n ( z ˜ n p ) 2 β n x n p 2 + γ n S n x n p 2 + d n z ˜ n p 2 β n γ n g 5 ( x n S n x n ) = β n x n p 2 + γ n S n x n p 2 + d n α n f ( y n ) + δ n J r n G x n α n + δ n p 2 β n γ n g 5 ( x n S n x n ) = β n x n p 2 + γ n S n x n p 2 + d n α n α n + δ n ( f ( y n ) p ) + δ n α n + δ n ( J r n G x n p ) 2 β n γ n g 5 ( x n S n x n ) β n x n p 2 + γ n x n p 2 + d n [ α n α n + δ n f ( y n ) p 2 + δ n α n + δ n J r n G x n p 2 ] β n γ n g 5 ( x n S n x n ) α n f ( y n ) p 2 + ( β n + γ n ) x n p 2 + δ n x n p 2 β n γ n g 5 ( x n S n x n ) = α n f ( y n ) p 2 + ( 1 α n ) x n p 2 β n γ n g 5 ( x n S n x n ) α n f ( y n ) p 2 + x n p 2 β n γ n g 5 ( x n S n x n ) ,

which implies that

β n γ n g 5 ( x n S n x n ) α n f ( y n ) p 2 + x n p 2 y n p 2 α n f ( y n ) p 2 + ( x n p + y n p ) x n y n .

From (5.12), conditions (i), (ii), (v), and the boundedness of { x n }, { y n }, and {f( y n )}, we have

lim n g 5 ( x n S n x n ) =0.

Utilizing the properties of g 5 , we have

lim n x n S n x n =0.
(5.25)

By Lemma 5.1, we get

x n S x n x n S n x n + S n x n S x n 0as n,

that is,

lim n x n S x n =0.
(5.26)

We note that

x n J r n x n x n S n x n + S n x n J r n G x n + J r n G x n J r n x n x n S n x n + S n x n J r n G x n + G x n x n .

So, from (5.22), (5.24), and (5.25), it follows that

lim n x n J r n x n =0.
(5.27)

Furthermore, we claim that lim n x n J r x n =0 for a fixed number r such that ε>r>0. In fact, taking into account the resolvent identity in Proposition 2.2, we have

J r n x n J r x n = J r ( r r n x n + ( 1 r r n ) J r n x n ) J r x n ( 1 r r n ) x n J r n x n x n J r n x n .
(5.28)

From (5.27) and (5.8), we get

x n J r x n x n J r n x n + J r n x n J r x n x n J r n x n + x n J r n x n = 2 x n J r n x n 0 as  n ,

that is,

lim n x n J r x n =0.
(5.29)

Define a mapping Wx=(1 θ 1 θ 2 ) J r x+ θ 1 Sx+ θ 2 Gx, where θ 1 , θ 2 (0,1) are two constants with θ 1 + θ 2 <1. Then by Lemma 2.5, we have Fix(W)=Fix( J r )Fix(S)Fix(G)=F. We observe that

x n W x n = ( 1 θ 1 θ 2 ) ( x n J r x n ) + θ 1 ( x n S x n ) + θ 2 ( x n G x n ) ( 1 θ 1 θ 2 ) x n J r x n + θ 1 x n S x n + θ 2 x n G x n .

From (5.22), (5.26), and (5.29), we obtain

lim n x n W x n =0.
(5.30)

Now, we claim that

lim sup n f ( q ) q , J ( x n q ) 0,
(5.31)

where q=s lim t 0 x t with x t being the fixed point of the contraction

xtf(x)+(1t)Wx.

Then x t solves the fixed point equation x t =tf( x t )+(1t)W x t . Thus, we have

x t x n = ( 1 t ) ( W x t x n ) + t ( f ( x t ) x n ) .

By Lemma 2.2(a), we obtain

x t x n 2 = ( 1 t ) ( W x t x n ) + t ( f ( x t ) x n ) 2 ( 1 t ) 2 W x t x n 2 + 2 t f ( x t ) x n , J ( x t x n ) ( 1 t ) 2 ( W x t W x n + W x n x n ) 2 + 2 t f ( x t ) x n , J ( x t x n ) ( 1 t ) 2 ( x t x n + W x n x n ) 2 + 2 t f ( x t ) x n , J ( x t x n ) = ( 1 t ) 2 [ x t x n 2 + 2 x t x n W x n x n + W x n x n 2 ] + 2 t f ( x t ) x t , J ( x t x n ) + 2 t x t x n , J ( x t x n ) = ( 1 2 t + t 2 ) x t x n 2 + f n ( t ) + 2 t f ( x t ) x t , J ( x t x n ) + 2 t x t x n 2 ,
(5.32)

where

f n (t)= ( 1 t ) 2 ( 2 x t x n + x n W x n ) x n W x n 0,as n.
(5.33)

It follows from (5.32) that

x t f ( x t ) , J ( x t x n ) t 2 x t x n 2 + 1 2 t f n (t).
(5.34)

Letting n in (5.34) and noticing (5.33), we derive

lim sup n x t f ( x t ) , J ( x t x n ) t 2 M 2 ,
(5.35)

where M 2 >0 is a constant such that x t x n 2 M 2 for all t(0,1) and n0. Taking t0 in (5.35), we have

lim sup t 0 lim sup n x t f ( x t ) , J ( x t x n ) 0.
(5.36)

On the other hand, we have

f ( q ) q , J ( x n q ) = f ( q ) q , J ( x n q ) f ( q ) q , J ( x n x t ) + f ( q ) q , J ( x n x t ) f ( q ) x t , J ( x n x t ) + f ( q ) x t , J ( x n x t ) f ( x t ) x t , J ( x n x t ) + f ( x t ) x t , J ( x n x t ) = f ( q ) q , J ( x n q ) J ( x n x t ) + x t q , J ( x n x t ) + f ( q ) f ( x t ) , J ( x n x t ) + f ( x t ) x t , J ( x n x t ) .

It follows that

lim sup n f ( q ) q , J ( x n q ) lim sup n f ( q ) q , J ( x n q ) J ( x n x t ) + x t q lim sup n x n x t + ρ q x t lim sup n x n x t + lim sup n f ( x t ) x t , J ( x n x t ) .

Taking into account that x t q as t0, we have from (5.36)

lim sup n f ( q ) q , J ( x n q ) = lim sup t 0 lim sup n f ( q ) q , J ( x n q ) lim sup t 0 lim sup n f ( q ) q , J ( x n q ) J ( x n x t ) .
(5.37)

Since X has a uniformly Fréchet differentiable norm, the duality mapping J is norm-to-norm uniformly continuous on bounded subsets of X. Consequently, the two limits are interchangeable and hence (5.31) holds. From (5.12) we get ( y n q)( x n q)0. Noticing that J is norm-to-norm uniformly continuous on bounded subsets of X, we deduce from (5.31) that

lim sup n f ( q ) q , J ( y n q ) = lim sup n ( f ( q ) q , J ( x n q ) + f ( q ) q , J ( y n q ) J ( x n q ) ) = lim sup n f ( q ) q , J ( x n q ) 0 .

Finally, let us show that x n q as n. We observe that

y n q 2 = α n ( f ( y n ) f ( q ) ) + β n ( x n q ) + γ n ( S n x n q ) + δ n ( J r n G x n q ) + α n ( f ( q ) q ) 2 α n ( f ( y n ) f ( q ) ) + β n ( x n q ) + γ n ( S n x n q ) + δ n ( J r n G x n q ) 2 + 2 α n f ( q ) q , J ( y n q ) α n f ( y n ) f ( q ) 2 + β n x n q 2 + γ n S n x n q 2 + δ n J r n G x n q 2 + 2 α n f ( q ) q , J ( y n q ) α n ρ y n q 2 + ( 1 α n ) x n q 2 + 2 α n f ( q ) q , J ( y n q ) ,

which implies that

y n q 2 ( 1 α n ( 1 ρ ) 1 α n ρ ) x n q 2 + α n ( 1 ρ ) 1 α n ρ 2 f ( q ) q , J ( y n q ) 1 ρ .
(5.38)

From (5.1) and the convexity of 2 , we get

x n + 1 q 2 σ n y n q 2 + ( 1 σ n ) J r n G y n q 2 y n q 2 ( 1 α n ( 1 ρ ) 1 α n ρ ) x n q 2 + α n ( 1 ρ ) 1 α n ρ 2 f ( q ) q , J ( y n q ) 1 ρ .
(5.39)

Applying Lemma 2.7 to (5.39), we obtain x n q as n. This completes the proof. □

Corollary 5.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach space X. Let Π C be a sunny nonexpansive retraction from X onto C and AX×X be an accretive operator on X such that D ( A ) ¯ C r > 0 R(I+rA). Let the mapping B i :CX be α i -inverse strongly accretive for i=1,2, and f:CC be a contraction with coefficient ρ(0,1). Let S:CC be a nonexpansive mapping such that F=Fix(S)Ω A 1 0 with 0< μ i < α i κ 2 for i=1,2. For arbitrarily given x 0 C, let { x n } be the sequence generated by

{ y n = α n f ( y n ) + β n x n + γ n S x n + δ n J r n G x n , x n + 1 = σ n y n + ( 1 σ n ) J r n G y n , n 0 .

Suppose that Assumption  5.1 holds. Assume that n = 1 sup x D S n x S n 1 x< for any bounded subset D of C, S:CC is a mapping defined by Sx= lim n S n x for all xC, and Fix(S)= n = 0 Fix( S n ). Then the sequence { x n } converges strongly to qF, which solves the following VIP:

q f ( q ) , J ( q p ) 0,pF.

We now establish the following strong convergence result on the composite explicit viscosity algorithm.

Theorem 5.2 Let C be a nonempty closed convex subset of a uniformly convex Banach space X which has a uniformly Gâteaux differentiable norm. Let Π C be a sunny nonexpansive retraction from X onto C and AX×X be an accretive operator on X such that D ( A ) ¯ C r > 0 R(I+rA). For each i=1,2, let B i :CX be a λ i -strictly pseudocontractive and α i -strongly accretive mapping with α i + λ i 1. Let f:CC be a contraction with coefficient ρ(0,1) and { S i } i = 0 be an infinite family of nonexpansive mappings S i :CC such that F= i = 0 Fix( S i )Ω A 1 0 with 1 λ i 1 + λ i (1 1 α i λ i ) μ i 1 for i=1,2. Suppose that Assumption  5.1 holds. For arbitrarily given x 0 C, let { x n } be the sequence generated by

{ y n = σ n G x n + ( 1 σ n ) J r n G x n , x n + 1 = α n f ( y n ) + β n y n + γ n S n y n + δ n J r n G y n , n 0 .
(5.40)

Assume that n = 1 sup x D S n x S n 1 x< for any bounded subset D of C, S:CC is a mapping defined by Sx= lim n S n x for all xC, and Fix(S)= n = 0 Fix( S n ). Then { x n } converges strongly to qF, which solves the following VIP:

q f ( q ) , J ( q p ) 0,pF.

Proof Take a fixed pF arbitrarily. Then we obtain p=Gp, p= S n p and J r n p=p for all n0. Moreover, by Lemma 4.2, we have

y n p σ n G x n p + ( 1 σ n ) J r n G x n p σ n x n p + ( 1 σ n ) x n p = x n p ,
(5.41)

and therefore

x n + 1 p α n f ( y n ) p + β n y n p + γ n S n y n p + δ n J r n G y n p α n ( f ( y n ) f ( p ) + f ( p ) p ) + β n y n p + γ n y n p + δ n y n p α n ρ y n p + α n f ( p ) p + ( β n + γ n + δ n ) y n p = ( 1 α n ( 1 ρ ) ) y n p + α n f ( p ) p ( 1 α n ( 1 ρ ) ) x n p + α n f ( p ) p = ( 1 α n ( 1 ρ ) ) x n p + α n ( 1 ρ ) f ( p ) p 1 ρ max { x n p , f ( p ) p 1 ρ } .

By induction, we get

x n pmax { x 0 p , f ( p ) p 1 ρ } ,n0,

which implies that { x n } is bounded and so are the sequences { y n }, {G x n }, {G y n }, {f( y n )}.

Let us show that x n + 1 x n 0 as n. As a matter of fact, repeating the same arguments as those in the proof of Theorem 4.1, we obtain

{ J r n G x n J r n 1 G x n 1 x n 1 x n + | r n 1 r n | M 0 , J r n G y n J r n 1 G y n 1 y n 1 y n + | r n 1 r n | M 0 , n 1 ,
(5.42)

where

sup n 1 { 1 ε ( J r n G x n G x n 1 + J r n 1 G x n 1 G x n ) } M 0 ,

and

sup n 1 { 1 ε ( J r n G y n G y n 1 + J r n 1 G y n 1 G y n ) } M 0 ,

for some M 0 >0. By (5.40) and simple calculations, we have

y n y n 1 = σ n ( G x n G x n 1 ) + ( σ n σ n 1 ) ( G x n 1 J r n 1 G x n 1 ) + ( 1 α n ) ( J r n G x n J r n 1 G x n 1 ) .

It follows that

y n y n 1 σ n G x n G x n 1 + | σ n σ n 1 | G x n 1 J r n 1 G x n 1 + ( 1 α n ) J r n G x n J r n 1 G x n 1 σ n x n x n 1 + | σ n σ n 1 | G x n 1 J r n 1 G x n 1 + ( 1 σ n ) ( x n 1 x n + | r n 1 r n | M 0 ) x n x n 1 + | σ n σ n 1 | G x n 1 J r n 1 G x n 1 + | r n r n 1 | M 0 .
(5.43)

Taking into account condition (v), without loss of generality we may assume that { β n }[a,b] for some a,b(0,1). From (5.40), x n + 1 can be rewritten as

x n + 1 = β n y n +(1 β n ) z n ,
(5.44)

where z n = α n f ( y n ) + γ n S n y n + δ n J r n G y n 1 β n . Utilizing (5.42) and (5.43), we have

z n z n 1 = α n f ( y n ) + γ n S n y n + δ n J r n G y n 1 β n α n 1 f ( y n 1 ) + γ n 1 S n 1 y n 1 + δ n 1 J r n 1 G y n 1 1 β n 1 = x n + 1 β n y n 1 β n x n β n 1 y n 1 1 β n 1 = x n + 1 β n y n 1 β n x n β n 1 y n 1 1 β n + x n β n 1 y n 1 1 β n x n β n 1 y n 1 1 β n 1 x n + 1 β n y n 1 β n x n β n 1 y n 1 1 β n + x n β n 1 y n 1 1 β n x n β n 1 y n 1 1 β n 1 = 1 1 β n x n + 1 β n y n ( x n β n 1 y n 1 ) + | 1 1 β n 1 1 β n 1 | x n β n 1 y n 1 = 1 1 β n x n + 1 β n y n ( x n β n 1 y n 1 ) + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 = 1 1 β n α n f ( y n ) + γ n S n y n + δ n J r n G y n α n 1 f ( y n 1 ) γ n 1 S n 1 y n 1 δ n 1 J r n 1 G y n 1 + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 1 1 β n [ α n f ( y n ) f ( y n 1 ) + γ n S n y n S n 1 y n 1 + δ n J r n G y n J r n 1 G y n 1 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | S n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 1 1 β n [ α n ρ y n y n 1 + γ n S n y n S n y n 1 + δ n [ y n 1 y n + | r n 1 r n | M 0 ] + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | S n 1 y n 1 + γ n S n y n 1 S n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 1 1 β n [ ( α n ρ + γ n + δ n ) y n 1 y n + | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | S n 1 y n 1 + γ n S n y n 1 S n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 ] + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 ( 1 ( 1 ρ ) α n 1 β n ) y n y n 1 + 1 1 β n [ | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | S n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 ] + S n y n 1 S n 1 y n 1 + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 .
(5.45)

By simple calculations and (5.44), we get

x n + 1 x n = β n ( y n y n 1 )+( β n β n 1 )( y n 1 z n 1 )+(1 β n )( z n z n 1 ).

This together with (5.43) and (5.45) implies that

x n + 1 x n β n y n y n 1 + | β n β n 1 | y n 1 z n 1 + ( 1 β n ) z n z n 1 β n y n y n 1 + | β n β n 1 | y n 1 z n 1 + ( 1 β n ) { ( 1 ( 1 ρ ) α n 1 β n ) y n y n 1 + 1 1 β n [ | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | S n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 ] + S n y n 1 S n 1 y n 1 + | β n β n 1 | ( 1 β n 1 ) ( 1 β n ) x n β n 1 y n 1 } ( 1 ( 1 ρ ) α n ) y n y n 1 + | β n β n 1 | y n 1 z n 1 + | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | S n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 + S n y n 1 S n 1 y n 1 + | β n β n 1 | 1 β n 1 x n β n 1 y n 1 ( 1 ( 1 ρ ) α n ) [ x n x n 1 + | σ n σ n 1 | G x n 1 J r n 1 G x n 1 + | r n r n 1 | M 0 ] + | β n β n 1 | y n 1 z n 1 + | r n 1 r n | M 0 + | α n α n 1 | f ( y n 1 ) + | γ n γ n 1 | S n 1 y n 1 + | δ n δ n 1 | J r n 1 G y n 1 + S n y n 1 S n 1 y n 1 + | β n β n 1 | 1 β n 1 α n 1 f ( y n 1 ) + γ n 1 S n 1 y n 1 + δ n 1 J r n 1 G y n 1 ( 1 ( 1 ρ ) α n ) x n x n 1 + ( | σ n σ n 1 | + | α n α n 1 | + | β n β n 1 | + | γ n γ n 1 | + | δ n δ n 1 | + | r n 1 r n | ) M + S n y n 1 S n 1 y n 1 ,

where 1 1 b sup n 0 {f( y n )+ S n y n + J r n G y n +G x n J r n G x n + y n z n +2 M 0 }M for some M>0. So, in terms of Lemma 2.7 and conditions (i), (iii), and (iv), we conclude that

lim n x n + 1 x n =0.
(5.46)

Next we show that x n G x n 0 as n.

Indeed, utilizing Lemma 2.3 and (5.40), we get

y n p 2 = σ n ( G x n p ) + ( 1 σ n ) ( J r n G x n p ) 2 σ n G x n p 2 + ( 1 σ n ) J r n G x n p 2 σ n ( 1 σ n ) g ( G x n J r n G x n ) σ n x n p 2 + ( 1 σ n ) x n p 2 σ n ( 1 σ n ) g ( G x n J r n G x n ) = x n p 2 σ n ( 1 σ n ) g ( G x n J r n G x n ) .
(5.47)

According to Lemma 2.2, we have from (5.40) and (5.47)

x n + 1 p 2 = α n ( f ( y n ) f ( p ) ) + β n ( y n p ) + γ n ( S n y n p ) + δ n ( J r n G y n p ) + α n ( f ( p ) p ) 2 α n ( f ( y n ) f ( p ) ) + β n ( y n p ) + γ n ( S n y n p ) + δ n ( J r n G y n p ) 2 + 2 α n f ( p ) p , J ( x n + 1 p ) α n f ( y n ) f ( p ) 2 + β n y n p 2 + γ n S n y n p 2 + δ n J r n G y n p 2 + 2 α n f ( p ) p , J ( x n + 1 p ) α n ρ 2 y n p 2 + β n y n p 2 + γ n y n p 2 + δ n G y n p 2 + 2 α n f ( p ) p , J ( x n + 1 p ) α n ρ y n p 2 + β n y n p 2 + γ n y n p 2 + δ n y n p 2 + 2 α n f ( p ) p x n + 1 p = ( 1 α n ( 1 ρ ) ) y n p 2 + 2 α n f ( p ) p x n + 1 p y n p 2 + 2 α n f ( p ) p x n + 1 p x n p 2 σ n ( 1 σ n ) g ( G x n J r n G x n ) + 2 α n f ( p ) p x n + 1 p ,

which hence yields

σ n ( 1 σ n ) g ( G x n J r n G x n ) x n p 2 x n + 1 p 2 + 2 α n f ( p ) p x n + 1 p ( x n p + x n + 1 p ) x n x n + 1 + 2 α n f ( p ) p x n + 1 p .

Since α n 0 and x n + 1 x n 0, from condition (v) and the boundedness of { x n }, it follows that

lim n g ( G x n J r n G x n ) =0.

Utilizing the properties of g, we have

lim n G x n J r n G x n =0.
(5.48)

On the other hand, x n + 1 can be rewritten as

x n + 1 = α n f ( y n ) + β n y n + γ n S n y n + δ n J r n G y n = α n f ( y n ) + β n y n + ( γ n + δ n ) γ n S n y n + δ n J r n G y n γ n + δ n = α n f ( y n ) + β n y n + e n z ˆ n ,
(5.49)

where e n = γ n + δ n and z ˆ n = γ n S n y n + δ n J r n G y n γ n + δ n . Utilizing Lemma 2.4, from (5.41) and (5.49), we have

x n + 1 p 2 = α n ( f ( y n ) p ) + β n ( y n p ) + e n ( z ˆ n p ) 2 α n f ( y n ) p 2 + β n y n p 2 + e n z ˆ n p 2 β n e n g 1 ( z ˆ n y n ) = α n f ( y n ) p 2 + β n y n p 2 β n e n g 1 ( z ˆ n y n ) + e n γ n S n y n + δ n J r n G y n γ n + δ n p 2 = α n f ( y n ) p 2 + β n y n p 2 β n e n g 1 ( z ˆ n y n ) + e n γ n γ n + δ n ( S n y n p ) + δ n γ n + δ n ( J r n G y n p ) 2 α n f ( y n ) p 2 + β n y n p 2 β n e n g 1 ( z ˆ n y n ) + e n [ γ n γ n + δ n S n y n p 2 + δ n γ n + δ n J r n G y n p 2 ] α n f ( y n ) p 2 + β n y n p 2 β n e n g 1 ( z ˆ n y n ) + e n [ γ n γ n + δ n y n p 2 + δ n γ n + δ n y n p 2 ] = α n f ( y n ) p 2 + ( 1 α n ) y n p 2 β n e n g 1 ( z ˆ n y n ) α n f ( y n ) p 2 + y n p 2 β n e n g 1 ( z ˆ n y n ) α n f ( y n ) p 2 + x n p 2 β n e n g 1 ( z ˆ n y n ) ,

which hence implies that

β n e n g 1 ( z ˆ n y n ) α n f ( y n ) p 2 + x n p 2 x n + 1 p 2 α n f ( y n ) p 2 + ( x n p + x n + 1 p ) x n x n + 1 .

Utilizing (5.46), conditions (i), (ii), (v), and the boundedness of { x n } and {f( y n )}, we get

lim n g 1 ( z ˆ n y n ) =0.

From the properties of g 1 , we have

lim n z ˆ n y n =0.
(5.50)

Utilizing Lemma 2.3 and the definition of z ˆ n , we have

z ˆ n p 2 = γ n S n y n + δ n J r n G y n γ n + δ n p 2 = γ n γ n + δ n ( S n y n p ) + δ n γ n + δ n ( J r n G y n p ) 2 γ n γ n + δ n S n y n p 2 + δ n γ n + δ n J r n G y n p 2 γ n δ n ( γ n + δ n ) 2 g 2 ( J r n G y n S n y n ) y n p 2 γ n δ n ( γ n + δ n ) 2 g 2 ( J r n G y n S n y n ) ,

which leads to

γ n δ n ( γ n + δ n ) 2 g 2 ( J r n G y n S n y n ) y n p 2 z ˆ n p 2 ( y n p + z ˆ n p ) y n z ˆ n .

Since { y n } and { z ˆ n } are bounded, we deduce from (5.50) and condition (ii) that

lim n g 2 ( S n y n J r n G y n ) =0.

From the properties of g 2 , we have

lim n S n y n J r n G y n =0.
(5.51)

Furthermore, x n + 1 can also be rewritten as

x n + 1 = α n f ( y n ) + β n y n + γ n S n y n + δ n J r n G y n = β n y n + γ n S n y n + ( α n + δ n ) α n f ( y n ) + δ n J r n G y n α n + δ n = β n y n + γ n S n y n + d n z ˜ n ,

where d n = α n + δ n and z ˜ n = α n f ( y n ) + δ n J r n G y n α n + δ n . Utilizing Lemma 2.4 and the convexity of 2 , we have from (5.41)

x n + 1 p 2 = β n ( y n p ) + γ n ( S n y n p ) + d n ( z ˜ n p ) 2 β n y n p 2 + γ n S n y n p 2 + d n z ˜ n p 2 β n γ n g 3 ( y n S n y n ) = β n y n p 2 + γ n S n y n p 2 + d n α n f ( y n ) + δ n J r n G y n α n + δ n p 2 β n γ n g 3 ( y n S n y n ) = β n y n p 2 + γ n S n y n p 2 + d n α n α n + δ n ( f ( y n ) p ) + δ n α n + δ n ( J r n G y n p ) 2 β n γ n g 3 ( y n S n y n ) β n y n p 2 + γ n y n p 2 + d n [ α n α n + δ n f ( y n ) p 2 + δ n α n + δ n J r n G y n p 2 ] β n γ n g 3 ( y n S n y n ) α n f ( y n ) p 2 + ( β n + γ n ) y n p 2 + δ n y n p 2 β n γ n g 3 ( y n S n y n ) = α n f ( y n ) p 2 + ( 1 α n ) y n p 2 β n γ n g 3 ( y n S n y n ) α n f ( y n ) p 2 + y n p 2 β n γ n g 3 ( y n S n y n ) α n f ( y n ) p 2 + x n p 2 β n γ n g 3 ( y n S n y n ) ,

which implies that

β n γ n g 3 ( y n S n y n ) α n f ( y n ) p 2 + x n p 2 x n + 1 p 2 α n f ( y n ) p 2 + ( x n p + x n + 1 p ) x n x n + 1 .

From (5.46), conditions (i), (ii), (v), and the boundedness of { x n } and {f( y n )}, we have

lim n g 3 ( y n S n y n ) =0.

Utilizing the properties of g 3 , we have

lim n y n S n y n =0.
(5.52)

Thus, from (5.51) and (5.52), we get

y n J r n G y n y n S n y n + S n y n J r n G y n 0as n,

that is,

lim n y n J r n G y n =0.
(5.53)

Therefore, from (5.40), (5.46), (5.52), (5.53), and α n 0, it follows that

x n y n x n x n + 1 + x n + 1 y n x n x n + 1 + α n f ( y n ) y n + γ n S n y n y n + δ n J r n G y n y n x n x n + 1 + α n f ( y n ) y n + S n y n y n + J r n G y n y n 0 as  n ,

that is,

lim n x n y n =0.
(5.54)

Utilizing (5.40), (5.48), and (5.54), we obtain

x n G x n x n y n + y n G x n = x n y n + ( 1 σ n ) J r n G x n G x n x n y n + J r n G x n G x n 0 as  n ,

that is,

lim n x n G x n =0.
(5.55)

In addition, from (5.52) and (5.54), we have

x n S n x n x n y n + y n S n y n + S n y n S n x n 2 x n y n + y n S n y n 0 as  n ,

that is,

lim n x n S n x n =0.
(5.56)

In terms of (5.56) and Lemma 2.6, we have

x n S x n x n S n x n + S n x n S x n 0as n,

that is,

lim n x n S x n =0.
(5.57)

We note that

x n J r n x n x n y n + y n J r n G y n + J r n G y n J r n G x n + J r n G x n J r n x n 2 x n y n + y n J r n G y n + G x n x n .

So, from (5.53), (5.54), and (5.55), we obtain

lim n x n J r n x n =0.
(5.58)

Furthermore, repeating the same arguments as those of (5.29) in the proof of Theorem 4.1, we can derive

lim n x n J r x n =0,
(5.59)

for a fixed number r(0,ε). Define a mapping Wx=(1 θ 1 θ 2 ) J r x+ θ 1 Sx+ θ 2 Gx, where θ 1 , θ 2 (0,1) are two constants with θ 1 + θ 2 <1. Then by Lemma 2.5, we have Fix(W)=Fix( J r )Fix(S)Fix(G)=F. We observe that

x n W x n = ( 1 θ 1 θ 2 ) ( x n J r x n ) + θ 1 ( x n S x n ) + θ 2 ( x n G x n ) ( 1 θ 1 θ 2 ) x n J r x n + θ 1 x n S x n + θ 2 x n G x n .

From (5.55), (5.57), and (5.59), we obtain

lim n x n W x n =0.
(5.60)

Now, we claim that

lim sup n f ( q ) q , J ( x n q ) 0,
(5.61)

where q=s lim t 0 x t with x t being the fixed point of the contraction

xtf(x)+(1t)Wx.

Then x t solves the fixed point equation x t =tf( x t )+(1t)W x t . Repeating the same arguments as those of (5.36) in the proof of Theorem 4.1, we derive

lim sup t 0 lim sup n x t f ( x t ) , J ( x t x n ) 0.
(5.62)

Repeating the same arguments as those of (5.37) in the proof of Theorem 4.1, we obtain

lim sup n f ( q ) q , J ( x n q ) = lim sup t 0 lim sup n f ( q ) q , J ( x n q ) lim sup t 0 lim sup n f ( q ) q , J ( x n q ) J ( x n x t ) .
(5.63)

Since X has a uniformly Gâteaux differentiable norm, the duality mapping J is norm-to-weak uniformly continuous on bounded subsets of X. Consequently, the two limits are interchangeable, and hence (5.61) holds. From (5.46), we get ( x n + 1 q)( x n q)0. Noticing the norm-to-weak uniform continuity of J on bounded subsets of X, we deduce from (5.61) that

lim sup n f ( q ) q , J ( x n + 1 q ) = lim sup n ( f ( q ) q , J ( x n + 1 q ) J ( x n q ) + f ( q ) q , J ( x n q ) ) = lim sup n f ( q ) q , J ( x n q ) 0 .

Finally, let us show that x n q as n. We observe that

y n q = α n ( G ( x n ) q ) + ( 1 α n ) ( J r n G ( x n ) q ) α n x n q + ( 1 α n ) x n q = x n q ,

and hence

x n + 1 q 2 = α n f ( y n ) f ( q ) + f ( q ) q , J ( x n + 1 q ) + β n ( y n q ) + γ n ( S n y n q ) + δ n ( J r n G ( y n ) q ) , J ( x n + 1 q ) α n f ( y n ) f ( q ) x n + 1 q + α n f ( q ) q , J ( x n + 1 q ) + β n ( y n q ) + γ n ( S n y n q ) + δ n ( J r n G ( y n ) q ) x n + 1 q α n ρ y n q x n + 1 q + α n f ( q ) q , J ( x n + 1 q ) + ( β n y n q + γ n y n q + δ n y n q ) x n + 1 q = α n ρ y n q x n + 1 q + α n f ( q ) q , J ( x n + 1 q ) + ( 1 α n ) y n q x n + 1 q ( 1 α n ( 1 ρ ) ) y n q x n + 1 q + α n f ( q ) q , J ( x n + 1 q ) ( 1 α n ( 1 ρ ) ) x n q x n + 1 q + α n f ( q ) q , J ( x n + 1 q ) = 1 α n ( 1 ρ ) 2 ( x n q 2 + x n + 1 q 2 ) + α n f ( q ) q , J ( x n + 1 q ) 1 α n ( 1 ρ ) 2 x n q 2 + 1 2 x n + 1 q 2 + α n f ( q ) q , J ( x n + 1 q ) .

Thus, we have

x n + 1 q 2 ( 1 α n ( 1 ρ ) ) x n q 2 + 2 α n f ( q ) q , J ( x n + 1 q ) = ( 1 α n ( 1 ρ ) ) x n q 2 + α n ( 1 ρ ) 2 f ( q ) q , J ( x n + 1 q ) 1 ρ .
(5.64)

Since n = 0 α n = and lim sup n f(q)q,J( x n + 1 q)0, by Lemma 2.7, we conclude from (5.64) that x n q as n. This completes the proof. □

Corollary 5.2 Let C be a nonempty closed convex subset of a uniformly convex Banach space X which has a uniformly Gâteaux differentiable norm. Let Π C be a sunny nonexpansive retraction from X onto C and AX×X be an accretive operator on X such that D ( A ) ¯ C r > 0 R(I+rA). Let the mapping B i :CX be λ i -strictly pseudocontractive and α i -strongly accretive with α i + λ i 1 for i=1,2. Let f:CC be a contraction with coefficient ρ(0,1) and S:CC be a nonexpansive mapping such that F=Fix(S)Ω A 1 0 with 1 λ i 1 + λ i (1 1 α i λ i ) μ i 1 for i=1,2. Suppose that Assumption  5.1 holds. For arbitrarily given x 0 C, let { x n } be the sequence generated by

{ y n = σ n G x n + ( 1 σ n ) J r n G x n , x n + 1 = α n f ( y n ) + β n y n + γ n S y n + δ n J r n G y n , n 0 .

Then the sequence { x n } converges strongly to qF, which solves the following VIP:

q f ( q ) , J ( q p ) 0,pF.

Remark 5.1 Our Theorems 5.1 and 5.2 improve and extend [[30], Theorem 3.2], [[20], Theorem 3.1] and [[29], Theorem 3.1] in the following aspects.

  1. (a)

    The problem of finding a point q n Fix( S n )Ω A 1 0 in Theorems 5.1 and 5.2 is more general and more subtle than the problem of finding q n Fix( T n ) in [[30], Theorem 3.2], the problem of finding q n Fix( T n )Ω in [[20], Theorem 3.1] and the problem of finding q A 1 0 in [[29], Theorem 3.1].

  2. (b)

    Theorems 5.1 and 5.2 are proved without the asymptotical regularity assumption of { x n } in [[29], Theorem 3.1] (that is, lim n x n x n + 1 =0).

  3. (c)

    The iterative scheme in [[20], Theorem 3.1] is extended to develop the iterative schemes (5.1) and (5.40) in Theorems 5.1 and 5.2 by virtue of the iterative schemes of [[30], Theorem 3.2] and [[29], Theorem 3.1]. The iterative schemes (5.1) and (5.40) in Theorems 5.1 and 5.2 are more advantageous and more flexible than the iterative scheme in [[20], Theorem 3.1] because they involves several parameter sequences.

  4. (d)

    The iterative schemes (5.1) and (5.40) in Theorems 5.1 and 5.2 are different from the one given in [[30], Theorem 3.2], [[20], Theorem 3.1] and [[29], Theorem 3.1] because the first iteration step in (5.1) is implicit and because the mapping G in [[20], Theorem 3.1] and the mapping J r n in [[29], Theorem 3.1] are replaced by the same composite mapping J r n G in Theorems 5.1 and 5.2.

  5. (e)

    The proof of [[20], Theorem 3.1] depends on the argument techniques in [10], the inequality in 2-uniformly smooth Banach spaces and the inequality in smooth and uniform convex Banach spaces. Because the composite mapping J r n G appears in the iterative scheme (5.1) in Theorem 5.1, the proof of Theorem 5.1 depends on the argument techniques in [10], the inequality in 2-uniformly smooth Banach spaces, the inequality in smooth and uniform convex Banach spaces, and the inequalities in uniform convex Banach spaces. However, the proof of our Theorem 5.1 does not depend on the argument techniques in [10], the inequality in 2-uniformly smooth Banach spaces, and the inequality in smooth and uniform convex Banach spaces. It depends on only the inequalities in uniform convex Banach spaces.

  6. (f)

    The assumption of the uniformly convex and 2-uniformly smooth Banach space X in [[20], Theorem 3.1] is weakened to the one of the uniformly convex Banach space X having a uniformly Gâteaux differentiable norm in Theorem 5.2.

References

  1. Ansari QH, Lalitha CS, Mehta M: Generalized Convexity, Nonsmooth Variational Inequalities and Nonsmooth Optimization. CRC Press, Boca Raton; 2013.

    MATH  Google Scholar 

  2. Facchinei F, Pang JS I. In Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York; 2003.

    Google Scholar 

  3. Facchinei F, Pang JS II. In Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York; 2003.

    Google Scholar 

  4. Kinderlehrer D, Stampacchia G: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York; 1980.

    MATH  Google Scholar 

  5. Korpelevich GM: An extragradient method for finding saddle points and for other problems. Èkon. Mat. Metody 1976, 12: 747–756.

    Google Scholar 

  6. Ceng LC, Ansari QH, Yao JC: Relaxed extragradient iterative methods for variational inequalities. Appl. Math. Comput. 2011, 218: 1112–1123. 10.1016/j.amc.2011.01.061

    Article  MathSciNet  Google Scholar 

  7. Ceng LC, Ansari QH, Wong NC, Yao JC: An extragradient-like approximation method for variational inequalities and fixed point problems. Fixed Point Theory Appl. 2011., 2011: Article ID 22

    Google Scholar 

  8. Ceng LC, Ansari QH, Wong NC, Yao JC: Mann type hybrid extragradient method for variational inequalities, variational inclusions and fixed point problems. Fixed Point Theory 2012, 13: 403–422.

    MathSciNet  Google Scholar 

  9. Ceng LC, Hadjisavvas N, Wong NC: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Glob. Optim. 2010, 46: 635–646. 10.1007/s10898-009-9454-7

    Article  MathSciNet  Google Scholar 

  10. Ceng LC, Wang CY, Yao JC: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 2008, 67: 375–390. 10.1007/s00186-007-0207-4

    Article  MathSciNet  Google Scholar 

  11. Iusem AN, Svaiter BF: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 1997, 42: 309–321. 10.1080/02331939708844365

    Article  MathSciNet  Google Scholar 

  12. Censor, Y, Gibali, A, Reich, S: Two extensions of Korpelevich’s extragradient method for solving the variational inequality problem in Euclidean space. Technical report (2010)

  13. Ceng LC, Yao JC: An extragradient-like approximation method for variational inequality problems and fixed point problems. Appl. Math. Comput. 2007, 190: 205–215. 10.1016/j.amc.2007.01.021

    Article  MathSciNet  Google Scholar 

  14. Nadezhkina N, Takahashi W: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 2006, 128: 191–201. 10.1007/s10957-005-7564-z

    Article  MathSciNet  Google Scholar 

  15. Solodov MV, Svaiter BF: A new projection method for variational inequality problems. SIAM J. Control Optim. 1999, 37: 765–776. 10.1137/S0363012997317475

    Article  MathSciNet  Google Scholar 

  16. Zeng LC, Yao JC: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwan. J. Math. 2006, 10: 1293–1303.

    MathSciNet  Google Scholar 

  17. Aoyama K, Iiduka H, Takahashi W: Weak convergence of an iterative sequence for accretive operators in Banach spaces. Fixed Point Theory Appl. 2006., 2006: Article ID 35390

    Google Scholar 

  18. Browder FE: Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Z. 1967, 100: 201–225. 10.1007/BF01109805

    Article  MathSciNet  Google Scholar 

  19. Ceng LC, Ansari QH, Yao JC: Mann-type steepest-descent and modified hybrid steepest-descent methods for variational inequalities in Banach spaces. Numer. Funct. Anal. Optim. 2008, 29: 987–1033. 10.1080/01630560802418391

    Article  MathSciNet  Google Scholar 

  20. Cai G, Bu SQ: Convergence analysis for variational inequality problems and fixed point problems in 2-uniformly smooth and uniformly convex Banach spaces. Math. Comput. Model. 2012, 55: 538–546. 10.1016/j.mcm.2011.08.031

    Article  MathSciNet  Google Scholar 

  21. Kamimura S, Takahashi W: Weak and strong convergence of solutions to accretive operator inclusions and applications. Set-Valued Anal. 2000, 8: 361–374. 10.1023/A:1026592623460

    Article  MathSciNet  Google Scholar 

  22. Kamimura S, Takahashi W: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 2002, 13: 938–945. 10.1137/S105262340139611X

    Article  MathSciNet  Google Scholar 

  23. Reich S: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 1979, 67: 274–276. 10.1016/0022-247X(79)90024-6

    Article  MathSciNet  Google Scholar 

  24. Yao Y, Liou YC, Kang SM, Yu YL: Algorithms with strong convergence for a system of nonlinear variational inequalities in Banach spaces. Nonlinear Anal. 2011, 74: 6024–6034. 10.1016/j.na.2011.05.079

    Article  MathSciNet  Google Scholar 

  25. Ansari QH, Yao JC: Systems of generalized variational inequalities and their applications. Appl. Anal. 2000, 76: 203–217. 10.1080/00036810008840877

    Article  MathSciNet  Google Scholar 

  26. Aubin JP: Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam; 1979.

    MATH  Google Scholar 

  27. Aoyama K, Kimura Y, Takahashi W, Toyoda T: Approximation of common fixed points of a countable family of nonexpansive mappings in Banach spaces. Nonlinear Anal. 2007, 67: 2350–2360. 10.1016/j.na.2006.08.032

    Article  MathSciNet  Google Scholar 

  28. Ceng LC, Khan AR, Ansari QH, Yao JC: Strong convergence of composite iterative schemes for zeros of m -accretive operators in Banach space. Nonlinear Anal. 2009, 70: 1830–1840. 10.1016/j.na.2008.02.083

    Article  MathSciNet  Google Scholar 

  29. Jung JS: Convergence of composite iterative methods for finding zeros of accretive operators. Nonlinear Anal. 2009, 71: 1736–1746. 10.1016/j.na.2009.01.010

    Article  Google Scholar 

  30. Ceng LC, Yao JC: Relaxed viscosity approximation methods for fixed point problems and variational inequality problem. Nonlinear Anal. 2008, 69: 3299–3309. 10.1016/j.na.2007.09.019

    Article  MathSciNet  Google Scholar 

  31. Verma RU: On a new system of nonlinear variational inequalities and associated iterative algorithms. Math. Sci. Res. Hot-Line 1999, 3: 65–68.

    MathSciNet  Google Scholar 

  32. Takahashi Y, Hashimoto K, Kato M: On sharp uniform convexity, smoothness, and strong type, cotype inequalities. J. Nonlinear Convex Anal. 2002, 3: 267–281.

    MathSciNet  Google Scholar 

  33. Ansari QH (Ed): Topics in Nonlinear Analysis and Optimization. World Education, Delhi; 2012.

    Google Scholar 

  34. Chidume CE: Geometric Properties of Banach Spaces and Nonlinear Iterations. Springer, London; 2009.

    MATH  Google Scholar 

  35. Goebel K, Kirk WA: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Dekker, New York; 1984.

    MATH  Google Scholar 

  36. Xu HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 1991, 16: 1127–1138. 10.1016/0362-546X(91)90200-K

    Article  MathSciNet  Google Scholar 

  37. Chang SS: Some problems and results in the study of nonlinear analysis. Nonlinear Anal. 1997, 33: 4197–4208.

    Article  Google Scholar 

  38. Cho YJ, Zhou HY, Guo G: Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings. Comput. Math. Appl. 2004, 47: 707–717. 10.1016/S0898-1221(04)90058-2

    Article  MathSciNet  Google Scholar 

  39. Bruck RE: Properties of fixed point sets of nonexpansive mappings in Banach spaces. Trans. Am. Math. Soc. 1973, 179: 251–262.

    Article  MathSciNet  Google Scholar 

  40. Suzuki T: Strong convergence of Krasnoselskii and Mann’s type sequences for one parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 2005, 305: 227–239. 10.1016/j.jmaa.2004.11.017

    Article  MathSciNet  Google Scholar 

  41. Xu HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66: 240–256. 10.1112/S0024610702003332

    Article  Google Scholar 

  42. Zeng LC, Lee GM, Wong NC: Ishikawa iteration with errors for approximating fixed points of strictly pseudocontractive mappings of Browder-Petryshyn type. Taiwan. J. Math. 2006, 10: 87–99.

    MathSciNet  Google Scholar 

  43. Iiduka H, Takahashi W: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal. 2005, 61: 341–350. 10.1016/j.na.2003.07.023

    Article  MathSciNet  Google Scholar 

  44. Jung JS: Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 2005, 302: 509–520. 10.1016/j.jmaa.2004.08.022

    Article  MathSciNet  Google Scholar 

  45. Xu HK: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 2004, 298: 279–291. 10.1016/j.jmaa.2004.04.059

    Article  MathSciNet  Google Scholar 

  46. Barbu V: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leiden; 1976.

    Book  MATH  Google Scholar 

  47. O’Hara JG, Pillay P, Xu HK: Iterative approaches to convex feasibility problems in Banach spaces. Nonlinear Anal. 2006, 64: 2022–2042. 10.1016/j.na.2005.07.036

    Article  MathSciNet  Google Scholar 

  48. Zhou HY, Wei L, Cho YJ: Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings in reflexive Banach spaces. Appl. Math. Comput. 2006, 173: 196–212. 10.1016/j.amc.2005.02.049

    Article  MathSciNet  Google Scholar 

  49. Shioji N, Takahashi W: Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces. Proc. Am. Math. Soc. 1997, 125: 3641–3645. 10.1090/S0002-9939-97-04033-1

    Article  MathSciNet  Google Scholar 

  50. Ceng LC, Xu HK, Yao JC: Strong convergence of an iterative method with perturbed mappings for nonexpansive and accretive operators. Numer. Funct. Anal. Optim. 2008, 29: 324–345. 10.1080/01630560801998203

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. The authors, therefore, acknowledge with thanks DSR for the technical and financial support. This research was partially supported to first author by the National Science Foundation of China (11071169), Innovation Program of Shanghai Municipal Education Commission (09ZZ133) and Ph.D. Program Foundation of Ministry of Education of China (20123127110002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Latif.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors participated in the design of this work and performed equally. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Ceng, LC., Al-Otaibi, A., Ansari, Q.H. et al. Relaxed and composite viscosity methods for variational inequalities, fixed points of nonexpansive mappings and zeros of accretive operators. Fixed Point Theory Appl 2014, 29 (2014). https://doi.org/10.1186/1687-1812-2014-29

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2014-29

Keywords